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Abstract

Academic research on trend-following investing has almost exclusively focused on testing
various trading rules’ profitability. However, all existing trend-following rules are essentially
ad-hoc, lacking a solid theoretical justification for their optimality. This paper aims to
address this gap in the literature. Specifically, we examine the optimal trend-following when
the returns follow a two-state process, randomly switching between bull and bear markets.
We show that if a Markov model governs the return process, it is optimal to follow the trend
using the Exponential Moving Average rule. However, the Markov model is unrealistic
because it does not represent the bull and bear market duration times correctly. It is more
sensible to model the return process by a semi-Markov model where the state termination
probability increases with age. Under this framework, the optimal trend-following rule
resembles the Moving Average Convergence/Divergence rule. We confirm the validity of the
semi-Markov model with an empirical study demonstrating that the theoretically optimal
trading rule outperforms the popular 10-month Simple Moving Average and 12-month
Momentum rules across a universe of international markets.
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1 Introduction

Trend-following investing is popular for several reasons. One of the main reasons is that it

is a relatively simple and straightforward investment strategy that can be easily understood

and implemented by investors. Another reason is that trend-following has historically been

shown to be profitable over the long term. By buying assets that are trending upward and

selling assets that are trending downward, trend-following investors can potentially capture

significant gains while minimizing losses. In addition, trend-following investing is appealing

to some investors because it can help to diversify their portfolios and reduce risk. Finally,

trend-following investing can be attractive to investors who are seeking a systematic approach

to investing. By using objective rules and indicators to identify trends, investors can avoid

emotional decision-making and potentially benefit from more consistent returns over time.

Many alternative trend-following rules are designed to identify the upward and downward

trends of the financial markets. Most of these rules are based on moving averages of past prices.

The most popular is the Simple Moving Average (SMA). Less commonly used types of moving

averages are the Linear Moving Average (LMA) and Exponential Moving Average (EMA).

Each moving average is computed using an averaging window of a particular size. Besides, a

trend-following rule can be based on either a single moving average or a combination of moving

averages. For example, a moving average “crossover” is a rule constructed using two moving

averages: one with short window size and another with long window size. There are SMA,

LMA, and EMA crossovers. A popular Moving Average Convergence/Divergence (MACD)

rule is based on three EMAs. Last but not least, there is a Momentum (MOM) rule that can

also be considered as a specific moving average rule.

In view of the aforesaid, investment professionals are overwhelmed by the variety of choices

between different trend-following rules, types of moving averages, and averaging window sizes.

From the academic point of view, all these trend-following rules are ad-hoc rules whose opti-

mality has never been justified theoretically. The goal of this paper is to fill this gap in the

literature. To achieve our goal, we need a model that can replicate the stylized facts about

financial asset returns documented by the econometric literature. These facts include fat tails,

negative skewness, volatility clustering, short-term momentum, and medium-term mean rever-

sion (see, for example, Cont (2001)). A two-state regime switching model is a widely accepted
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model for stock returns that can reproduce these stylized facts (see Timmermann (2000),

Frühwirth-Schnatter (2006), and Giner and Zakamulin (2023)). In this model, the returns

follow a process that randomly switches between bull and bear states. The market states are

identifiable and persistent. Consequently, this model justifies trend-following investing.

The main research question in our study is: What are the optimal trend-following rules

when the returns follow a two-state regime-switching process? To the best knowledge of the

authors, there is only a series of papers that answer this question using a continuous-time

Markov Switching Model (MSM) and assuming the existence of trading costs (see Dai, Zhang,

and Zhu (2010), Nguyen, Tie, and Zhang (2014a), Dai, Yang, Zhang, and Zhu (2016), and Tie

and Zhang (2016)). A typical goal in these papers is to maximize the expected return of the

trading strategy. The optimal trading strategy is represented by two time-dependent bound-

aries on the stock price. When the stock price is above (below) the upper (lower) boundary, a

Buy (Sell) signal is generated. Unfortunately, the continuous-time optimization problem with

transaction costs is not tractable analytically and finding the no-trading boundaries turns out

to be an extremely difficult numerical task (Nguyen, Yin, and Zhang (2014b)).

Besides, a severe limitation of an MSM is that the state termination probability does not

depend on the time already spent in that state. In other words, there is no duration dependence.

By contrast, many empirical studies document that the stock market states exhibit positive

duration dependence (see, among others, Cochran and Defina (1995), Ohn, Taylor, and Pagan

(2004), Harman and Zuehlke (2007), and Zakamulin (2023)). A positive duration dependence

means that the longer a bull (bear) market lasts, the higher its probability of ending. Because

an MSM does not provide a correct representation of the bull and bear market duration times,

the return process modeled by an MSM exhibits only short-term momentum. For the return

process to exhibit both short-term momentum and subsequent medium-term mean reversion,

the return process must be modeled by a Semi-Markov Switching Model (SMSM), where the

stock market states exhibit positive duration dependence (see Giner and Zakamulin (2023)).

In contrast to the previous papers, we use a discrete-time model without transaction costs.

We consider both a conventional MSM and an SMSM. The contributions of this paper are as

follows. Our first contribution is to demonstrate that the problem of finding the optimal trend-

following rule in an MSM is analytically tractable. We show that the EMA rule represents

the optimal trend-following rule in the MSM and find the solution to the optimal window size
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(decay constant) in this rule.

Our second contribution is to examine the optimal trend-following rule in an SMSM where

the state duration times exhibit positive duration dependence. This is a non-trivial task

because an SMSM lacks analytical tractability. Besides, all numerical computations rely on

using complicated recursive algorithms. Therefore, theoretical applications of an SMSM are

extremely rare in finance.1 Our analysis relies on an SMSM realized as an Expanded-State

MSM (ESMSM) with a specific topology. This ESMSM allows some analytical tractability,

and the numerical computations are of the same complexity as that of a conventional MSM.

Our results show that the optimal trend-following rule in an SMSM is somewhat similar to the

MACD rule.

Our third contribution lies in demonstrating that our theoretical ESMSM is in good agree-

ment with the empirical data, and our theoretically optimal trend-following rule outperforms

the popular trend-following rules used by investment professionals and academics. In our em-

pirical study, we use data from a wide range of international stock markets. Through out-of-

sample simulations, we provide clear evidence of the optimal rule’s superiority over the popular

10-month SMA and the 12-month MOM rules. This outcome not only confirms the validity

of our theoretical model but also advocates that our model is highly relevant in investment

practice. The main explanation of the optimal trend-following rule’s superior performance is

as follows: Whereas the 10-month SMA and 12-month MOM rules exploit only the short-term

return momentum, the optimal rule uses both the short-term momentum and subsequent mean

reversion. Last but not least, our theoretical model offers an explanation for why the 10-month

SMA rule typically performs better than the 12-month Momentum rule.

The rest of the paper is organized as follows. Subsequent Section 2 briefly reviews the

main existing trend-following rules. Section 3 motivates the modeling of returns by a regime-

switching process and advocates that the optimal trend-following rule is determined by the

autoregressive (AR) coefficients of the return process. Section 4 derives the analytical solution

to the AR coefficients in the MSM and demonstrates that following the trend using the EMA

rule is optimal. Section 5 presents the numerical solutions to the AR coefficients in the ESMSM.

Section 6 confirms that the return weights in the optimal trend-following rule are sufficiently

1In contrast, empirical applications of Hidden Semi-Markov Models (HSMM) is a growing field in empirical
finance due to the availability of various estimation algorithms.
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close to the AR coefficients of the return process. Section 7 demonstrates the validity of our

ESMSM and the advantage of the theoretically optimal trend-following rule using real-world

data. Finally, Section 8 concludes the paper.

2 Trend Following Rules: A Brief Review

2.1 Trend Following Rules Based on Past Prices

In most trend-following rules, the trading signal is generated depending on the value of either

one or multiple moving averages of past prices. Formally, denote by {P0, P1, . . . , Pt} a series

of observations of the closing prices of a financial asset, where time t denotes the current time

when the last closing price Pt is observed. A moving average of past n prices is computed as

MAt(n, P ) =

∑n−1

i=0 wiPt−i
∑n−1

i=0 wi

, (1)

where wi is the weight of price Pt−i in the computation of a moving average. There are three

basic types of moving averages: SMA, LMA, and EMA. The weights of the prices are given by

wi = 1 in SMAt(n, P ), and wi = n− i in LMAt(n, P ).

The EMA is computed as

EMAt(n, P ) =

∞
∑

i=0

(1− λ)λiPt−i, λ =
n− 1

n+ 1
, (2)

where λ is a decay constant, 0 < λ < 1. In contrast to all other types of moving averages,

the EMA is computed using the averaging window of an infinite size. The parameter n in the

EMA denotes the size of the averaging window in the SMA that has the same average lag time

as the EMA (see Zakamulin (2017, Chapter 3)). This convention (to quote n instead of λ) is

used to unify the notation for all types of moving averages.

In a trend-following rule based on one moving average, the last closing price Pt is compared

with the value of the moving average MAt(n, P ). A Buy (Sell) signal is generated when the
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last closing price is above (below) the moving average. Formally,

SignalMA
t =















Buy if Pt −MAt(n, P ) > 0,

Sell otherwise.

