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Preface

The book concerns the mathematical concepts, which are within the scope of
dynamical systems, geometry, measure theory, topology, and numerical analysis
during the last several decades. Moreover, they are not only at the focus, but on the
frontiers of the research. In our opinion, this is true since there are many questions
that have not been clarified and answered yet, and the facts and information that
have already been collected in the study are not rigorously embedded to the theories
of dynamical systems and differential equations. Additionally, they are the most
sophisticated notions in their areas of science. We are talking about chaos and
fractals.

It so happens that the line of oscillations in the classical theory of dynamical sys-
tems, which is founded by H. Poincaré and G. Birkhoff, was broken at Poisson stable
motions. The next oscillations were considered as actors of chaotic processes. The
main element for the stage was constructed by Lorenz, the sensitivity. Transitivity
and the existence of infinitely many periodic orbits were inherited from the analysis
of Poincaré for homoclinic motions. Next, the sensitivity was combined with the
idea of Poisson stability to make the basics of the Li–Yorke definition of chaos:
frequent separation and proximality. The suggestions, and first of all sensitivity
and the density of periodic solutions, provide the instruments for the observation
of chaos such as positive Lyapunov exponents and bifurcation diagrams. These are
the main steps that make scientists and engineers do research for chaotic dynamics
without a knowledge of the dynamical systems theory, and accordingly there is the
strong opinion that the chaos theory exists, which does not depend so much on
the theories of dynamical systems and differential equations. The state of the deals
is easily explainable if one takes into account the complexity of the subject. H.
Poincaré himself comprehended that there should be such a property like sensitivity
(instability), but did not have time to formalize the intuition to rigorous construction
similarly to his several other predictions. The suggestions of Lorenz as well as Li
and Yorke’s study entitled “Period three implies chaos” essentially simplified the
discussion when one concerns the difficulties of analysis for celestial mechanics,
but this simultaneously poses an obstacle for deepening the theory. Therefore, as
usual for the development of science, if the most universal property of the chaos
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cannot be found, then more general ones or new counterparts of the same generality
level have to be considered. Another way is to proceed exactly from that point which
was left by the genius who designed the theory. Our approach is based on the latter
case since, loosely speaking, we modernize the definition of the Poisson stable point,
which was created by H. Poincaré. In this book, it is revealed that a special kind of
Poisson stable point, which we call an unpredictable point, gives rise to the existence
of chaos in the quasi-minimal set. The existing definitions of chaos are formulated
in sets of motions. This is the first time that the description of chaos is initiated from
a single motion, an unpredictable one. This is a new oscillation in the line created
by Poincaré. One can consider it as a critical moment, when chaos appears as an
irregular object next to the regular ones. However, we prefer to say that right now
the chaos is placed on the line of oscillations, and therefore, it is a subject of study
in the framework of the theories of dynamical systems and differential equations, as
in this book.

In spite of intensive researches concerning chaos, there is still a long distance
to massive applications of methods of differential equations for analysis of chaotic
dynamics. Input–output theorems are simple in formulation and widespread in the
literature for differential equations, when the input and the output are oscillations
of the same type such as periodic, almost periodic, recurrent, etc. In Chaps. 8–
10, we consider inputs as well as outputs as sets of chaotically behaving solutions.
This method is called replication of chaos and has been introduced and developed
through our papers. Since the input–output mechanism makes the distribution of the
phenomenon from one system to another possible, we are busy with the extension
of chaos. In this book, the latest results of the method are presented.

The comprehension of the world through fractals promises to be one of the
effective ways for creative scientific, biological, social, medical, and industrial
activities. We are confident that self-similarity extended to arbitrary small scales of
real-world subjects is in the core of effectiveness of the universe research and helps
to optimize many processes as well as structures of objects. Thus, it is of significant
interest to consider fractals in dynamics. Surprisingly, even the task of deformation
of the sets, which keeps the fractal structure invariant, have not been investigated in
the literature despite the fact that the problem is of interest for geometry, measure
theory, and topology. The first steps in that direction are performed in this book.
This makes it possible to develop continuous and discrete dynamics which admit
fractals as points of trajectories as well as orbits themselves. These achievements
allow us to analyze several practically useful problems.

To provide strong arguments for the generosity of chaos in the real and abstract
universe, we suggest the concept of abstract similarity. The self-similar space is
equipped with chaos if a special property is assumed. This provides the way to
prove chaos for fractals. The Sierpinski sets and Koch snowflake are among them.
We believe that the concept and its developments can become a universal instrument
for chaos and fractal investigation. It may unite different definitions of chaos as
well as ways of chaos detection. This is true also for new methods to determine and
analyze fractal structures.
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Chapter 1
Introduction

The concept of chaos has been one of the attractive topics among scientists starting
with the studies of Poincaré [93], Cartwright and Littlewood [37], Levinson [73],
Lorenz [77], and Ueda [106]. The first mathematical definition of chaos was
introduced by Li and Yorke [74] for discrete dynamical systems in a compact
interval of the real line. The presence of an uncountable scrambled set is one of
the main features of the Li–Yorke chaos. The original definition of Li and Yorke
was extended to dimensions greater than one by Marotto [81]. It was mentioned in
[81] that a multidimensional continuously differentiable map possesses generalized
Li–Yorke chaos if it has a snap-back repeller. On the other hand, according to
Devaney [42], a discrete map from a compact interval to itself possesses chaos
if it has sensitive dependence on initial conditions (in short, sensitivity), it is
topologically transitive, and its periodic points are dense in the interval. Another
chaos type is homoclinic chaos [99], which is generated from the famous manuscript
of Poincaré [93]. One of the most significant discoveries of Poincaré in the theory of
dynamical systems is the presence of homoclinic orbits in the three body problem
of celestial mechanics [28, 42, 91–93]. In any neighborhood of a structurally
stable Poincaré homoclinic orbit there exist nontrivial hyperbolic sets containing a
countable number of saddle periodic orbits and continuum of non-periodic Poisson
stable orbits [56, 98, 100]. Therefore, the existence of a structurally stable Poincaré
homoclinic orbit can be considered as a criterion for the presence of chaos [56].
Additionally, heteroclinic orbits are also important for the investigation of chaotic
dynamics [34, 38].

