Code: Select all
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © RedKTrader - March 2023
//@version=5
// ******************************
// EVEREX v2.0 adds markers for key patterns based on nPrice:nVol ratios
// starting with EoM and Compression - maybe add "Balanced" and "Mega" ??
// to-do list
// inspecting the effort vs result concept by plotting volume vs. price change
// this is like looking at distance versus fuel consumption - but comparing a normalized average of each
// to help reveal areas of volume & price action anomalies, contraction & expansion
indicator('RedK Effort Versus Results Explorer v2.0', 'RedK EVEREX v2.0', precision = 0,
timeframe = '', timeframe_gaps = false, explicit_plot_zorder = true)
// ***********************************************************************************************************
// This function calcualtes a selectable average type
GetAverage(_data, _len, MAOption) =>
value = switch MAOption
'SMA' => ta.sma(_data, _len)
'EMA' => ta.ema(_data, _len)
'HMA' => ta.hma(_data, _len)
'RMA' => ta.rma(_data, _len)
=>
ta.wma(_data, _len)
// ***********************************************************************************************************
// ========================================================================================
// Normalization function - Normalizes values that are not restricted within a zero to 100 range
// This technique provides a scale that is closer to a "human" estimation of value in "bands"
// as in: low, below average, average, above average, high, super high
// this also avoids the issue of extreme values when using the stoch() -based technique
// these values are subjective, and can be changed - but slight changes here won't lead to major changes in outcome
// since all is relative to the same data series.
//
Normalize(_Value, _Avg) =>
_X = _Value / _Avg
_Nor =
_X > 1.50 ? 1.00 :
_X > 1.20 ? 0.90 :
_X > 1.00 ? 0.80 :
_X > 0.80 ? 0.70 :
_X > 0.60 ? 0.60 :
_X > 0.40 ? 0.50 :
_X > 0.20 ? 0.25 :
0.1
// ===================================================================================
// ===========================================================================================================
// Inputs
// ===========================================================================================================
grp_1 = 'Rate of FLow (RoF)'
grp_2 = 'Lookback Parameters'
grp_3 = 'Bias / Sentiment'
grp_4 = 'EVEREX Bands'
length = input.int(10, minval = 1, inline = 'ROF', group = grp_1)
MA_Type = input.string(defval = 'WMA', title = 'MA type',
options = ['WMA', 'EMA', 'SMA', 'HMA', 'RMA'], inline = 'ROF', group = grp_1)
smooth = input.int(defval = 3, title = 'Smooth', minval = 1, inline = 'ROF', group = grp_1)
//src = input.source(close, title = "Source (for 2-Bar Shift)", group = grp_1)
sig_length = input.int(5, 'Signal Length', minval = 1, inline = 'Signal', group = grp_1)
S_Type = input.string(defval = 'WMA', title = 'Signal Type',
options = ['WMA', 'EMA', 'SMA', 'HMA', 'RMA'], inline = 'Signal', group = grp_1)
lookback = input.int(defval = 20, title = 'Length', minval = 1, inline = 'Lookback', group = grp_2)
lkbk_Calc = input.string(defval = 'Simple', title = 'Averaging',
options = ['Simple', 'Same as RRoF'], inline='Lookback', group = grp_2 )
showBias = input.bool(defval = false, title = 'Bias Plot ? -- ', inline = 'Bias', group = grp_3)
B_Length = input.int(defval = 30, title = 'Length', minval = 1, inline = 'Bias', group = grp_3)
B_Type = input.string(defval = 'WMA', title = 'MA type',
options = ['WMA', 'EMA', 'SMA', 'HMA', 'RMA'], inline = 'Bias', group = grp_3)
showEVEREX = input.bool(true, 'Show EVEREX Bands ? -- ', inline = 'EVEREX', group = grp_4)
// a simple mechanism to control/change the strength band scale for improving visualization
// applies only to the "bands" and the level hlines
bandscale = str.tonumber(input.string("100", title = "Band Scale",
options = ['100', '200', '400'], inline = 'EVEREX', group = grp_4))
DispBias = showBias ? display.pane : display.none
DispBands = showEVEREX ? display.pane : display.none
showhlines = showEVEREX ? display.all : display.none
Disp_vals = display.status_line + display.data_window
// ===========================================================================================================
// Calculations
// ===========================================================================================================
// Volume "effort" Calculation -- will revert to no volume acceleration for instruments with no volume data
v = na(volume) ? 1 : volume // this part ensures we're not hit with calc issues due to NaN's
NoVol_Flag = na(volume) ? true : false // this is a flag to use later
lkbk_MA_Type = lkbk_Calc == 'Simple' ? 'SMA' : MA_Type
Vola = GetAverage(v, lookback, lkbk_MA_Type)