(3)

The idea is that in an upward (downward) trending market, the moving average of past prices

lags behind (leads) the current price.

In the Momentum (MOM) rule, the last observed price Pt is compared with the price n

periods ago Pt−n+1. A Buy (Sell) signal is generated when the last price is above (below) the

price n periods ago. The MOM rule can also be considered as a specific MA rule where all

price weights are zero except the weight of the most distant price: wi = 0 for i ∈ [0, n− 2] and

wn−1 = 1.

In an MA crossover rule, the trading signal is computed based on the difference between a

fast (short) and a slow (long) moving average. In particular, in this case, the signal is generated

as

SignalMAC
t =















Buy if MAt(s, P )−MAt(l, P ) > 0,

Sell otherwise,

(4)

where s and l are the shorter and longer moving average sizes, respectively. A crossover rule

replaces the last observed price with a short moving average of past prices. This replacement

reduces the number of false signals (whipsaws). Typically, both moving averages are of the

same type. Therefore, there are SMA crossovers, LMA crossovers, and EMA crossovers. Note

that when s = 1, the MA crossover rule reduces to the corresponding MA rule.

The Moving Average Convergence/Divergence (MACD) rule is the most complicated and

least understood trend-following rule based on moving averages of past prices. The trading

signal of the MACD rule is computed as follows. First of all, one computes the MAC indicator

using two EMAs

MACt(s, l) = EMAt(s, P )− EMAt(l, P ).
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Second, the signal is generated as

SignalMACD
t =















Buy if MACt(s, l)− EMAt(n,MAC(s, l)) > 0,

Sell otherwise,

(5)

where EMAt(n,MAC(s, l)) denotes the results of the application of the EMA to the past

values of MAC(s, l). That is, the MACD rule commands buying the financial asset when the

current value of MAC(s, l) is greater than its value smoothed by an EMA.

2.2 Equivalent Formulation of Rules Using Past Returns

Acar (1998) and Lequeux (2005) were the first to demonstrate that the computation of the

trading signal in the MA rules can be closely approximated using returns instead of prices.

This idea was further extended by Beekhuizen and Hallerbach (2017) and Zakamulin (2017,

Chapter 5) to cover other trend-following rules where the trading signal is computed using two

or three moving averages of prices. Two key benefits are offered by formulating trading rules

using returns instead of prices. First, this approach unifies the framework for trend-following

rules, regardless of whether they are based on one or multiple moving averages. The trading

signal for each rule can be expressed as a single moving average of past returns, simplifying

the overall process. As a direct consequence, despite the many variations in rules and types

of moving averages, the differences between them come down to the weighting function for

returns. Second, the equivalent formulation allows us to model the return process using either

a regime-switching model or the ARMA(p, q) family of models and investigate the profitability

and optimality of various trading rules.

Formally, the computation of the return-based trading indicator is given by

It(n) =
n−1
∑

i=0

θirt−i, (6)

where n is the number of past return observations, rt−i =
Pt−i−Pt−i−1

Pt−i−1
is the time t− i return,

and θi is the weight of rt−i in the computation of moving average. Note that if the trading rule

uses n past returns, then the equivalent price-based trading indicator uses n+ 1 past prices.2

2The reader is reminded that the EMA uses an infinite size of the averaging window; the value of n is used
to compute the decay constant.
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The return weights represent an integrated version of the price weights due to the cumu-

lative relation between prices and returns (for example, see Zakamulin (2017, Chapter 5)).

Therefore, the weighting function for returns generally differs from that for prices. However,

in the case of the EMA, both weighting functions are identical. In particular, the trading

indicator of the EMA rule is computed as

IEMA
t (n) =

∞
∑

i=0

(1− λ)λirt−i. (7)

The trading signal of the return-based rule is generated as

Signalt =















Buy if It(n) > 0,

Sell otherwise.

(8)

That is, the trading signal is generated based on the sign of the trading indicator. Note that

the return weights in a trading indicator can be freely re-scaled without changing the trading

signal. In particular, the trading indicator that uses the return weights [a θ0, a θ1, . . . , a θn−1],

where a > 0 is an arbitrary real number, generates the same trading signals as the trading

indicator that uses the return weights [θ0, θ1, . . . , θn−1]. As an example, the trading indicator

of the EMA rule can be computed3 as

IEMA
t (n) =

∞
∑

i=0

λirt−i. (9)

For illustration, Figure 1 plots the shapes of the weighting functions for returns in the

MOM, SMA, and EMA rules, the SMA and EMA crossover rules, and the MACD rule. These

illustrations suggest that there are only four basic shapes of the return-weighting functions:

(1) equal weighting of returns (as in the MOM rule), (2) overweighting the most recent returns

(as in the SMA and EMA rules), (3) hump-shaped weighting function which underweights

both the most recent and most distant returns (as in the SMA and EMA crossovers), and (4)

a weighting function that has a damped waveform where the return weights alter sign (as in

the MACD rule).

When a trading indicator uses monthly returns, the most popular trend-following rules are

3In this case, a = (1− λ)−1.
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Figure 1: The shapes of the weighting functions for returns in various trend-following rules based on
moving averages. In the MOM, SMA, and EMA rules, the size of the averaging window equals n = 30.
In the SMA and EMA crossover rules, the size of the longer averaging window equals l = 30, while the
size of the shorter averaging window equals s = 10 (s = 15) in the SMA (EMA) crossover rule. In the
MACD rule, the window sizes are s = 20, l = 50, and n = 10. The return weights in the EMA rule are
cut off at lag 30. The return weights in the EMA crossover and the MACD rules are cut off at lag 60.

the SMA(10) rule (Faber (2007), Gwilym, Clare, Seaton, and Thomas (2010), and Kilgallen

(2012)) and the MOM(12) rule (Moskowitz, Ooi, and Pedersen (2012), Georgopoulou and

Wang (2016), and Lim, Wang, and Yao (2018)). Note that these rules employ quite a different

weighting of returns in a trading indicator. While the MOM(12) rule uses equal return weights,

in the SMA(10) rule, the return weights linearly decrease with the return lag. However, it

should be noted that the question of the optimality of either the MOM(12) or SMA(10) rule
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has never been raised in practice or theory. It is only obvious that no more than one of these

rules is optimal.

3 Optimal Trend Following Rule: A Preliminary Discussion

3.1 Motivation

We know that, for the trend-following strategy to be beneficial, the returns must exhibit

persistence in the short run. Put differently, the returns must display positive autocorrelation

at short lags. Two examples of well-known return processes with short-term persistence are an

ARMA-type process and a regime-switching model. As a matter of fact, Poskitt and Chung

(1996) demonstrate that there is a one-to-one correspondence between a Markov switching

model and an ARMA model. The ARMA-type process is easier to deal with than a regime-

switching model. Therefore, we use the AR process to motivate the functional form of the

return weights in the optimal trend-following rule.

Specifically, suppose that the market returns follow a p-order autoregressive process, AR(p),

defined by the following equation

rt = γ +

p
∑

i=1

φirt−i + εt, (10)

where γ is a constant, {φ1, φ2, . . . , φp} are the AR coefficients, and εt are i.i.d. random variables

with zero mean and variance of σ2
ε . It is well-known that if the returns follow an AR(p) process,

the best linear predictor has the same functional form as the AR(p) process to be predicted,

see Box, Jenkins, Reinsel, and Ljung (2016, Chapter 5). Specifically, the best linear predictor

of the future return is given by

r̂t+1 = γ +

p−1
∑

i=0

φi+1rt−i, (11)

where r̂t+1 is the predicted value at the future time t+ 1.

However, the aim of a trading indicator is not to predict the future return per se but to

generate Buy and Sell trading signals. These trading signals must ensure the best risk-adjusted

performance of the trend-following strategy. We consider the question of what return-weighting
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function maximizes the performance of the trend-following strategy later in this paper. As for

now, a good educated guess is that the optimal trend-following indicator has the following

form

It(p) =

p−1
∑

i=0

(aφi+1) rt−i, (12)

where a > 0 is an arbitrary real number. That is, the return-weighting function of the trend-

following indicator that maximizes the performance of the trend-following strategy represents

a positive scaling transformation of the autoregressive coefficients of the underlying AR(p)

process, θi = aφi+1.

Consequently, from a theoretical point of view, the question of the optimal return weights in

a trading indicator is rather trivial: the shape of the return-weighting function must resemble

the shape of the AR coefficients of the return process. At first glance, all we need to do is

estimate the AR coefficients of a real-life return process using linear regression. However, this

straightforward approach cannot achieve the desired result. The fact is that the AR coefficients

of a real-life return process are rather small and escape detection. Specifically, Zakamulin and

Giner (2022) demonstrate that, even when one uses 150 years of monthly data, the values of

the AR coefficients are comparable with the standard errors of their estimation. Their ballpark

estimate is that we need about 650 years of monthly data to make the estimated AR coefficients

statistically significant at the 5% level. Hence, the empirical estimation of AR coefficients is

not a feasible approach. The only remaining avenue to gain insights into the return weights

for the optimal trend-following rule is through theoretical analysis. In this paper, we employ a

two-state regime-switching model to deduce the shape of the AR coefficients, with these states

representing the bull and bear markets.