When one says about homoclinic chaos it is assumed that there is the homoclinic
structure, and moreover, there is instability. Lorenz [77] was the first who mentioned
the divergence of neighbor motions as sensitivity, a specific sort of instability, and
this was followed by Li and Yorke [74], when they use frequent separation and
proximality for the same purpose. It was shown in paper [70] that if a map on a
compact interval has a two point scrambled set, then it possesses an uncountable
scrambled set. The existence of Li–Yorke chaos in a spatiotemporal chaotic system
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was proved in [75] by means of Marotto theorem, and generalizations of Li–
Yorke chaos to mappings in Banach spaces and complete metric spaces were
provided in [69, 96, 97]. Blanchard et al. [36], on the other hand, proved that the
presence of positive topological entropy implies chaos in the sense of Li–Yorke.
Moreover, Li–Yorke chaos on several spaces in connection with the cardinality of
its scrambled sets was studied within the scope of the paper [60]. Furthermore, Li–
Yorke sensitivity, which links the Li–Yorke chaos with the notion of sensitivity, was
studied in the paper [27].

The absence of the quantitative description of instability makes homoclinic
chaos different from the other chaos definitions, and this causes some sort of
inconvenience. This is because sensitivity is assumed to be one of the main
ingredients of chaos in its modern comprehension [42, 57, 59, 94, 112]. Poincaré
himself was aware about the divergence of initially nearby trajectories, but had not
given exact prescriptions how it should be proceeded. Therefore, one can say that
the puzzle construction, which was initiated and designed by the French genius is
not still completed. In this book, we are trying to make a contribution to this puzzle
working. For that purpose we have utilized open Poisson stable motions, which
accompany homoclinic chaos [99].

From the applications point of view, the theory of differential and discrete
equations focuses on equilibria, periodic, and almost periodic oscillations. They
meet the needs of any real world problem related to mechanics, electronics,
economics, biology, etc., if one searches for regular and stable dynamics of an
isolated motion. However, they are not sufficient for many modern and prospective
demands of robotics, computer techniques, and the internet, and chaotic dynamics as
well as fractals comprise constructive properties for applications. This is the reason
why it is important to join the power of deterministic chaos and fractals with the
immensely rich source of methods for differential and discrete equations.

The content of this book consists of three main parts: Unpredictability, replica-
tion of chaos, and fractals.

Unpredictability In this book, we develop the concept of Poisson stable point
to unpredictable point by utilizing unpredictability as individual sensitivity for a
motion. Thus, issuing from the single point of a trajectory we use it as the Ariadne’s
thread to come to the phenomenon, which we call Poincaré chaos. This phenomenon
makes all the types of chaos closer to each other since it is a new description of
motions in dynamics with homoclinic structure, and it admits ingredients similar to
the other chaos types. The presence of infinitely many periodic motions in the other
definitions can be substituted by a continuum of Poisson stable orbits. Our main
hope is that these suggestions may bring research of chaos back to the theory of
classical dynamical systems and provide instruments to make chaos a routine object
of analysis in the theories of differential and discrete equations as periodic, quasi-
periodic, and almost periodic solutions are. The introduction of a new type of motion
is the strong argument for this, that is, the already existing list of oscillations in
dynamical systems from equilibrium to Poisson stable orbits is now prolonged with
unpredictable motions. This enlargement will give a push for the further extension of
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dynamical systems theory as well as the theories of differential, discrete, and hybrid
equations. In applications, some properties and/or laws of dynamical systems can
be lost or ignored, for instance, when non-autonomous or non-smooth systems are
considered. Then we can apply unpredictable functions, a new type of oscillations
which immediately follow Poisson stable motions of differential equations in the
row of bounded solutions. They can be investigated for any type of equations since
by our results they can be treated by methods of qualitative theory of differential
equations. To this end we provide to the readers Chaps. 2–7.

The results for unpredictable solutions of systems of differential and discrete
equations have been obtained very recently, i.e., the basics of the theory are being
developed. Consequently, we consider various definitions and ways of discussion
depending on the rich theories which exist for differential equations. It is worth
noting that due to the brand newness of the results we use different definitions
of unpredictable functions based on both the metric of Bebutov dynamics and
the topology of uniform convergence on compact subsets of the real axis in
the functional space. The latter seems to be more effective in theoretical and
practical senses. Moreover, there are two different approaches for the proof of
unpredictability of solutions in Chaps. 3 and 7. An attentive reader will see this very
easily. For this reason we suggest to choose the approach which is more convenient
to the reader’s preferences.

The starting point of Chap. 2 is the unpredictable point, a new object for the
dynamical systems theory founded by Poincaré [92] and Birkhoff [35]. In that
chapter, we develop the Poisson stability of a motion to unpredictability such that a
new type of chaos, the Poincaré chaos, has been obtained.

In Chap. 3, we investigate unpredictable solutions of quasilinear systems of
differential equations by means of the Bebutov dynamical system [95]. An unpre-
dictable function is defined as an unpredictable point of the Bebutov dynamics, and
the first theorems on the existence of unpredictable solutions are proved.