Vola_n_pre = Normalize(v, Vola) * 100
//Now trap the case of no volume data - ensure final calculation not impacted
Vola_n = NoVol_Flag ? 100 : Vola_n_pre
//plot(Vola_n , "Volume Normalized", color = color.white, display = display.none)
// ===============================================================================================================
// Price "result" calculation
// we'll consider "result" (strength or weakness) to be the outcome (average) of 6 elements:
// Same (in-)Bar strength elements:
// 1 - Bar Closing: the closing within the bar --> this will be a direct +100 / -100 value
// 2 - Spread to range: the spread to range ratio (that's BoP formula) --> direct +100 / -100 value
// 3 - Relative Spread: spread relative to average spread during lookback period --> normalized
// 2-bar strength elements:
// 4 - 2-bar closing: the closing within 2-bar range (that accomodates open gap effect)
// 5 - 2-bar Closing Shift to Range: Change in close relative to the 2-bar range
// 6 - 2-bar Relative Shift: the 2-bar Close (or source price) shift - relative to the average 2-bar shift during lookback period --> normalized
BarSpread = close - open
BarRange = high - low
R2 = ta.highest(2) - ta.lowest(2)
SrcShift = ta.change(close)
//TR = ta.tr(true)
sign_shift = math.sign(SrcShift)
sign_spread = math.sign(BarSpread)
// =========================================================================================================
// in-bar assessments
// =========================================================================================================
// 1. Calculate closing within bar - should be max value at either ends of the bar range
barclosing = 2 * (close - low) / BarRange * 100 - 100
//plot(barclosing, "Bar Closing %" , color=color.fuchsia, display = display.none)
// 2. caluclate spread to range ratio
s2r = BarSpread / BarRange * 100
//plot(s2r, "Spread:Range", color = color.lime, display = display.none)
// 3. Calculate relative spread compared to average spread during lookback
BarSpread_abs = math.abs(BarSpread)
BarSpread_avg = GetAverage(BarSpread_abs, lookback, lkbk_MA_Type)
BarSpread_ratio_n = Normalize(BarSpread_abs, BarSpread_avg) * 100 * sign_spread
//plot(BarSpread_ratio_n, "Bar Spread Ratio", color=color.orange, display=display.none)
// =========================================================================================================
// 2-bar assessments
// =========================================================================================================
// 4. Calculate closing within 2 bar range - should be max value at either ends of the 2-bar range
barclosing_2 = 2 * (close - ta.lowest(2)) / R2 * 100 - 100
//plot(barclosing_2, "2-Bar Closing %" , color=color.navy, display = display.none)
// 5. calculate 2-bar shift to range ratio
Shift2Bar_toR2 = SrcShift / R2 * 100
//plot(Shift2Bar_toR2, "2-bar Shift vs 2R", color=color.yellow, display = display.none)
// 6. Calculate 2-bar Relative Shift
SrcShift_abs = math.abs(SrcShift)
srcshift_avg = GetAverage(SrcShift_abs, lookback, lkbk_MA_Type)
srcshift_ratio_n = Normalize(SrcShift_abs, srcshift_avg) * 100 * sign_shift
//plot(srcshift_ratio_n, "2-bar Shift vs Avg", color=color.white, display = display.none)
// ===============================================================================
// =========================================================================================
// Relative Price Strength combining all strength elements
Pricea_n = (barclosing + s2r + BarSpread_ratio_n + barclosing_2 + Shift2Bar_toR2 + srcshift_ratio_n) / 6
//plot(Pricea_n, "Price Normalized", color=color.orange, display = display.none)
//Let's take Bar Flow as the combined price strength * the volume:avg ratio
// this works in a similar way to a volume-weighted RSI
bar_flow = Pricea_n * Vola_n / 100
//plot(bar_flow, 'bar_flow', color=color.green, display = display.none)
// calc avergae relative rate of flow, then smooth the resulting average
// classic formula would be this
//RROF = f_ma(bar_flow, length, MA_Type)
//
// or we can create a relative index by separating bulls from bears, like in an RSI - my preferred method
// here we have an added benefit of plotting the (average) bulls vs bears separately - as an option
bulls = math.max(bar_flow, 0)
bears = -1 * math.min(bar_flow, 0)
bulls_avg = GetAverage(bulls, length, MA_Type)
bears_avg = GetAverage(bears, length, MA_Type)
dx = bulls_avg / bears_avg
RROF = 2 * (100 - 100 / (1 + dx)) - 100
RROF_s = ta.wma(RROF, smooth)
Signal = GetAverage(RROF_s, sig_length, S_Type)
// Calculate Bias / sentiment on longer length
dx_b = GetAverage(bulls, B_Length, B_Type) / GetAverage(bears, B_Length, B_Type)
RROF_b = 2 * (100 - 100 / (1 + dx_b)) - 100
RROF_bs = ta.wma(RROF_b, smooth)