The empirical literature strongly supports using a regime-switching model for analyzing

stock markets. Furthermore, given that such a model successfully captures the stylized facts

associated with financial asset returns, it is likely to be capable of reproducing the AR coef-

ficients. However, a fundamental question remains: why would the market adhere to such a

process?

The existence of both bull and bear markets can be attributed to a combination of fac-

tors, with the primary drivers including economic conditions, bounded investor rationality, and

investor sentiment. Notably, economic activity in each country experiences recurrent fluctua-
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tions known as business cycles. Understanding the underlying reasons for these cycles remains

a prominent challenge in economic research, with numerous alternative business cycle theories

available for exploration.4

In a rational expectations model, stock market movements should mirror the forward-

looking behavior of investors who assess the future state of the economy. This synchronization

between stock market fluctuations and business cycles is well-documented in the literature

(see, for instance, Chauvet (1999) and Cruz, Nicolau, and Rodrigues (2021)).

Stock market cycles have a profound impact on investors’ sentiment, and these changes

in sentiment, as noted by Shiller (2000), are known to drive asset values away from their

fundamentals. Additionally, investors’ earnings forecasts play a crucial role in shaping stock

market valuations. Due to the bounded rationality of investors, these forecasts often carry

biases, as discussed by Bondt and Thaler (1990). These biases also lead to significant over-

valuation in bull markets and undervaluation in bear markets (De Bondt and Thaler (1985)

and De Bondt and Thaler (1989)). The resultant mispricing necessitates a correction phase

during which stock prices return to their fundamental values, further reinforcing the dynamics

of stock market cycles.

3.2 AR Coefficients in a Two-State Regime-Switching Model

We suppose that the return rt is a discrete-time stochastic process that randomly switches

between two states (regimes): A and B. We assume that state A is a bull state of the market,

while state B is a bear state of the market. Formally, the state space of the process is St ∈

{A,B}. The return distribution depends on the state St in the following manner:

rt =















µA + σAzt if St = A,

µB + σBzt if St = B,

(13)

where µA and σA are the mean and standard deviation of returns in state A, µB and σB are the

mean and standard deviation of returns in state B, and zt is an identically and independently

distributed over time random variable with zero mean and unit variance.

The conditional probabilities pIJ(k) = Prob(St+k = J |St = I) are called the multi-period

4For an extensive review, we refer the reader to Zarnowitz (1985) or Niemira and Klein (1994, Chapter 2)).
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transition probabilities. In words, pIJ(k) is the probability that the process transits from state

I to state J over k periods. The k-period transition probability distribution of the process can

be represented by a 2× 2 transition probability matrix P(k):

P(k) =







pAA(k) pAB(k)

pBA(k) pBB(k)






.

The steady-state (stationary or ergodic) probabilities are denoted by πA and πB and given

by

πA = Prob(St = A), πB = Prob(St = B).

The return autocorrelation function ρk is defined by (see Giner and Zakamulin (2023))

ρk =
πAπB(µA − µB)

2 − (µA − µB)(πA pAB(k)µA − πB pBA(k)µB)

σ2
, (14)

where

σ2 = πAσ
2
A + πBσ

2
B + πAπB(µA − µB)

2.

It is essential to stress that the return autocorrelation function’s dependence on k solely relies

on the transition probabilities pAB(k) and pBA(k). The calculation of the k-period transition

probabilities is significantly influenced by whether the regime-switching model is Markov or

semi-Markov, and we will elaborate on this in the upcoming sections.

Once the p× 1 vector ρ′
p = [ρ1, ρ2, . . . , ρp] of the autocorrelation coefficients is determined,

we can calculate the AR coefficients of the return process by solving the Yule-Walker equations

Rp,pφp = ρp, (15)

where φ′
p = [φ1, φ2, . . . , φp] is the p× 1 vector that contains the AR coefficients and Rp,p is the
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p× p matrix given by

Rp,p =

























1 ρ1 ρ2 . . . ρp−1

ρ1 1 ρ1 . . . ρp−2

ρ2 ρ1 1 . . . ρp−3

...
...

...
. . .

...

ρp−1 ρp−2 ρp−3 . . . 1

























. (16)

The solution is given by

φp = R−1
p,pρp, (17)

where R−1
p,p is the inverse of matrix Rp,p.

4 Conventional Markov Model

Panel A of Figure 2 shows the topology of a conventional two-state MSM. The one-period

transition probability matrix in this model is given by

P =







pAA pAB

pBA pBB






=







1− α α

β 1− β






. (18)

For instance, if the process is in state A, then over a single period, the process transits to state

B with probability pAB or remains in state A with probability pAA = 1− pAB .

The k-period transition probability matrix is calculated as P(k) = Pk. The elements of the

transition probability matrix P(k) are given by (see, for example, Hamilton (1994, Chapter

22))

P(k) =







pAA(k) pAB(k)

pBA(k) pBB(k)






=







πA + πBδ
k πB − πBδ

k

πA − πAδ
k πB + πAδ

k






, (19)

where

δ = 1− α− β, (20)

and the steady-state probabilities are given by

πA =
β

α+ β
, πB =

α

α+ β
. (21)
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A

1− α

B

1− β

α β

A1

1− qα

A2

1− qα

... Aq

1− qα

qα qα qα

B1

1− sβ

B2

1− sβ

...Bs

1− sβ

qα

sβsβsβ

sβ

Panel A: Conventional Markov model Panel B: Expanded-state Markov model

Figure 2: A conventional Markov model and an expanded-state Markov model. State A is a bull state
of the market, while state B is a bear state of the market. In the expanded-state Markov model, macro-
state (semi-Markovian state) A is represented by q sub-states (Markovian states), while macro-state B
consists of s sub-states.

The solution for the lag-k return autocorrelation is obtained by inserting the solutions for

pAB(k) and pBA(k) into equation (14). The final expression for the lag-k autocorrelation is

given by

ρk = cδk, (22)

where the constant c is given by

c =
πAπB(µA − µB)

2

σ2
. (23)

Note that the autocorrelation is positive and exponentially decreases towards zero as k increases

to infinity.

It is possible to solve analytically for the AR coefficients using the one-to-one correspon-

dence between Markov models and ARMA models. Specifically, Poskitt and Chung (1996)

prove that the process in an h-state MSM admits an ARMA(h− 1, h− 1) representation with

a homogeneous zero-mean white noise process. Consequently, the observations of the return

process in a two-state MSM are indistinguishable from the observations of the return process

that follows an ARMA(1,1) model. Put differently, the return process defined by equation (13)

can alternatively be represented as an ARMA(1,1) process. In particular, the return process
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can be specified by

rt = ω + ϕrt−1 + εt − ϑεt−1, (24)

where ω, ϕ, and ϑ are some constants and εt is a homogeneous zero-mean white noise process.

We assume that ϕ and ϑ satisfy the stationarity conditions.

It is well-known that any ARMA(p, q) process admits an AR(∞) representation. The

AR(∞) representation of the process specified by equation (24) is given by

rt = γ +

∞
∑

i=1

(ϕ− ϑ)ϑi−1rt−i + εt. (25)

Note that equation (25) corresponds to equation (10) where the AR terms are given by

φi = (ϕ− ϑ)ϑi−1. (26)

This result allows us to conclude that the EMA indicator, with the decay constant λ = ϑ,

represents the optimal trend-following rule in a two-state MSM. Indeed, in this case, the

optimal trend-following indicator is given by

It(n) =

∞
∑

i=0

a(ϕ− ϑ)ϑi−1rt−i. (27)

This trend-following indicator corresponds to the EMA trading indicator, specified by equation

(9), when a = (ϕ− ϑ)−1 and where the value of n is given by n = 1+ϑ
1−ϑ

.

Our next goal is to find the analytical expressions for ϕ and ϑ. The lag-1 autocorrelation

of the ARMA(1, 1) process is given by (see Box et al. (2016, Chapter 3))

ρ1 =
(ϕ− ϑ)(1− ϕϑ)

1− 2ϕϑ + ϑ2
. (28)

Then for every ρk, k > 1, we have

ρk = ρ1ϕ
k−1. (29)

The functional form of the lag-k return autocorrelation given by equation (29) is similar to

that of the lag-k return autocorrelation specified by equation (22). This similarity is nothing

other than a direct consequence of the duality between a two-state MSM process and an
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ARMA(1,1) process. A comparison of (29) and (22) suggests that

ϕ = δ = 1− α− β. (30)

This expression is natural from the viewpoint that ϕ is interpreted as the persistence of the

ARMA(1, 1) process. The smaller the values of α and β, the higher the value of ϕ, and the

process is more likely to stay in the same state than to transit to another state.