As a continuation of Chaps. 2 and 3, we focus on the construction of an
unpredictable function which is continuous on the real axis in Chap. 4. As auxiliary
results, unpredictable orbits for the symbolic dynamics and the logistic map are
obtained. It has become clear according to the results of Chaps. 3 and 4 that the
concept of unpredictable points can be easily extended to the object of analysis in
the theory of differential equations by considering unpredictable functions as points
moving by shifts of the time argument.

In Chap. 5, on the other hand, we apply the topology of uniform convergence on
compact sets to define unpredictable functions. The topology is metrizable and easy
for applications with integral operators. Thus, one can accept that we lay a corner
stone to the foundation of differential equations theory related to unpredictable
solutions, and consequently, chaos. Therefore, in accordance with the results of
Chap. 5, a new field to analyze in the theory of differential equations has been
discovered. Since many results of differential equations have their counterparts
in discrete equations [71], one can suppose that theorems on the existence of
unpredictable solutions can be proved for discrete equations. Chapter 5 is one to
realize the both paradigms. The existence and uniqueness theorems for quasilinear
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delay differential equations and difference equations have been proved, when the
perturbation is an unpredictable function or sequence. This is visualized as Poincaré
chaos in simulations.

The novelty of Chap. 6 is the investigation of unpredictable solutions non-
homogeneous hyperbolic linear systems of differential equations such that the
matrix of coefficients can possess eigenvalues both with negative and positive real
parts. The counterparts of these results for discrete equations are also mentioned in
that chapter.

In Chap. 7, we take into account quasilinear systems of differential equa-
tions with perturbations depending on both time and space variables, but unpre-
dictable only in the time variable. It is also revealed in Chap. 7 that all coor-
dinates of the obtained solutions are unpredictable. The solutions are called
strongly unpredictable. This will make the meaning of unpredictability stronger for
applications.

One of the important tools to recognize chaos is the symbolic dynamics, whose
phase space consists of one-sided or two-sided infinite sequences of symbols chosen
from a finite alphabet [29, 42, 58, 62, 67, 112]. The set of allowed sequences is
invariant under the shift map [112]. The earliest examples of symbolic dynamics
can be found in the studies [61, 85]. The horseshoe map and the logistic map are
examples in which symbolic dynamics arise [29, 42, 112]. In the present book, it is
demonstrated that symbolic dynamics on two symbols possesses an unpredictable
solution, and hence, Poincaré chaos, and this is used to show the existence of
unpredictable solutions in the dynamics of the Hénon map and the logistic map
with certain coefficients.

The visualization of unpredictable solutions of systems of differential equations
is important for the identification of chaotic behavior. One can make use of asymp-
totic or exponential stability of an unpredictable solution to approximate it with an
arbitrary small error by means of a solution of the system under consideration with
an appropriate initial data. This approximation eventually displays the unpredictable
solution and useful for the recognition of irregularity and chaos.

Since we rigorously prove that unpredictable inputs produce outputs of the same
type in systems of differential and discrete equations and owing to the fact that
unpredictable solutions are necessarily accompanied with chaotic dynamics, our
results return the investigation of chaos into the main stream of classical dynamical
systems and, consequently, a huge number of rigorous mathematical methods,
numerical instruments, and applications will now be involved in investigations of
chaotic processes.

Simulation Remarks One can be confused with the numerical visualization of
unpredictable functions and solutions of differential/discrete equations since it is a
difficult task or not possible to determine the initial data for the solution. For this
task we first utilize in the present manuscript the rich experience of simulations
for bounded solutions. We issue from the fact that mainly asymptotically stable
unpredictable solutions are supposed to be visualized. For this reason one can
simulate any solution from the domain of attraction of the considered dynamics
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being confident that it eventually approximates the needed motion. Other arguments
for the effectiveness of our numerical illustrations rely on the shadowing principle
and density of the unpredictable dynamics in the quasi-minimal set.

Replication of Chaos Another large part of the book is concerned with increase-
ness of the role of differential equations research for the investigation of chaotic
behavior.

It is known that if a function I (t) with a certain property such as boundedness,
periodicity, or almost periodicity is considered as an input for an evolution equation
z′(t) = T [z] + I (t), where T [z] is a linear operator with spectra placed in the
left half of the complex plane, then the equation produces a solution, an output,
with a similar property of boundedness, periodicity, or almost periodicity [40, 54].
On the basis of this input–output mechanism, it is natural to ask whether chaotic
inputs produce chaotic outputs in systems of differential and discrete equations.
Since the concept of chaos is much more complex than just single bounded, periodic
or almost periodic solutions, to answer this question we initiated in papers [1–9] a
new method. It was called replication of chaos and is widely applied and developed
in the studies [13–22, 25, 50–53]. Replication of chaos consists of the verification of
ingredients of chaos such as sensitivity, transitivity, proximality, and the existence of
infinitely many unstable regular motions [42, 74, 112] for solutions of an equation
with chaotic perturbation. We consider as an input first of all a single function,
a member of a chaotic set, to obtain a solution which is a member of another
chaotic set. Additionally, we consider chaotic sets of functions as the input and the
output. We have been forced to consider sets of functions as inputs and outputs since
Devaney or Li–Yorke chaos are indicated through relation of motions (sensitivity,
transitiveness, proximality). Thus, we consider the input and the output not only as
single functions, but also as collections of functions. The way of our investigation
is arranged in the well accepted traditional mathematical fashion, but with a new
and a more complex way of arrangement of the connections between the input and
the output. The method of replication of chaos gives a very effective instrument for
application of the accumulated knowledge in chaos research. This method is applied
in Chaps. 8–10.