// ===========================================================================================================
// Colors & plots
// ===========================================================================================================
c_zero = color.new(#1163f6, 25)
c_band = color.new(color.yellow, 40)
c_up = color.aqua
c_dn = color.orange
c_sup = color.new(#00aa00, 70)
c_sdn = color.new(#ff180b, 70)
up = RROF_s >= 0
s_up = RROF_bs >=0
// ==================================== Plots ==========================================================
// // Display the ATR & VOl Ratio values only on the indicator status line & in the Data Window
// plotchar(shift, title = "Shift", char = "", color = color.white, editable=false, display=display.status_line + display.data_window)
// plotchar(lbk_tr, title = "Avg Shift", char = "", color = color.aqua, editable=false, display=display.status_line + display.data_window)
// plotchar(vola/lbk_vola, title = "Vol Ratio", char = "", color = color.yellow, editable=false, display=display.status_line + display.data_window)
hline(0, 'Zero Line', c_zero, linestyle = hline.style_solid)
// plot the band scale guide lines -- these lines will show/hide along with the EVEREX "Equalizer Bands Plot"
hline(0.25 * bandscale, title = '1/4 Level', color=c_band, linestyle = hline.style_dotted, display = showhlines)
hline(0.50 * bandscale, title = '2/4 Level', color=c_band, linestyle = hline.style_dotted, display = showhlines)
hline(0.75 * bandscale, title = '3/4 Level', color=c_band, linestyle = hline.style_dotted, display = showhlines)
hline(bandscale, title = '4/4 Level', color=c_band, linestyle = hline.style_dotted, display = showhlines)
// Plot Bulls & Bears - these are optional plots and hidden by default - adjust this section later
plot(ta.wma(bulls_avg, smooth), "Bulls", color = #11ff20, linewidth = 2, display = display.none)
plot(ta.wma(bears_avg, smooth), "Bears", color = #d5180b, linewidth = 2, display = display.none)
// =============================================================================
// Plot Bias / Sentiment
plot (RROF_bs, "Bias / Sentiment", style=plot.style_area,
color = s_up ? c_sup : c_sdn, linewidth = 4, display = DispBias )
// =============================================================================
// Plot Price Strength & Relative Volume as stacked "equalizer bands"
// adding visualization option to make the bands joint or separate at the mid-scale mark
Eq_band_option = input.string("Joint", title = 'Band Option', options = ["Joint", "Separate"], group = grp_4)
nPrice = math.max(math.min(Pricea_n, 100), -100)
nVol = math.max(math.min(Vola_n, 100), -100)
bar = bar_flow
c_vol_grn = color.new(#26a69a, 75)
c_vol_red = color.new(#ef5350, 75)
cb_vol_grn = color.new(#26a69a, 20)
cb_vol_red = color.new(#ef5350, 20)
c_vol = bar > 0 ? c_vol_grn : c_vol_red
cb_vol = bar > 0 ? cb_vol_grn : cb_vol_red
vc_lo = 0
vc_hi = nVol * bandscale / 100 / 2
plotcandle(vc_lo, vc_hi, vc_lo, vc_hi , "Volume Band", c_vol, c_vol, bordercolor = cb_vol, display = DispBands)
c_pri_grn = color.new(#3ed73e, 75)
c_pri_red = color.new(#ff870a, 75)
cb_pri_grn = color.new(#3ed73e, 20)
cb_pri_red = color.new(#ff870a, 20)
c_pri = bar > 0 ? c_pri_grn : c_pri_red
cb_pri = bar > 0 ? cb_pri_grn : cb_pri_red
pc_lo_base = Eq_band_option == "Joint" ? vc_hi : 0.50 * bandscale
pc_lo = pc_lo_base
pc_hi = pc_lo_base + math.abs(nPrice) * bandscale / 100 / 2
plotcandle(pc_lo, pc_hi, pc_lo ,pc_hi , "Price Band", c_pri, c_pri, bordercolor = cb_pri, display = DispBands)
// print the normalized volume and price values - only on statys line and in the data window
// these values are independant of the band scale or visualization options
plotchar(nVol, "Normalized Vol", char = "", color = c_vol, editable = false, display = Disp_vals)
plotchar(nPrice, "Normalized Price", char = "", color = c_pri, editable = false, display = Disp_vals)
// =============================================================================
// =============================================================================
// Plot main plot, smoothed plot and signal line
plot(RROF, 'RROF Raw', color.new(#2470f0, 9), display=display.none)
plot(RROF_s, 'RROF Smooth', color = color.new(#b2b5be,40), linewidth = 2)
plot(Signal, "Signal Line", up ? c_up : c_dn, 3)
// ===========================================================================================================
// basic alerts
// ===========================================================================================================
Alert_up = ta.crossover(RROF_s,0)
Alert_dn = ta.crossunder(RROF_s,0)
Alert_swing = ta.cross(RROF_s,0)
// "." in alert title for the alerts to show in the right order up/down/swing
alertcondition(Alert_up, ". RROF Crossing 0 Up", "RROF Up - Buying Action Detected!")