Remains to find the analytical expression for ϑ. We find it by matching the expressions

(28) and (22) for k = 1. This gives us the following equation:

(ϕ− ϑ)(1− ϕϑ)

1− 2ϕϑ + ϑ2
= cϕ. (31)

The result is a quadratic equation in ϑ that has two roots:

ϑ1 = d−
√

d2 − 1, ϑ2 = d+
√

d2 − 1,

where d is given by

d =
1 + ϕ2(1− 2c)

2ϕ(1 − c)
. (32)

Since d > 1 (otherwise, both roots are complex numbers), we conclude that ϑ2 > 1 and,

therefore, in this case, the ARMA(1, 1) process is non-invertible. Hence, the only satisfactory

solution to equation (31) is provided by ϑ1. Consequently, the analytical solution to ϑ is given

by

ϑ = d−
√

d2 − 1. (33)

5 Semi-Markov Model

The stylized facts about financial asset returns include fat tails, negative skewness, volatility

clustering, short-term momentum, and medium-term mean reversion. A two-state conventional

MSM reproduces most of these stylized facts except the mean reversion. The state duration

times in a conventional MSM follow a memoryless geometric distribution. As a result, the

probability of transitioning out of a state is independent of the time spent in that state,

resulting in no duration dependence. However, numerous studies report that the stock market
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states show positive duration dependence (see, among others, Cochran and Defina (1995),

Ohn et al. (2004), Harman and Zuehlke (2007), and Zakamulin (2023)). Positive duration

dependence indicates that the probability of a bull or bear market ending increases as it lasts

longer. Therefore, the traditional MSM cannot accurately represent the duration of bull and

bear markets.

To incorporate duration dependence into a regime-switching model, the primary method is

to use an SMSM instead of an MSM. Unlike the MSM, the SMSM allows for any probability

distribution to govern the state duration time. However, the SMSM lacks analytical tractabil-

ity and requires complex recursive algorithms for numerical computation. Recently, Giner and

Zakamulin (2023) proposed an ESMSM that overcomes the disadvantages of the SMSM. The

ESMSM has a specific topology5 where the state duration times follow a negative binomial

distribution, which displays positive duration dependence and simplifies to a geometric distri-

bution under particular parameter constraints. This ESMSM has some analytical tractability

and numerical computations with the same complexity as a conventional MSM. Giner and

Zakamulin (2023) demonstrate that the ESMSM induces return momentum at short lags and

reversal at subsequent lags.

The reader is referred to Giner and Zakamulin (2023) for all details regarding the topology

of the ESMSM and the computations of transition probabilities between the bull and bear

states. In this section, we briefly review the construction of the ESMSM and present the

computed AR coefficients in this model.

Panel B of Figure 2 shows the general topology of the ESMSM with two macro (semi-

Markovian) states, A and B. Macro-state A is represented by q sub-states (denoted by A1, A2,

. . . , Aq), while macro-state B consists of s sub-states (denoted byB1, B2, . . . , Bs). This ESMSM

extends the conventional two-state MSM depicted in Panel A of Figure 2. In this ESMSM,

the state duration times follow a negative binomial distribution. For instance, each of the q

sub-states of macro-state A is with self-transition, and the transition to the next macro-state is

possible only from the last qth sub-state. It is assumed that the self-transition probability pii =

pAiAi
is the same in each sub-state 1, 2, . . . , q of state A. Under this assumption, macro-state

A duration time, dA, follows a negative binomial distribution dA ∼ NB(q). The probability

5In an ESMSM, several Markovian states (sub-states) represent one semi-Markovian state (macro-state).
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mass function of the NB(q) distribution is given by

f(n, q, pii) = Prob(dA = n) =

(

n− 1

n− q

)

(1− pii)
qpn−q

ii , n ≥ q. (34)

The geometric distribution is a special case of the negative binomial distribution when q = 1.

Consequently, when each macro-state consists of only one sub-state, q = s = 1, the ESMSM

reduces to a conventional MSM depicted in Panel A of Figure 2.

A simple example to understand an ESMSM is when each macro state consists of only two

sub-states, q = s = 2. Specifically, state A consists of two sub-states A1 and A2, while state B

consists of two sub-states B1 and B2. In this case, the one-period transition probability matrix

is given by:

P =



















pA1A1
pA1A2

pA1B1
pA1B2

pA2A1
pA2A2

pA2B1
pA2B2

pB1A1
pB1A2

pB1B1
pB1B2

pB2A1
pB2A2

pB2B1
pB2B2



















=



















1− 2α 2α 0 0

0 1− 2α 2α 0

0 0 1− 2β 2β

2β 0 0 1− 2β



















. (35)

For instance, if the process is in sub-state A1, then over a single period, the process transits

to sub-state A2 with probability pA1A2
or remains in sub-state A1 with probability pA1A1

=

1−pA1A2
. If the process is in sub-state A2, then over a single period, the process transits to sub-

state B1 with probability pA2B1
or remains in sub-state A2 with probability pA2A2

= 1−pA2B1
.

Note that the self-transition probabilities of sub-states A1 and A2 (B1 and B2) are the same

pA1A1
= pA2A2

(pB1B1
= pB2B2

). As a result, the transition probabilities from one sub-

state of macro-state A (B) to either another sub-state or another macro-state are the same

pA1A2
= pA2B1

(pB1B2
= pB2A1

).

In the ESMSM specified by the transition probability matrix in (35), the transition prob-

abilities are computed as follows:

pAA = (pA1A1
+ pA1A2

+ pA2A1
+ pA2A2

)/2,

pAB = (pA1B1
+ pA1B2

+ pA2B1
+ pA2B2

)/2,

pBA = (pB1A1
+ pB1A2

+ pB2A1
+ pB2A2

)/2,

pBB = (pB1B1
+ pB1B2

+ pB2B1
+ pB2B2

)/2.

(36)
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The k-period transition probability matrix in the ESMSM is given by

P(k) = Pk =



















pA1A1
(k) pA1A2

(k) pA1B1
(k) pA1B2

(k)

pA2A1
(k) pA2A2

(k) pA2B1
(k) pA2B2

(k)

pB1A1
(k) pB1A2

(k) pB1B1
(k) pB1B2

(k)

pB2A1
(k) pB2A2

(k) pB2B1
(k) pB2B2

(k)



















. (37)

The k-period transition probabilities of macro-states A and B are computed similarly to (36).

For example, the k-period self-transition probability of macro-state A is computed as pAA(k) =

(pA1A1
(k) + pA1A2

(k) + pA2A1
(k) + pA2A2

(k))/2.

Both the ESMSM and MSM have the same one-period transition probabilities for macro-

states A and B. For example, pAA = 1 − α in both the ESMSM and MSM. As a result, both

the ESMSM and MSM have the same mean state duration times. Additionally, the ESMSM

has the same macro-state stationary probabilities πA and πB . All these features provide simple

comparability between the ESMSM and the corresponding MSM.

Now consider the general case where macro-state A is represented by q sub-states, while

macro-state B consists of s sub-states. In this case, the one-period (q + s)× (q + s) transition

probability matrix P is given by the following partitioned matrix

P =







PAA PAB

PBA PBB






,

where PAA is the q × q sub-matrix, PAB is the q × s sub-matrix, PBA is the s × q sub-

matrix, and PBB is the s × s sub-matrix.6 For instance, the self-transition probability pAA

(pBB) of macro-state A (B) is computed by summing all elements of sub-matrix PAA (PBB)

and dividing the result by q (s). Then, the complementary probability pAB (pBA) can be

calculated as pAB = 1− pAA (pBA = 1− pBB). Regardless of the number of sub-states in each

macro-state, the k-period transition probability matrix is computed in the usual manner as

P(k) = Pk.

Giner and Zakamulin (2023) demonstrate that the ESMSM with two sub-states for each

6This model has a constraint that requires the fulfillment of the following conditions: α < 1/q and β < 1/s.
In most cases, these conditions can be satisfied by real-world processes that have relatively small values for q
and s.
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macro-state is tractable analytically. Specifically, they derive analytical solutions to the k-

period transition probabilities pAB(k) and pBA(k) needed to compute the lag-k return auto-

correlation. Consequently, there is an analytical solution to the return weights in the optimal

trend-following rule when the bull and bear state duration times are given by the NB(2) dis-

tribution. In sum, the optimal trend-following rule in the ESMSM with no more than two

sub-states for each market state admits an analytical solution. Regardless of the number of

sub-states in each macro-state, the k-period transition probabilities can be computed using

matrix multiplication routines available in many mathematical software programs. All that is

needed is to define the one-period transition probability matrix in an ESMSM.

Figure 3 plots the monthly AR coefficients in the ESMSM with q sub-states for each

macro-state for various q ∈ {1, 2, 3, 4}. Regardless of the value of q, the model parameters are

as follows. The annualized mean state returns are µA = 25% and µB = −25%. The annualized

standard deviations of state returns are σA = σB = 18%. The mean state A (bull market)

duration time equals 28 months, and the mean state B (bear market) duration time equals 14

months. These model parameters closely resemble those estimated in the empirical section of

this paper, as outlined below. The AR coefficients are computed using the following sequence

of calculations. First, we compute numerically the k-period transition probabilities pAB(k)

and pBA(k). Second, we compute the lag-k autocorrelation coefficients given by equation (14).

Third and finally, we compute the AR coefficients7 using equation (17).

The curves in Figure 3 suggest the following observations. In the conventional MSM, the

state duration times follow the memoryless NB(1) distribution. In this case, the AR coeffi-

cients are always positive and exponentially decrease toward zero as the lag length increases.