Chapter 8 deals with the presence of Li–Yorke chaos in dynamic equations on
time scales. The mathematical description of the chaos is provided for dynamic
equations on time scales, and the proximality and frequent separation features are
theoretically proved.

The generation of homoclinic and heteroclinic motions in the continuous-time
dynamics of economic models is provided in Chap. 9. Exogenous shocks are utilized
in the model, and an example for the Kaldor model of the aggregate economy is
presented.

Results on replication of chaos and unpredictable solutions of differential
equations have been applied in Chap. 10 to study the chaotic behavior of the
hydrosphere and its influence on global weather and climate. Coupled systems based
on the Lorenz [77] and Vallis [107, 108] systems are utilized in Chap. 10 to model
the global ocean–atmosphere dynamics.
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The third part of the book is devoted to constructing dynamics and chaos for
fractals. This consists of two tasks. First, a connection of the dynamics of differential
equations with fractals is proposed by developing a fractal mapping iteration such
that the motion associated with a differential equation is considered as a map with
a fractal as an initial set. Secondly, a new concept of abstract self-similarity is
developed to construct chaotic dynamics for fractals.

Fractals Geometry and Chaos Chaos and fractals are interesting fields of sci-
entific research in mathematics, physics, engineering, and many other branches of
sciences. They provide us with powerful mathematical tools to analyze and under-
stand the irregularity and complexity of many natural and artificial phenomena.
Fractal geometry is older than chaos theory, however, the mathematical terms chaos
and fractal are Irish twins. Tien-Yien Li and James Yorke [74] use the word chaos in
1975 to describe an irregular behavior of certain type of dynamical systems, whereas
the word fractal was coined by Benoit Mandelbrot [78] in the same year, refers to
certain geometrical structures.

Fractal geometry is a mathematical tool used to describe many natural structures
that adopt various degrees of self-similarity, as well as to design some artificial
structures. A set that displays self-similarity and repeats the same patterns at
every scale is usually called fractal [55]. Mandelbrot defined a fractal as a set for
which the Hausdorff dimension strictly exceeds the topological dimension [79].
Dealing with fractals goes back to the seventeenth century when Gottfried Leibniz
introduced notions of recursive self-similarity [114]. Since then, history has not
recorded anything about self-similarity until the late nineteenth century when Karl
Weierstrass introduced in 1872 a function that being everywhere continuous but
nowhere differentiable. The graph of the Weierstrass function became an example
of a self-similar fractal. The Cantor set, constructed by Georg Cantor in 1883, is
considered as the most essential and influential fractal, since it is a simple and
perfect example for theory and applications of fractals. The idea of self-similarity
received more attention in the work of Helge von Koch. He devised in 1904 a
continuous but non-differentiable curve that never intersects itself. The curve is
considered as one of the simplest regular fractals. Waclaw Sierpinski was one of
the mathematicians who made significant contributions in the field of fractals. He
introduced the famous triangular fractal in 1916, known as the Sierpinski gasket.
The fractal is generated by a recursive process of removing symmetrical parts
from an initial triangle. In an analogous way to the gasket, Sierpinski developed
a square fractal known as the Sierpinski carpet. Julia sets gained significance in
being generated using the dynamics of iterative function. They are discovered by
Gaston Julia and Pierre Fatou in 1917–19, where they studied independently the
iteration of rational functions in the complex plane [80]. During the same period,
the mathematician Felix Hausdorff formulated the notion of fractional dimension
which became a very important tool for studying and characterizing the geometrical
complexity of fractals. Paul Lévy studied the self-similar curves and surfaces, and in
1938 he described a new fractal curve, the Lévy C curve. Benoit Mandelbrot was one
of the first to use computer to study and generate fractal shapes. He defines a fractal
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as a set whose Hausdorff dimension strictly larger than its topological dimension
[79].

Several researches pointed out that a close relationship between chaos and fractal
geometry can be observed. This can be seen, for instant, in the dynamics of Fatou-
Julia iteration used to construct Julia and Mandelbrot sets where two neighbor
points in the domain which are close to the boundary may have completely different
behavior. That is, we can say about sensitivity in fractal structures. Chaos tells us
about the state of irregularity and divergence of trajectories which depend in the
nature of the dynamics, whereas the fractal concept can be used to study complex
geometric structures. Therefore, the interlink between chaos and fractals is more
clear when fractal dimension is used to measure the extent to which a trajectory fills
its phase space. In other words, fractal dimension of the orbit in phase space implies
the existence of a strange attractor [83]. The fundamental work on the chaotic
nature of fractals has been done only for specific types categorized under the totally
disconnected fractals [32, 39, 42]. In that work, the topological conjugacy concept
was utilized to prove that these fractal sets are invariant for certain chaotic maps.
Except for that, relatively few studies have been carried out on chaotic dynamical
systems for fractals, and perhaps the most relevant one is what have been done on
the Sierpinski carpet in [46]. In that research, the author shows that the dynamical
system associated with a shift transformation defined on the Sierpinski carpet set is
chaotic in the sense of topological mixing.