alertcondition(Alert_dn, ".. RROF Crossing 0 Down", "RROF Down - Selling Action Detected!")
alertcondition(Alert_swing, "... RROF Crossing 0", "RROF Swing - Possible Reversal")
// ===========================================================================================================
// v2.0 Adding Markers for Key Patterns
// ===========================================================================================================
// we can re-utilize the Normailize() function here too - but it's cleaner to have a separate ratio calc
nPrice_abs = math.abs(nPrice)
//EV_Ratio = 100 * Normalize(nPrice_abs, nVol)
EV_Ratio = 100 * nPrice_abs / nVol
// initial mapping of return ratios (to be revised)
// -------------------------------------------------------
// Case (1): Price > Vol => ratio > 120 = Ease of Move (EoM)
// Case (2): Price close to Vol => ratio between 80 - 120 = Reasonable Balance
// Case (3): Price less than Vol but reasonable => ratio between 80 - 50 = Drift / "nothing much to see here" bar
// Case (4): Price a lot less than Vol => 50 or less = Compression / Squat
// we're most interested in cases 1 & 4
//plot (EV_Ratio) // for validation only
is_positive = nPrice > 0
is_Compression = EV_Ratio <= 50
is_EoM = EV_Ratio >= 120
//Provide option to show/hide those EVEREX Markers - and an option for Compression bar
// - some folks would prefer a cross, others may prefer a circle - can adjust based on feedback
// no option for Ease of Move, guessing the triangle has the right significance
var showMarkers = input.bool(true, 'Show EVEREX Markers ?')
var Mshape = input.string("Circles", "Compression Marker", options = ['Circles','Crosses'])
SetShape(_x) =>
switch _x
'Circles' => shape.circle
'Crosses' => shape.cross
// Plot markers
plotshape(showMarkers and is_EoM and is_positive ? 0 : na, "EoM +ve", shape.triangleup, color=color.green,
location=location.absolute, size=size.auto, editable = false, display = display.pane)
plotshape(showMarkers and is_EoM and not(is_positive) ? 0 : na, "EoM -ve", shape.triangledown, color=color.red,
location=location.absolute, size=size.auto, editable = false, display = display.pane)
plotshape(showMarkers and is_Compression and is_positive ? 0 : na, "Compression +ve", style = SetShape(Mshape),
color=color.green, location=location.absolute, size = size.auto, editable = false, display = display.pane)
plotshape(showMarkers and is_Compression and not(is_positive) ? 0 : na, "Compression -ve", style = SetShape(Mshape),
color=color.red, location=location.absolute, size=size.auto, editable = false, display = display.pane)
Code: Select all
//+------------------------------------------------------------------+
//| RedK_EVEREX|
//| Copyright 2023, MetaQuotes Software Corp.|
//| https://www.mql5.com |
//+------------------------------------------------------------------+
#property indicator_chart_window
#property indicator_buffers 5
input int length = 10;
input ENUM_MA_METHOD MA_Type = MODE_SMA;
input int smooth = 3;
input int sig_length = 5;
input ENUM_MA_METHOD S_Type = MODE_SMA;
input int lookback = 20;
input string lkbk_Calc = "Simple";
input bool showBias = false;
input int B_Length = 30;
input ENUM_MA_METHOD B_Type = MODE_SMA;
input bool showEVEREX = true;
input int bandscale = 100; // Note: Band scale options ["100", "200", "400"] not directly available in MQL4
double VolaBuffer[];
double PriceaBuffer[];
double RROFBuffer[];
double SignalBuffer[];
//+------------------------------------------------------------------+
//| Custom functions |
//+------------------------------------------------------------------+
double GetAverage(double data[], int len, ENUM_MA_METHOD MAOption) {