Consequently, in the MSM, the return process only exhibits short-term momentum. In the

ESMSM with q > 1, the AR coefficients display a damped oscillating behavior around zero.

That is, they periodically change the sign from positive to negative. Because oscillations decay

rather fast, we mainly see positive autocorrelations at short lags and negative autocorrelations

at longer lags.

To summarize, when positive duration dependence exists in the state duration times, the

return process exhibits short-term momentum and subsequent mean reversion. The short-term

7In principle, the number of AR coefficients is infinite. However, the value of the AR coefficient quickly
approaches zero with the lag length. In our numerical computations, we limit the total number of lags to 100
and show the first 30 AR coefficients.
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Figure 3: The monthly AR coefficients in an ESMSM with q sub-states for each macro-state for various
q ∈ {1, 2, 3, 4}. The annualized mean state returns are µA = 25% and µB = −25%. The annualized
standard deviations of state returns are σA = σB = 18%. The mean state A duration time equals 28
months, whereas the mean state B duration time equals 14 months. The AR coefficients are cut off at
lag 30.

momentum materializes as a positive return autocorrelation at short lags, while medium-term

mean reversion materializes as a negative autocorrelation at longer lags. Our final observation

is that the curves in Figure 3 clearly illustrate that the larger the q, the stronger the mean-

reverting behavior. That is, the higher the degree of positive duration dependence, the more

pronounced the mean-reverting behavior.

6 Return Weights in the Optimal Trend Following Rule

In this section, armed with the knowledge of the AR coefficients of the return process in

the MSM and ESMSM, we examine the question of the optimal return weights in a trading

indicator. Specifically, the question is as follows. Given the p × 1 vector φ′
p = [φ1, φ2, . . . , φp]

of the AR coefficients, what is the n× 1 vector θ′
n = [θ0, θ1, . . . , θn−1] of the return weights in

the optimal trading indicator?

We consider the long-only strategy that seeks to generate profits and limit losses by invest-

ing in the stocks only when prices trend upwards. The time t return to this trend-following
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strategy is given by

Rt =















rt if It−1(n) > 0,

rf otherwise,

(38)

where rf denotes the risk-free rate of return. When the trading signal is Sell, the strategy

requires selling the risky asset and investing in the risk-free instrument. Note that the time t

return to the trading strategy is determined by the trading indicator’s value at time t− 1.

The optimal trend-following rule is constructed to ensure the best risk-adjusted performance

of the trend-following strategy. The Sharpe ratio and CAPM alpha are the two most popular

performance measures in finance. Denote by S(Rt) and α(Rt) the Sharpe ratio and CAPM

alpha, respectively, of the trend-following strategy. The Sharpe ratio is computed as

S(Rt) =
E[Rt]− rf
√

V ar[Rt]
,

where E[Rt] and V ar[Rt] are the expected return and variance of the trend-following strategy.

We assume that the market portfolio is the underlying asset in the trend-following strategy. In

this case, the alpha is the intercept in the time-series regression of the trend-following strategy’s

excess returns on those of the passive market portfolio.

To find the optimal return weights in the trading indicator, we have to solve the following

two optimization problems

max
θn

S(Rt) subject to θ′n1n = 1, (39)

max
θn

α(Rt) subject to θ′n1n = 1, (40)

where 1n is the n × 1 vector of ones. Note that a positive scaling of return weights θn in a

trading indicator produces an equivalent trading indicator (since the trading signal is generated

based on the sign of the trading indicator’s value). Therefore, there are infinite solutions to

the optimal return weights without an additional constraint on the return weights. To find a

unique solution, we suppose that the sum of all return weights equals one.

We remind the reader that, even though the original return process in our framework follows

a regime-switching model, the return process can alternatively be viewed as an AR(p) process
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that is specified by equation (10). Zakamulin and Giner (2022) provide analytical solutions

to the Sharpe ratio and CAPM alpha of the trend-following strategy under the assumption

that the innovations in the AR(p) process for returns, εt, are normally distributed. These

analytical solutions allow us to solve optimization problems (39) and (40) numerically using

standard nonlinear optimization techniques.

When the ESMSM models the returns, the probability distribution of the innovations in

the equivalent AR(p) process for returns is largely unknown. However, to make the problem

solvable, we assume that the innovations are normally distributed. In this case, the joint

distribution of the returns rt and the trading indicator It−1(n) follows a bivariate normal

distribution






rt

It−1(n)






= N













µ

m






,







σ2 ̺σv

̺σv v2












, (41)

where µ and σ2 are the mean and variance of rt, m and v2 are the mean and variance of

It−1(n), and ̺ is the correlation coefficient between rt and It−1(n).

The trend-following indicator is specified by equation (6). The mean of It−1(n) equals the

mean of It(n) which is given by

m = E[It(n)] =

n−1
∑

i=0

θiE[rt−i] = µ

n−1
∑

i=0

θi. (42)

The variance of It−1(n) equals the variance of It(n) which is given by

v2 = V ar(It(n)) =
n−1
∑

i=0

n−1
∑

j=0

θiθjCov(rt−i, rt−j) = σ2

n−1
∑

i=0

n−1
∑

j=0

θiθjρ|i−j|. (43)

To make the last step in the derivation, we use the knowledge that Cov(rt−i, rt−j) = ρ|i−j|σ
2,

where ρ|i−j| denotes the correlation between rt−i and rt−j . In matrix notation, the mean and

variance of indicator It(n) are given by

m = θ′
n1nµ, v2 = θ′

nRn,nθnσ
2, (44)

where 1n is the n × 1 vector of ones, x′ denotes the transpose of x, and matrix Rn,n is the
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n× n matrix given by

Rn,n =

























1 ρ1 ρ2 . . . ρn−1

ρ1 1 ρ1 . . . ρn−2

ρ2 ρ1 1 . . . ρn−3

...
...

...
. . .

...

ρn−1 ρn−2 ρn−3 . . . 1

























, (45)

where ρi is the autocorrelation of order i of the AR(p) process for returns.

The correlation coefficient between rt and It−1(n) is computed as (see Zakamulin and Giner

(2020))

̺ = Cor(rt, It−1(n)) =
θ′nRn,pφp
√

θ′nRn,nθn
, (46)

where Rn,p is the n× p matrix given by

Rn,p =

























1 ρ1 ρ2 . . . ρp−1

ρ1 1 ρ1 . . . ρp−2

ρ2 ρ1 1 . . . ρp−3

...
...

...
. . .

...

ρn−1 ρn−2 ρn−3 . . . ρ|p−n|

























.

Zakamulin and Giner (2022) show that in this model, the analytical solutions for the mean

returns, the variance of returns, and the CAPM alpha of the trend-following strategy are given

by

E[Rt] = (µ − rf )Φ(−d) + rf + g, (47)

V ar[Rt] = (µ2 + σ2)Φ(−d) + g(2µ + σ̺d) + r2fΦ(d)− E[Rt]
2, (48)

α(Rt) = g

(

1− (µ − rf )(µ − rf + σ̺d)

σ2

)

, (49)

where

d = −m

v
, g = σ̺f(d),

and f(.) and Φ(.) denote the probability density and the cumulative probability distribution
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function, respectively, of the standard normal random variable

f(z) =
1√
2π

e−
z
2

2 , Φ(d) =

∫ d

−∞
ϕ(z)dz.

In this context, Zakamulin and Giner (2020) provide another useful result. Specifically,

they prove that the trading indicator with the return weights representing a positive scaling

transformation of the AR coefficients of the return process

It(p) =

p−1
∑

i=0

(aφi+1) rt−i, (50)

where a > 0 is an arbitrary real number, maximizes the correlation between the trading

indicator and the future return, Cor(rt, It−1(n)). This result is not surprising because it is

congruent with our educated guess about the functional form of the optimal trend-following

rule.

Besides, the trading indicator that maximizes the correlation between the trading indicator

and the future return also maximizes the Sharpe ratio and CAPM alpha under the restrictive

assumption that the mean market return is zero, µ = 0. The proof of this result is quite

illustrative because, in this case, assuming that rf = 0 without loss of generality, the expressions

for the mean return, the CAPM alpha, and the variance of returns of the trend-following

strategy reduce to

E[Rt] = α(Rt) =
σ√
2π

̺, V ar[Rt] =
σ2

2

(

1− ̺2

π

)

.

Therefore, assuming that ̺ > 0, the mean return and CAPM alpha increase when ̺ increases,

while the variance decreases as ̺ increases. Consequently, the maximization of the correlation

coefficient ensures the maximization of the Sharpe ratio and CAPM alpha of the trend-following

strategy.

The result presented in the preceding paragraph suggests that when the mean market return

is close to zero, µ ≈ 0, the trading indicator given by equation (50) is close to the optimal

trading indicator. Our next goal is to examine the differences between the trading indicator

specified by (50) and the optimal trading indicator when µ > 0. To this end, we will numerically

solve the optimization problems (39) and (40) using real-world model parameters similar to
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those estimated in the empirical section of this paper, as detailed below. The parameters are

as follows. The annualized mean state returns are µA = 25% and µB = −25%. The annualized

standard deviations of state returns are σA = σB = 18%. The annualized risk-free rate of

return is 4%. The mean state A (bull market) duration time equals 28 months, and the mean

state B (bear market) duration time equals 14 months.