Dynamics Through Fractal Mappings The famous Laplace’s Demon is not
only of strict physical determinism, but also related to the power of differential
equations. When deterministically extended structures are taken into consideration,
it is admissible that fractals are dense both in the nature and in the dynamics. In
particular, this is true because fractal structures are closely related to chaos. This
implies that dynamics have to be an instrument of the extension. Oppositely, one
can animate the arguments for the Demon if dynamics will be investigated with
fractals. To make advances in the direction, first of all, one should consider fractals
as states of dynamics. In other words, instead of single points and finite/infinite
dimensional vectors, fractals should be points of trajectories as well as trajectories
themselves. If one realizes this approach, fractals will be proved to be dense in the
universe, since modeling the real world is based on differential equations and their
developments. Our main goal is to initiate the involvement of fractals as states of
dynamical systems, and in the first step we answer the simple question “How can
fractals be mapped?”.

Fractals are in the forefront of researches in many areas of science as well as for
interdisciplinary investigations [32, 82]. One cannot say that motion is a strange
concept for fractals. Dynamics are beside the fractals immediately as they are
constructed by iterations. It is mentioned in the book [87] that it is inadequate to talk
about fractals while ignoring the dynamical processes which created them. That is,
iterations are in the basis of any fractal, but we still cannot say that differential
equations are widely interrelated to fractals, for instance, as much as manifolds
[103]. Our book is intended to open a gate for an inflow of methods of differential
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equations, discrete equations and any other methods of dynamics research to the
realm of fractals. This will help not only to investigate fractals but also to make
their diversity richer and ready for intensive applications. Formally speaking, in our
investigation we join dynamics of iterations, which can be called inner dynamics,
with outer dynamics of differential and discrete equations. The concept of fractals
has already many applications, however, the range would be significantly enlarged
if all the power of differential equations will be utilized for the structures. This
is why our suggestions are crucial for fractals considered in biology, physics, city
planning, economy, image recognition, artificial neural networks, brain activity
study, chemistry, and all engineering disciplines [33, 66, 90, 105, 109, 113], i.e.,
in every place, where the geometrical objects in physical and/or abstract sense may
appear [49]. It deserves to say that differential equations related to fractals were
already discussed in [68, 104], where they are considered as domains of partial
differential equations, but not as building blocks of trajectories. In this sense one
can take advantage of the papers [68, 104] in the next development of our proposals.
The same is true for the studies concerned with deep analyses of fractals growth
performed in [31, 110].

In Chap. 11, we make a possible study of mapping fractals, which is simple from
one side since it relates to classical functions, but from another side it is a developed
one since we apply the mapping function in a new manner, which nevertheless still
relates to the original ideas of Julia. Based on the constructed mapping iteration,
dynamics for fractals are introduced. We proceed upon the fact that motion of
fractals comprehend as deformation was not considered in literature at all. From
the mathematical point of view, the deformation is equivalent to mapping. Why
mapping for fractals was not investigated in the literature before? The reason lies
in the complexity of fractals building. Theoretically, the procedure is complex and
sophisticated since it contains infinitely many steps. Consequently, to map fractals,
one has to combine a map’s algorithm with the complex algorithm of a fractal
construction. We have found the combination, and it is one of the main achievements
of the Chap. 11. That is, in fact, we introduce a new type of functions, with fractal
domains, and determine the properties for the functions to have fractal-images and
approve this. Moreover, using the algorithm of mapping, we find conditions for
discrete equations to admit trajectories consisting of fractals as well as conditions for
continuous trajectories of autonomous differential equations (dynamical systems)
to be of fractals. Furthermore, a discussion about admitting fractal-points for non-
autonomous differential equations is provided. For the theoretical discussions, we
apply results of the fractal geometry (dimension) and theorems and definitions from
the theory of dynamical systems, differential and discrete equations theory. The
results presented in Chap. 11 originally appeared in the paper [23, 24, 26].

Abstract Self-Similarity and Chaotic Dynamics for Fractals Similarity is an
expression of sharing common properties. It is used to indicate that two or more
objects are similar to each other. In mathematics, similarity is a relation between
point sets. That is, two geometric figures are similar if there exists a similarity
transformation that maps one onto the other [76, 111]. The notion of self-similarity
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is used to say about the similarity within a single object. Self-similarity became one
of the most important concepts in modern science. From the geometrical point of
view, it is defined as the property of objects whose parts, at all scales, are similar to
the whole [31, 65]. Roots of the idea of self-similarity date back to the seventeenth
century when Gottfried Leibniz introduced the notions of recursive self-similarity
[114]. The last third of nineteenth century has witnessed a lot of work into the
subject which has been embodied in several discoveries such as Weierstrass function
by Karl Weierstrass, Cantor set by Georg Cantor, and space-filling curves described
by Giuseppe Peano and David Hilbert. Other examples of self-similar sets are Koch
curve discovered by Helge von Koch in 1904, Sierpinski gasket and carpet which are
introduced by Waclaw Sierpinski in 1916, and Lévy C curve described by Paul Lévy
in 1938. Benoit Mandelbrot invented the term fractal in 1975 [78] to describe certain
geometrical structures that exhibit self-similarity. Since then, this word has been
employed to denote all the above mentioned sets, and the field became known as
fractal geometry. Consequently, the fractal concept is axiomatically linked with the
notion of self-similarity which is considered to be one of the acceptable definitions
of fractals. That is, a fractal can be defined as a set that display self-similarity at all
scales. However, Mandelbrot defines a fractal as a set whose Hausdorff dimension
strictly larger than its topological dimension [79]. To sum up, self-similarity and
fractional dimension are the most two important features of fractals. The connection
between them is that self-similarity is the easiest way to construct a set that has
fractional dimension [41].