double value = 0;
switch (MAOption) {
case MODE_SMA: value = iMA(NULL, 0, len, 0, MODE_SMA, PRICE_CLOSE, 0); break;
case MODE_EMA: value = iMA(NULL, 0, len, 0, MODE_EMA, PRICE_CLOSE, 0); break;
case MODE_SMMA: value = iMA(NULL, 0, len, 0, MODE_SMMA, PRICE_CLOSE, 0); break;
case MODE_LWMA: value = iMA(NULL, 0, len, 0, MODE_LWMA, PRICE_CLOSE, 0); break;
}
return value;
}
double Normalize(double Value, double Avg) {
double X = Value / Avg;
double Nor = 0.1; // Default value
if (X > 1.50) Nor = 1.00;
else if (X > 1.20) Nor = 0.90;
else if (X > 1.00) Nor = 0.80;
else if (X > 0.80) Nor = 0.70;
else if (X > 0.60) Nor = 0.60;
else if (X > 0.40) Nor = 0.50;
else if (X > 0.20) Nor = 0.25;
return Nor;
}
//+------------------------------------------------------------------+
//| Indicator initialization function |
//+------------------------------------------------------------------+
int OnInit() {
// Indicator buffers
SetIndexBuffer(0, VolaBuffer);
SetIndexBuffer(1, PriceaBuffer);
SetIndexBuffer(2, RROFBuffer);
SetIndexBuffer(3, SignalBuffer);
// Indicator properties
IndicatorShortName("RedK_EVEREX");
SetIndexLabel(0, "Volume Normalized");
SetIndexLabel(1, "Price Normalized");
SetIndexLabel(2, "RROF Smooth");
SetIndexLabel(3, "Signal Line");
return(INIT_SUCCEEDED);
}
//+------------------------------------------------------------------+
//| Indicator iteration function |
//+------------------------------------------------------------------+
int OnCalculate(const int rates_total,
const int prev_calculated,
const datetime &time[],
const double &open[],
const double &high[],
const double &low[],
const double &close[],
const long &tick_volume[],
const long &volume[],
const int &spread[]) {
int limit = rates_total - prev_calculated;
if (limit > rates_total || limit <= 0) return 0;
// Volume "effort" Calculation
double Vola = iMAOnArray(volume, 0, length, 0, MA_Type, 0);
double Vola_n_pre = Normalize(volume[0], Vola) * 100;
double Vola_n = Vola_n_pre; // Handle case of no volume data
// Price "result" calculation
double BarSpread = close[0] - open[0];
double BarRange = high[0] - low[0];
double R2 = High[1] - Low[1];
double SrcShift = close[0] - close[1];
double sign_shift = MathSign(SrcShift);
double sign_spread = MathSign(BarSpread);
double barclosing = 2 * (close[0] - low[0]) / BarRange * 100 - 100;
double s2r = BarSpread / BarRange * 100;
double BarSpread_abs = MathAbs(BarSpread);
double BarSpread_avg = iMAOnArray(BarSpread_abs, 0, lookback, 0, MA_Type, 0);
double BarSpread_ratio_n = Normalize(BarSpread_abs, BarSpread_avg) * 100 * sign_spread;
double barclosing_2 = 2 * (close[0] - Low[1]) / R2 * 100 - 100;
double Shift2Bar_toR2 = SrcShift / R2 * 100;
double SrcShift_abs = MathAbs(SrcShift);
double srcshift_avg = iMAOnArray(SrcShift_abs, 0, lookback, 0, MA_Type, 0);
double srcshift_ratio_n = Normalize(SrcShift_abs, srcshift_avg) * 100 * sign_shift;
double Pricea_n = (barclosing + s2r + BarSpread_ratio_n + barclosing_2 + Shift2Bar_toR2 + srcshift_ratio_n) / 6;
double bar_flow = Pricea_n * Vola_n / 100;
// Bulls and Bears calculation
double bulls = MathMax(bar_flow, 0);
double bears = -1 * MathMin(bar_flow, 0);
double bulls_avg = iMAOnArray(bulls, 0, length, 0, MA_Type, 0);
double bears_avg = iMAOnArray(bears, 0, length, 0, MA_Type, 0);
double dx = bulls_avg / bears_avg;
double RROF = 2 * (100 - 100 / (1 + dx)) - 100;
double RROF_s = iMAOnArray(RROF, 0, smooth, 0, MODE_SMA, 0);
// Signal line calculation
double Signal = iMAOnArray(RROF_s, 0, sig_length, 0, S_Type, 0);
// Storing values in buffers
VolaBuffer[0] = Vola_n;
PriceaBuffer[0] = Pricea_n;
RROFBuffer[0] = RROF_s;
SignalBuffer[0] = Signal;
return rates_total;
}