We assume that the trend-following strategy is implemented on a monthly basis. The AR

coefficients are computed assuming an equal number of sub-states in each market state. The

computations are done for the conventional MSM and the ESMSM with 4 sub-states for each

market state. A complication is that, in both the MSM and ESMSM, the AR process is of

infinite order. That is, in principle, n = p = ∞. However, the AR coefficients decrease rather

fast as the return lag increases. Therefore, when the trend-following strategy is implemented on

a monthly basis, we can perform the calculations restricting both p and n to some sufficiently

large number (for example, 100) and implement the trend-following strategy using 30 return

lags.

Figure 4 shows the results of our numerical optimizations. In particular, the plots in

this figure compare and contrast the shape of the AR coefficients of the return process and

the shape of the return-weighting function in the optimal trend-following rules. Our main

observation is that, regardless of the choice of the performance measure, there are only marginal

differences between the AR coefficients and the return weights in the optimal trend-following

rules. Therefore, we conclude that for practical purposes, the trend-following rule specified

by equation (50) is sufficiently close to the optimal trend-following rule. Put differently, the

shape of the return-weighting function in the optimal trend-following rule closely resembles

the shape of the AR coefficients of the return process.

In summary, the optimal trend-following strategy in the conventional MSM is reasonably

close to the EMA rule. In contrast, the optimal trend-following strategy in the ESMSM bears

a close resemblance to the MACD rule. This resemblance becomes evident when visually

comparing Figures 1 and 4. It is important to note that, in theory, the number of return lags

in each trend-following strategy is infinite. However, in practical applications, this number

must be finite. It should be sufficiently large to incorporate economically meaningful AR

coefficients.
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Figure 4: The shape of the AR coefficients of the return process and the shape of the return-weighting
function in the optimal trend-following rules. The return weights are cut off at lag 30. The market
returns follow either the conventional MSM (NB(1)) or the ESMSM with 4 sub-states for each market
state (NB(4)). The objectives in the trend-following rules are to maximize either the Sharpe ratio
(Sharpe) or the alpha in the CAPM (Alpha).

7 Empirical Application

The empirical literature on trend-following primarily focuses on the time series momentum

strategy and begins by highlighting its profitability in various US financial markets since 1985.

Subsequently, researchers have extended their analysis to encompass international equity mar-

kets and more extensive historical periods. For instance, in a study by Lim et al. (2018), data

from 12 developed equity markets dating back to 1975 was used to illustrate the superiority

of the time series momentum strategy. Additionally, Hurst, Ooi, and Pedersen (2017) exam-

ined the performance of trend-following investing across 11 international equity indices since

1903, finding consistent profitability over 110 years. Lempérière, Deremble, Seager, Potters,

and Bouchaud (2014) collected data from seven developed equity markets dating back to 1800,

documenting a stable time series momentum effect across different periods and equity markets.

This consistent long-term evidence suggests that trends are inherent features of interna-
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tional equity markets, and the superior performance of trend-following investing is not limited

to a particular country or historical period. It is worth noting that the existing evidence

primarily centers on investigating the time series momentum effect, which is based on the

12-month MOM strategy. No one has ever questioned the optimality of the 12-month MOM

strategy or alternative strategies like the 10-month SMA in tracking equity market trends.

Our empirical study aims to test whether the theoretically optimal trend-following rule

performs better than two commonly used rules: the 12-month MOM and the 10-month SMA

rules. We test these strategies using monthly data from 16 international equity markets,

including Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Italy,

Japan, the Netherlands, Norway, Spain, Sweden, Switzerland, and the USA. Table 1 lists the

international markets used in our study and the start year in each market.

N Country Start year

1 Australia 1975
2 Austria 1990
3 Belgium 1975
4 Canada 1977
5 Denmark 1989
6 Finland 1988
7 France 1975
8 Germany 1975
9 Italy 1977
10 Japan 1980
11 Netherlands 1982
12 Norway 1979
13 Spain 1977
14 Sweden 1982
15 Switzerland 1975
16 USA 1875

Table 1: The list of the international markets used in our study and the start year in each of the
markets.

In our sample, we collected data on market returns and risk-free rates of return for each

country. All returns are denominated in the local currency. The start year for most markets in

our sample ranges from 1975 to 1990, except for the US market, which has data dating back

to January 1875. The data for all markets in our study extends up to December 2020.

We collected returns data for the US market from two different sources. Specifically, we

obtained market returns from January 1926 to December 2020 from the Center for Research

in Security Prices (CRSP). Additionally, returns from January 1875 to December 1925 were
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provided by William Schwert.8 As a proxy for the risk-free rate of return in the USA, we used

the Treasury-bill rate from January 1920 to December 2020. Given the absence of risk-free

government debt instruments before the 1920s, we calculated the instrumented risk-free rate

using the methodology recommended by Welch and Goyal (2008) based on Commercial Paper

Rates for New York.

For all other countries, we gathered market return data from the online data library pro-

vided by Kenneth French.9 Moreover, we sourced data on the risk-free rate of return for each of

these countries from the Federal Reserve Economic Data (FRED) database.10 In this context,

we relied on the 3-month interbank rate as a proxy for the risk-free rate.

For each country in our study, we conducted simulations to assess the performance of

the theoretically optimal trend-following strategy by employing the following out-of-sample

approach. The return weights in the optimal trend-following rule are estimated using the

US market data over the period from January 1875 to December 1974. Using this long-term

historical period spanning a century allows us to estimate the theoretical AR coefficients of

the return process that adheres to the ESMSM with a high degree of precision. Subsequently,

we use these estimated return weights from the US market to simulate the performance of the

theoretically optimal trend-following strategy for each country in our sample.

In the case of the US market, the out-of-sample period spans from January 1975 to Decem-

ber 2020. As the return weights for the optimal trend-following rule are derived exclusively

from the in-sample US market data, for all other countries, the out-of-sample period covers

the entire sample period. Our implicit assumption is that market trends not only prevail in

all international equity markets but also exhibit shared and common characteristics.

To estimate the AR coefficients of the return process in the US market during the in-sample

period, we begin by identifying the bull and bear states of the market. The turning points

between the bull and bear markets are determined using a method proposed by Pagan and

Sossounov (2003), which is widely accepted by researchers for this purpose. In essence, this

method adapts the dating algorithm initially developed by Bry and Boschan (1971) with slight

modifications. The algorithm was originally designed to identify US business cycle turning

points using GDP data.

8https://www.billschwert.com/gws data.htm
9http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

10https://fred.stlouisfed.org/
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Bull markets Bear markets

Number of states 29 30
Minimum duration 4 5
Mean duration 23.56 16.07
Maximum duration 73 44

Mean return, % 25.11 −24.00
Standard deviation, % 16.27 17.86

Table 2: The summary statistics of the bull and bear states of the US market in the in-sample period
from January 1875 to December 1974. Duration is measured in months. Mean returns and standard
deviations are annualized and reported in percentages.

Table 2 provides an overview of the bull and bear market statistics. Notably, the mean

return during a bull market stands at 25%, while during a bear market, it is −24%. The

standard deviation of returns during bull and bear markets is 16% and 18%, respectively. The

difference in mean returns between bull and bear markets is substantial, while the discrepancy

in standard deviations is relatively small. On average, bull markets endure for approximately

24 months, whereas bear markets last around 16 months, resulting in a notably longer average

duration for bull markets compared to bear markets.

Armed with the durations of the identified bull and bear states in hand, we proceed by

fitting the NB(q) distribution to the state duration data to determine the most suitable q

value. In this context, the probability mass function f(n, q, p) quantifies the likelihood of

the qth success occurring in the nth Bernoulli trial, with the parameter p representing the

probability of success in a single trial. Our approach relies on maximum likelihood estimation

(MLE) to fit these distributions. The standard procedure involves identifying the pair of

parameters (q, p) that maximizes the log-likelihood function.

However, a complication arises when dealing with the q parameter. Typically, q is con-

sidered a real number, but our model assumes it is an integer. To address this challenge, we

suppose that q is a known value and proceed to find the maximum likelihood estimator for the

p parameter only. We carry out this process sequentially for various integer values of q within

the range {1, . . . , 6} and select the value of q that yields the maximum log-likelihood.

Table 3 provides the estimated values of p and the associated log-likelihood values result-

ing from the maximum likelihood estimation of p for different q values. The log-likelihood

values strongly indicate that the negative binomial distribution with q = 4 maximizes the

log-likelihood function for both bull and bear market states. As a result, we conclude that the
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Bull markets Bear markets
q

p Log-likelihood p Log-likelihood

1 0.040 −121.76 0.056 −115.52
2 0.077 −115.42 0.106 −108.80
3 0.111 −113.59 0.152 −106.67
4 0.143 −113.30 0.192 −106.08
5 0.172 −113.73 0.229 −106.20
6 0.200 −114.52 0.263 −106.66

Table 3: The results of maximum likelihood estimations using the US market data for the in-sample
period from January 1875 to December 1974. p is the probability of success in one Bernoulli trial in the
NB(q) distribution. Log-likelihood is the value of the maximum likelihood estimation of p for various
q ∈ {1, . . . , 6} in the NB(q) distribution.

durations of both bull and bear states are best described by the NB(4) distribution.