The idea of a self-similar set was first considered by Moran in 1946 [84] who
gave a mathematical definition of a geometric construction as a collection of sets sat-
isfying specific conditions. The Moran’s construction has been studied extensively
and developed by many researcher proposing various methods. In [88, 89, 102],
the approach was generalized to build different classes of Moran-like geometric
construction with the help of a symbolic space. The topological conjugacy to
symbolic dynamical system was employed to describe the symbolic representation
of the constructions. This type of self-similar sets is referred to as Cantor-like
set. Interesting definitions of self-similarity and related problems of dimension
and measure are discussed in the papers [30, 45, 47, 48, 63, 64, 72, 86, 101]. The
manuscripts consider sets in Euclidean space R

n and define self-similar set as a
union of its images under similarity transfunctions [47].

In Chap. 12, A new mathematical concept of abstract similarity is introduced.
We develop self-similarity based on point-set structure in metric spaces and this
is why we call it abstract self-similarity. The development does not rely on any
special functions, and the similarity map used in our book is applied for chaos
formation. The map is a natural consequence of the structure of the domain
and it can be considered as a generalization of the Bernoulli shift on symbolic
spaces. Our notion of similarity map, therefore, is different from the classical ones
essentially considered in literature. In the present chapter, we are not concerned
in analysis of dimension and measure but mostly rely on the distance, since our
main goal is to discuss chaos problem for fractals. Nevertheless, we suppose that
our suggestion may be useful for the next extension of the results obtained in
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[30, 45, 47, 48, 63, 64, 72, 86, 101] for the abstract self-similarity case. First of
all those which consider dimension and measure and corresponding problems of
fractals.

The achieved results in Chap. 12 have a special importance that we do not utilize
topological conjugacy to prove the presence of chaos in fractal sets. Moreover, we
consider different types of chaos, namely Devaney, Li–Yorke, and Poincaré, and the
results cover several kinds of self-similar fractals such as Cantor sets, Sierpinski
fractals, and Koch curve. Chaos in fractals, particularly Sierpinski carpet and Koch
curve, has not been considered in the literature before. Furthermore, our approach is
applicable for sets in multidimensional spaces. A good example is the logistic map.
It was shown that a chaos equivalent to Li–Yorke type can be extended to higher-
dimensional discrete systems [43, 44, 81]. This requires employing special theorems
like Marotto theorem [81]. Applying chaotic abstract similarity developed in our
research, we have shown that Devaney, Li–Yorke, and Poincaré chaos can take place
in the dynamics of n connected perturbed logistic maps. The results of Chap. 12
have been published in [10]. Applications of the method for neural networks and
multidimensional chaos are realized in papers [11, 12].
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Chapter 2
The Unpredictable Point and Poincaré
Chaos

This chapter is an introductory one for the book. It is revealed that a special kind of
Poisson stable point, which we call an unpredictable point, gives rise to the existence
of chaos in the quasi-minimal set. The existing definitions of chaos are formulated
in sets of motions. This is the first time that description of chaos is initiated from
a single motion. The theoretical results are exemplified by means of the symbolic
dynamics.

2.1 Preliminaries

The mathematical dynamics theory, which was founded by Poincaré [15] and
significantly developed by the French genius and Birkhoff [4], was a source as
well as the basis for the later discoveries and thorough investigations of complex
dynamics [7, 9–11, 18]. The homoclinic chaos was discussed by Poincaré [14], and
Lorenz [10] observed that a strange attractor contains a Poisson stable trajectory.
Possibly, it was Hilmy [8, 13] who gave the first definition of a quasi-minimal set
(as the closure of the hull of a Poisson stable motion). In [13, p. 361] one can find
a theorem by Hilmy, which states the existence of an uncountable set of Poisson
stable trajectories in a quasi-minimal set. We modify the Poisson stable points to
unpredictable points such that the quasi-minimal set is chaotic.

Let (X, d) be a metric space and T refer to either the set of real numbers or the
set of integers. A mapping f : T ×X → X is a flow on X [17] if:

(i) f (0, p) = p for all p ∈ X;
(ii) f (t, p) is continuous in the pair of variables t and p;

(iii) f (t1, f (t2, p)) = f (t1 + t2, p) for all t1, t2 ∈ T and p ∈ X.
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If a mapping f : T+ × X → X, where T+ is either the set of non-negative real
numbers or the set of non-negative integers, satisfies (i), (ii), and (iii), then it is
called a semi-flow on X [17].

Suppose that f is a flow on X. A point p ∈ X is stable P+ (positively Poisson
stable) if for any neighborhood U of p and for any H1 > 0 there exists t ≥ H1
such that f (t, p) ∈ U . Similarly, p ∈ X is stable P− (negatively Poisson stable)
if for any neighborhood U of p and for any H2 < 0 there exists t ≤ H2 such that
f (t, p) ∈ U . A point p ∈ X is called stable P (Poisson stable) if it is both stable
P+ and stable P− [13].

For a fixed p ∈ X, let us denote by Ωp the closure of the trajectory T (p) =
{f (t, p) : t ∈ T} , i.e.,Ωp = T (p). The setΩp is a quasi-minimal set if the point p
is stable P and T (p) is contained in a compact subset ofX [13]. We will also denote
Ω+
p = T +(p), where T +(p) = {f (t, p) : t ∈ T+} is the positive semi-trajectory

through p.
An essential result concerning quasi-minimal sets was given by Hilmy [8]. It

was demonstrated that if the trajectory corresponding to a Poisson stable point p is
contained in a compact subset of X and Ωp is neither a rest point nor a cycle, then
Ωp contains an uncountable set of motions everywhere dense and Poisson stable.
The following theorem can be proved by adapting the technique given in [8, 13].

Theorem 2.1 Suppose that p ∈ X is stable P+ and T +(p) is contained in a
compact subset of X. If Ω+

p is neither a rest point nor a cycle, then it contains an
uncountable set of motions everywhere dense and stable P+.