Given the estimated parameters of the ESMSM that governs the return process, we compute

the theoretically implied AR coefficients. The procedure is described in Section 5. The shape

of the returns weights of the theoretically optimal trend-following rule mirrors the shape of

the AR coefficients. When simulating returns for the theoretically optimal trend-following

strategy, we limit the number of return weights to 30.

In addition to the theoretically optimal trend-following strategy, we also simulate returns

for the MOM(12) strategy and the SMA(10) strategy. After completing these simulations, we

compute the Sharpe ratio of each competing trend-following strategy and the passive buy-and-

hold benchmark. We then assess whether the trend-following strategy performs better than

the buy-and-hold strategy by conducting a Sharpe ratio test, where the null hypothesis is as

follows:

H0 : STF = SBH versus HA : STF > SBH ,

where STF and SBH represent the Sharpe ratios of the trend-following and buy-and-hold

strategies, respectively. We perform this test using the Jobson and Korkie (1981) test, which

is corrected by Memmel (2003). The test statistic used in the Jobson and Korkie (1981) test

is given by:

z =
STF − SBH

√

1
T

[

2(1 − ρ) + 1
2
(S2

TF + S2
BH − 2ρ2STFSBH)

]

,

where STF , SBH , and ρ are the estimated Sharpe ratios and the correlation coefficient between

the returns of the two strategies over a sample of T months. Under the null hypothesis, the

test statistic z follows an asymptotic standard normal distribution.
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Sharpe ratio P-value
1. Australia
B&H 0.30
NB(4) 0.42 0.13
MOM(12) 0.34 0.29
SMA(10) 0.33 0.37
2. Austria
B&H 0.31
NB(4) 0.54 0.07
MOM(12) 0.40 0.27
SMA(10) 0.50 0.11
3. Belgium
B&H 0.43
NB(4) 0.75 0.01
MOM(12) 0.60 0.05
SMA(10) 0.63 0.03
4. Canada
B&H 0.28
NB(4) 0.49 0.05
MOM(12) 0.26 0.57
SMA(10) 0.32 0.32
5. Denmark
B&H 0.44
NB(4) 0.92 0.00
MOM(12) 0.56 0.17
SMA(10) 0.77 0.01
6. Finland
B&H 0.39
NB(4) 0.58 0.10
MOM(12) 0.74 0.01
SMA(10) 0.61 0.05
7. France
B&H 0.42
NB(4) 0.61 0.06
MOM(12) 0.48 0.25
SMA(10) 0.63 0.02
8. Germany
B&H 0.34
NB(4) 0.59 0.02
MOM(12) 0.42 0.21
SMA(10) 0.45 0.14

Sharpe ratio P-value
9. Italy
B&H 0.26
NB(4) 0.50 0.02
MOM(12) 0.47 0.01
SMA(10) 0.39 0.10
10. Japan
B&H 0.23
NB(4) 0.50 0.02
MOM(12) 0.45 0.04
SMA(10) 0.39 0.11
11. Netherlands
B&H 0.47
NB(4) 0.63 0.12
MOM(12) 0.67 0.04
SMA(10) 0.66 0.06
12. Norway
B&H 0.34
NB(4) 0.49 0.12
MOM(12) 0.45 0.15
SMA(10) 0.44 0.18
13. Spain
B&H 0.35
NB(4) 0.42 0.28
MOM(12) 0.41 0.27
SMA(10) 0.48 0.09
14. Sweden
B&H 0.44
NB(4) 0.73 0.03
MOM(12) 0.61 0.08
SMA(10) 0.71 0.02
15. Switzerland
B&H 0.46
NB(4) 0.68 0.03
MOM(12) 0.55 0.16
SMA(10) 0.56 0.16
16. USA
B&H 0.44
NB(4) 0.52 0.27
MOM(12) 0.50 0.25
SMA(10) 0.51 0.26

Table 4: The annualized out-of-sample Sharpe ratios for four strategies: Buy-and-Hold (B&H),
MOM(12), SMA(10), and the theoretically optimal trend-following strategy (NB(4)). The p-values
correspond to hypothesis tests, examining whether the Sharpe ratio of a trend-following strategy equals
the Sharpe ratio of the passive strategy. Sharpe ratios highlighted in bold indicate the top-performing
strategy in each market.

For all countries in our sample, Table 4 presents the out-of-sample Sharpe ratios for the

buy-and-hold, MOM(12), SMA(10), and the theoretically optimal trend-following strategy.

Additionally, the table presents p-values for hypothesis tests, which evaluate whether the

Sharpe ratio of a trend-following strategy equals that of the passive strategy.
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The Sharpe ratios in Table 4 suggest the following observations. First, in each market,

trend-following strategies tend to outperform their respective buy-and-hold counterparts. Sec-

ond, the theoretically optimal trend-following strategy seems to exhibit superior performance.

Specifically, it boasts the highest Sharpe ratio in 12 out of 16 international markets. The

MOM(12) strategy performs best in two markets, and the SMA(10) strategy excels in two

others.

Regrettably, we cannot draw a scientifically sound conclusion solely based on the estimated

Sharpe ratios of a trend-following strategy in comparison to its passive or active counterparts.

The results presented in Table 4 currently indicate, for instance, that the Sharpe ratio of the

optimal trend-following strategy is statistically significantly higher (at the 10% significance

level) than the Sharpe ratio of the buy-and-hold strategy in 11 out of 16 international markets.

However, this information alone does not suffice to conclusively establish that the optimal

trend-following strategy outperforms the buy-and-hold strategy across all markets. To make

such a conclusion, a joint test is necessary.

In our joint test, the null hypothesis posits that two alternative strategies yield similar

performance across all international markets. Conversely, the alternative hypothesis suggests

that one strategy outperforms its counterpart on average, across all international markets.

We describe our joint test by explaining how to assess whether a trend-following strategy is

superior to the buy-and-hold strategy across all international markets.

While conducting a joint test, it is essential to normalize the (out)performance statistic, as

described by Hansen (2005). With this in mind, the difference in the Sharpe ratios ∆S = STF−

SBH is not a good performance statistic because international markets may differ substantially

with respect to the probability distributions of the Sharpe ratio differences. In contrast, the z-

statistic in the Sharpe ratio test represents a normalized performance measure.11 In particular,

assuming that the two Sharpe ratios are equal, the value of the z-statistic is zero.

Consequently, our joint test assumes that the true value of the z-statistic is zero in each

international market. Formally, we assume that zi = 0 for all i in the range [1, 2, . . . , 16],

where i represents a different country. The test statistic in our joint test quantifies the average

11Specifically, the z-statistic in the Sharpe ratio test represents the difference in two Sharpe ratios divided by
the standard error of the estimated difference.
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outperformance of a trend-following strategy across all international markets:

z̄ =
1

16

16
∑

i=1

zi.

Given that the true value of each zi is zero, the average outperformance is also expected to be

zero. As a result, our null and alternative hypotheses for the joint test are as follows:

H0 : z̄ = 0, versus HA : z̄ > 0.

Rejection of the null hypothesis in favor of the alternative hypothesis provides evidence that, on

average across all markets, a trend-following strategy outperforms the buy-and-hold strategy.

The probability distribution of z̄ under the null hypothesis is estimated using the stationary

block-bootstrap method of Politis and Romano (1994). This method keeps the empirical time

dependence in each return series. Besides, we bootstrap jointly all return series in order to

keep the empirical correlations across the markets. We carry out R = 1, 000 bootstrap trials

in total.12

In each bootstrap trial, we calculate the z-statistic for all countries under the null hypothesis

of a true value of zero for each statistic. Subsequently, we compute the average of all these z-

statistics. Ultimately, the collection of average z-statistics from all trials forms the probability

distribution of z̄ under the null hypothesis. To determine the p-value of the test, we calculate

the percentage of the simulated z̄ values that are equal to or more extreme than the empirically

estimated z̄.

We systematically experimented with varying the block length within the stationary block-

bootstrap method, ranging from 5 to 12. Remarkably, our findings revealed that the estimated

p-values for the joint test exhibited very little sensitivity to the choice of block length. This

robustness suggests that our results are reliable and not significantly affected by the specific

block length used in the bootstrap method.