2.2 Dynamics with Unpredictable Points

In this section, we introduce unpredictable points and mention some properties of
the corresponding motions. The results will be provided for semi-flows on X, but
they are valid for flows as well. We will denote by N the set of natural numbers.

Definition 2.1 ([2]) A point p ∈ X and the trajectory through it are unpredictable
if there exist a positive number ε0 (the unpredictability constant) and sequences
{tn} and {τn} , both of which diverge to infinity, such that lim

n→∞ f (tn, p) = p and

d[f (tn + τn, p), f (τn, p)] ≥ ε0 for each n ∈ N.

An important point to discuss is the sensitivity or unpredictability. In the famous
research studies [6, 9, 10, 14, 15, 18], sensitivity has been considered as a property
of a system on a certain set of initial data since it compares the behavior of at least
couples of solutions. The above definition allows to formulate unpredictability for
a single trajectory. Indicating an unpredictable point p, one can make an error
by taking a point f (tn, p). Then d[f (τn, f (tn, p)), f (τn, p)] ≥ ε0, and this
is unpredictability for the motion. Thus, we say about the unpredictability of a
single trajectory, whereas the former definitions considered the property in a set
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of motions. In Sect. 2.3, it will be shown how to extend the unpredictability to a
chaos.

The following assertion is valid.

Lemma 2.2.1 ([2]) If p ∈ X is an unpredictable point, then T +(p) is neither a
rest point nor a cycle.

Proof Let the number ε0 and the sequences {tn} , {τn} be as in Definition 2.1.
Assume that there exists a positive number ω such that f (t + ω,p) = f (t, p) for
all t ∈ T+. According to the continuity of f (t, p), there exists a positive number δ
such that if d[p, q] < δ and 0 ≤ t ≤ ω, then d[f (t, p), f (t, q)] < ε0. Fix a natural
number n such that d[pn, p] < δ, where pn = f (tn, p). One can find an integer m
and a number ω0 satisfying 0 ≤ ω0 < ω such that τn = mω + ω0. In this case, we
have that

d[f (τn, pn), f (τn, p)] = d[f (ω0, pn), f (ω0, p)] < ε0.

But, this is a contradiction since

d[f (τn, pn), f (τn, p)] = d[f (tn + τn, p), f (τn, p)] ≥ ε0.

Consequently, T +(p) is neither a rest point nor a cycle. �	
It is seen from the next lemma that the unpredictability can be transmitted by the

flow.

Lemma 2.2.2 ([2]) If a point p ∈ X is unpredictable, then every point of the
trajectory T +(p) is also unpredictable.

Proof Suppose that the number ε0 and the sequences {tn} , {τn} are as in Defini-
tion 2.1. Fix an arbitrary point q ∈ T +(p) such that q = f (t, p) for some t ∈ T+.
One can verify that

lim
n→∞ f (tn, q) = lim

n→∞ f (tn + t, p) = lim
n→∞ f (t, f (tn, p)) = f (t, p) = q.

Now, take a natural number n0 such that τn > t for each n ≥ n0. If we denote
ζn = τn − t, then we have for n ≥ n0 that

d[f (tn + ζn, q), f (ζn, q)] = d[f (tn + ζn, f (t, p)), f (ζn, f (t, p))]
= d[f (tn + τn, p), f (τn, p)]
≥ ε0.

Clearly, ζn → ∞ as n→ ∞. Consequently, the point q is unpredictable. �	
Remark 2.1 It is worth noting that the unpredictability constant ε0 is common for
each point on an unpredictable trajectory.
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2.3 Chaos on the Quasi-Minimal Set

This section is devoted to the demonstration of chaotic dynamics on a quasi-minimal
set. According to [6, 10], the dynamics on a set S ⊆ X is sensitive if there
exists a positive number ε0 such that for each u ∈ S and each positive number δ
there exist a point uδ ∈ S and a positive number τδ such that d[uδ, u] < δ and
d[f (τδ, uδ), f (τδ, u)] ≥ ε0.

The main result of this chapter is mentioned in the next theorem, and it is valid
for both flows and semi-flows on X.

Theorem 2.2 ([2]) The dynamics on Ω+
p is sensitive if p ∈ X is an unpredictable

point.

Proof Let ε0 > 0 be the unpredictability constant corresponding to the point p. Fix
an arbitrary positive number δ, and take a point r ∈ Ω+

p . First of all, consider
the case r ∈ T +(p). By Lemma 2.2.2, there exist sequences {tn} and {τn} ,
both of which diverge to infinity, such that limn→∞ f (tn, r) = r and d[f (tn +
τn, r), f (τn, r)] ≥ ε0 for each n. Fix a natural number n0 such that d[r, r] < δ,

where r = f (tn0, r). In this case, the inequality d[f (τn0, r), f (τn0, r)] ≥ ε0 is
valid.

On the other hand, suppose that r ∈ Ω+
p \ T +(p). One can find a sequence

{ηm} , ηm → ∞ as m → ∞, such that limm→∞ rm = r, where rm =
f (ηm, p). According to Lemma 2.2.2, for each m ∈ N, there exist sequences{
smn
}

and
{
ξmn
}
, both of which diverge to infinity, such that limn→∞ rmn = rm and

d[f (ξmn , rmn ), f (ξmn , rm)] ≥ ε0, n ∈ N, where rmn = f (smn , rm).
Now, let m0 be a natural number such that d[rm0 , r] < δ/2. Suppose that there

exists a natural number n1 satisfying

d[f (ξm0
n1
, rm0), f (ξ

m0
n1
, r)] ≥ ε0/2.