Table 5 presents the results of both individual and joint Sharpe ratio tests for each trend-

12In principle, if we assume that each zi follows a standard normal distribution, the average z-statistic also
follows a normal distribution with a mean of zero. However, to calculate its standard deviation, we need to know
the correlation coefficients between different zi. Since calculating these correlation coefficients analytically is
extremely cumbersome, if not impossible, we turn to the bootstrap method. Another advantage of the bootstrap
method is that it does not require any parametric assumptions.
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MOM(12) vs B&H SMA(10) vs B&H NB(4) vs B&H
z-statistic p-value z-statistic p-value z-statistic p-value

Australia 0.55 0.29 0.34 0.37 1.13 0.13
Austria 0.61 0.27 1.24 0.11 1.47 0.07
Belgium 1.66 0.05 1.82 0.03 2.51 0.01
Canada -0.18 0.57 0.47 0.32 1.68 0.05
Denmark 0.96 0.17 2.44 0.01 3.10 0.00
Finland 2.41 0.01 1.61 0.05 1.27 0.10
France 0.67 0.25 2.01 0.02 1.55 0.06
Germany 0.81 0.21 1.06 0.14 2.09 0.02
Italy 2.20 0.01 1.29 0.10 2.07 0.02
Japan 1.80 0.04 1.24 0.11 2.05 0.02
Netherlands 1.73 0.04 1.54 0.06 1.16 0.12
Norway 1.04 0.15 0.93 0.18 1.16 0.12
Spain 0.62 0.27 1.32 0.09 0.59 0.28
Sweden 1.42 0.08 2.04 0.02 1.95 0.03
Switzerland 0.99 0.16 1.01 0.16 1.95 0.03
USA 0.68 0.25 0.65 0.26 0.61 0.27
Average 1.12 0.05 1.31 0.04 1.65 0.01

Table 5: The results of both individual and joint Sharpe ratio tests to determine if each trend-following
strategy outperforms the buy-and-hold strategy. In the individual Sharpe ratio test, the z-statistic is
employed for each country, while the joint test of outperformance uses the average z-statistic. The
corresponding p-value for each test is situated to the left of the respective z-statistic. Values that are
statistically significant at the 10% level are indicated in bold.

following strategy. In the individual Sharpe ratio test, the z-statistic serves as the test statistic

for each country, enabling us to determine whether a trend-following strategy outperforms its

passive benchmark in that specific country. Meanwhile, the joint test of outperformance utilizes

the average z-statistic as its test statistic, helping us ascertain whether, on average, a trend-

following strategy outperforms the passive benchmark across all countries. The corresponding

p-value for each test is reported to the left of its respective z-statistic.

The results presented in Table 5 show that, on average across all countries, each trend-

following strategy outperforms its respective buy-and-hold counterpart. Notably, the theo-

retically optimal trend-following strategy achieves the highest average z-statistic, which is

statistically significant at the 1% level. On the other hand, the MOM(12) strategy exhibits

the smallest average z-statistic, but it remains statistically significant at the 5% level.

Based on the average z-statistics from the joint tests of outperformance, we can establish the

following ranking for the competing trend-following strategies, from best to worst: the NB(4)

strategy, the SMA(10) strategy, and finally the MOM(12) strategy. However, it is important

to note that a conclusive scientific inference can only be drawn from the results of statistical

tests. Therefore, we proceed to conduct the same individual and joint tests of outperformance
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to assess whether a specific trend-following strategy outperforms its competitor. The outcomes

of these tests are presented in Table 6.

NB(4) vs MOM(12) NB(4) vs SMA(10) SMA(10) vs MOM(12)
z-statistic p-value z-statistic p-value z-statistic p-value

Australia 0.82 0.21 1.36 0.09 -0.19 0.58
Austria 0.99 0.16 0.52 0.30 0.81 0.21
Belgium 1.32 0.09 1.27 0.10 0.46 0.32
Canada 2.04 0.02 1.73 0.04 0.93 0.18
Denmark 2.78 0.00 1.61 0.05 2.23 0.01
Finland -1.38 0.92 -0.39 0.65 -1.59 0.94
France 1.13 0.13 -0.29 0.61 1.76 0.04
Germany 1.69 0.05 2.01 0.02 0.40 0.34
Italy 0.32 0.37 1.54 0.06 -1.15 0.88
Japan 0.42 0.34 1.29 0.10 -0.58 0.72
Netherlands -0.31 0.62 -0.28 0.61 -0.15 0.56
Norway 0.30 0.38 0.54 0.29 -0.10 0.54
Spain 0.10 0.46 -0.86 0.80 1.03 0.15
Sweden 0.95 0.17 0.15 0.44 1.11 0.13
Switzerland 1.31 0.09 1.65 0.05 0.14 0.45
USA 0.13 0.45 0.12 0.45 0.05 0.48
Average 0.79 0.06 0.75 0.03 0.32 0.26

Table 6: The results of both individual and joint Sharpe ratio tests to determine if a specific trend-
following strategy outperforms its competitor. In the individual Sharpe ratio test, the z-statistic is
employed for each country, while the joint test of outperformance uses the average z-statistic. The
corresponding p-value for each test is situated to the left of the respective z-statistic. Values that are
statistically significant at the 10% level are indicated in bold.

Our primary focus is to determine whether the theoretically optimal trend-following strat-

egy outperforms both the MOM(12) and SMA(10) strategies. The findings presented in Table

6 affirm the superiority of the NB(4) strategy. For instance, when compared to the SMA(10)

strategy, the NB(4) strategy exhibits a statistically significant Sharpe ratio in 8 out of 16

countries. Furthermore, the average z-statistic in the joint test is statistically significant at the

5% level. This outcome leads us to conclude that, on average across all countries, the NB(4)

strategy outperforms the SMA(10) strategy.

Likewise, we conclude that the NB(4) strategy outperforms the MOM(12) strategy on

average across all markets. However, it is worth noting that although the average z statistic in

this test is the highest, it is statistically significant at the 10% level only. This can be explained

by the fact that the probability distribution of this test statistic exhibits greater variability

compared to the probability distribution of the same statistics in the joint test of the NB(4)

strategy versus the SMA(10) strategy.

We also assess whether the SMA(10) strategy outperforms the MOM(12) strategy. It is
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important to note that the average z-statistic in the joint test of outperformance is positive,

suggesting that there are indications that the SMA(10) strategy performs better than the

MOM(12) strategy on average. However, the p-value of the test does not provide sufficient

evidence to reject the null hypothesis of similar performance.

In summary, the results of our empirical study validate the soundness of our theoretical

model and underscore the superiority of the theoretically optimal trend-following strategy. To

conclude this section, we aim to delve further into the characteristics of the optimal trend-

following rule and its distinctions and commonalities with the ad-hoc rules typically employed

in practice.

First and foremost, it is worth noting that all existing ad-hoc rules, except the MACD rule,

primarily capitalize on short-term momentum, which is prevalent in most financial markets.

However, financial asset returns not only exhibit short-term momentum but also subsequent

medium-term mean reversion. The MACD rule stands out as it seeks to harness both short-

term momentum and medium-term mean reversion. Nevertheless, while the return weights

in the MACD rule share similarities with those in the optimal rule, using the MACD rule in

practice poses potential risks. First, the MACD rule is ad-hoc, with return weights resembling

but differing from those in the theoretically optimal trend-following rule. Second, compared

to the MOM(12) and SMA(10) rules, the MACD rule is over-parameterized, requiring three

parameters, making it susceptible to backtest overfitting.13

Second but no less important, when we focus solely on short-term momentum, the re-

turn weights in the optimal trend-following rule decline as the return lag increases. This

phenomenon clarifies why the SMA(10) rule often outperforms the MOM(12) rule in empirical

tests. Neither the SMA(10) nor the MOM(12) rule can be deemed optimal, at least from a the-

oretical standpoint, but the return weights in the SMA(10) rule are closer to the theoretically

optimal return weights compared to those in the MOM(12) rule. For a visual representation of

this, please refer to Figure 5, which illustrates the return weights in the NB(4) and SMA(10)

rules. In principle, the SMA(10) rule accurately captures the duration of short-term momen-

tum, which typically lasts around 9 months before undergoing a reversal. The return weights

in the SMA(10) rule exhibit a linear decrease, whereas the return weights in the optimal rule

13For a detailed discussion of backtest overfitting, we refer the reader to Bailey, Borwein, de Prado, and Zhu
(2014). In brief, backtest overfitting refers to a situation in which a trading strategy optimized on the in-sample
data performs poorly on the out-of-sample data.
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Figure 5: The return weights in the NB(4) and SMA(10) rules.

follow an exponential decline.

8 Conclusions

Despite the widespread popularity of trend-following investing, little is still known about the

theoretically optimal trend-following rules. This paper fills this gap in the literature and exam-

ines the optimal trend-following in two-state discrete-time Markov and semi-Markov regime-

switching models. We start with a conventional Markov model and find that, in this case, the

optimal trend-following problem is analytically tractable. We demonstrate that following the

trend using the EMA is optimal and provide the analytical solution to the optimal window

size (decay constant) in the EMA.

The absence of duration dependence limits the validity of a conventional Markov model in

financial applications. Therefore, we proceed to the case of a semi-Markov model where the

distribution of the state duration times exhibits positive duration dependence. In this case,

the optimal trend-following problem is generally not analytically tractable, but our choice of

the Markov chain topology makes numerical computations quite simple. Our numerical results

show that the optimal trend-following rule in a semi-Markov model is somewhat similar to the

MACD rule.

In our empirical analysis, we utilize data from a diverse set of international stock markets.

39

Electronic copy available at: https://ssrn.com/abstract=4217513



Through out-of-sample simulations, we present compelling scientific evidence supporting the

superiority of our theoretically optimal trading rule within the semi-Markov model over the

widely used 10-month SMA and the 12-month MOM rules. These findings not only confirm

the soundness of our theoretical model but also emphasize its practical relevance in the field

of investment.
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