If this is the case, then sensitivity is proved. Otherwise, fix n2 ∈ N such that
d[rm0

n2 , rm0 ] < δ/2 so that d[rm0
n2 , r] ≤ d[rm0

n2 , rm0 ]+d[rm0 , r] < δ.One can confirm
that

d[f (ξm0
n2
, rm0
n2
), f (ξm0

n2
, r)]

≥ d[f (ξm0
n2
, rm0
n2
), f (ξm0

n2
, rm0)] − d[f (ξm0

n2
, rm0), f (ξ

m0
n2
, r)]

> ε0/2.

The theorem is proved. �	
In Theorem 2.2, we have proved the presence of sensitivity in the set Ω+

p if
p is an unpredictable point in X. In the case that f is a flow on X, one can use
the same proof for the verification of sensitivity in Ωp. According to Theorem 2.1
and Lemma 2.2.1, if the positive semi-trajectory of an unpredictable point p ∈ X
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is contained in a compact subset of X, then Ω+
p contains an uncountable set of

everywhere dense stable P+ motions. Additionally, since T +(p) is dense in Ω+
p ,

the transitivity is also valid in the dynamics.
On the basis of the last discussions, we propose the following definition.

Definition 2.2 ([2]) The dynamics on the quasi-minimal set Ωp is called Poincaré
chaotic if p is an unpredictable point.

In the framework of chaos there may be infinitely many periodic motions. For
instance, chaos in the sense of Devaney [6] and Li–Yorke [9] admit a basis consisting
of periodic motions. However, in our case, Poisson stable motions take place in the
dynamics instead of periodic motions. Our definition does not contradict to this, and
this possibility is exemplified in the next section.

2.4 Applications

In this section, we will mainly investigate symbolic dynamics [6, 19] and show
the presence of unpredictable points as well as chaos on a quasi-minimal set
in the sense mentioned in Sect. 2.3. Moreover, we will reveal by means of the
topological conjugacy that the same is true for the logistic, Hénon and horseshoe
maps.

Let us take into account the following space of bi-infinite sequences [19]:

Σ2 = {s = (. . . s−2s−1.s0s1s2 . . .) : sj = 0 or 1 for each j}

with the metric

d[s, s] =
∞∑

k=−∞

|sk − s̄k|
2|k| ,

where s = (. . . s−2s−1.s0s1s2 . . .), s = (. . . s−2s−1.s0s1s2 . . .) ∈ Σ2. The shift
map σ : Σ2 → Σ2 is defined as

σ(. . . s−2s−1.s0s1s2 . . .) = (. . . s−2s−1s0.s1s2 . . .).

The map σ is continuous and the metric space Σ2 is compact [19].
In order to show that the map σ possesses an unpredictable point inΣ2, we need

a collection of finite sequences smi , m ∈ N, i = 1, 2, . . . , 2m, consisting of 0’s
and 1’s. Let us denote s1

1 = (0) and s1
2 = (1). For each m ∈ N, we recursively

define sm+1
2i−1 = (smi 0), sm+1

2i = (smi 1), i = 1, 2, . . . , 2m. Here, for each m and i, the

finite sequences sm+1
2i−1 and sm+1

2i are obtained by, respectively, inserting 0 and 1 to
the end of the sequence smi of length m. For instance, the sequences with length 2
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can be written as s2
1 = (s1

10) = (00), s2
2 = (s1

11) = (01), s2
3 = (s1

20) = (10),
s2

4 = (s1
21) = (11).

Now, consider the following sequence:

s∗ = (. . . s3
8s

3
6s

3
4s

3
2s

2
4s

2
2 .s

1
1s

2
1s

2
3s

3
1s

3
3s

3
5s

3
7 . . .).

It was demonstrated in [19] that the trajectory of s∗ is dense in Σ2. We will show
that s∗ is an unpredictable point of the dynamics (Σ2, σ ). For each n ∈ N, one can
find j ∈ N such that

s2n+2
2j−1 = (s∗−n . . . s∗0 . . . s∗n0)

and

s2n+2
2j = (s∗−n . . . s∗0 . . . s∗n1).

Therefore, there exists a sequence {tn} with tn ≥ n+∑2n+1
k=1 k2

k−1, n ∈ N, such that
σ tn(s∗) = s∗i for |i| ≤ n. Accordingly, the inequality d[σ tn(s∗), s∗] ≤ 1/2n−1 is
valid so that σ tn(s∗)→ s∗ as n→ ∞. Hence, s∗ is stable P+. In a similar way, one
can confirm that s∗ is stable P−.Note thatΣ2 is a quasi-minimal set since s∗ is Pois-
son stable. On the other hand, suppose that there exists a natural number n such that

σ tn+n+1(s∗)i = σn+1(s∗)i

for each i ≥ 0. Under this assumption we have that σ tn(s∗)i = s∗i for i ≥ −n. This
is a contradiction since the sequence s∗ is not eventually periodic. For this reason,
for each n ∈ N, there exists an integer τn ≥ n+1 such that σ tn+τn(s∗)0 �= σ τn(s∗)0.
Hence, d[σ tn+τn(s∗), σ τn(s∗)] ≥ 1 for each n ∈ N, and s∗ is an unpredictable point
in Σ2.

One of the concepts that has a great importance in the theory of dynamical
systems is the topological conjugacy, which allows us to make interpretation about
complicated dynamics by using simpler ones. Let X and Y be metric spaces. A flow
(semi-flow) f on X is topologically conjugate to a flow (semi-flow) g on Y if there
exists a homeomorphism h : X → Y such that h ◦ f = g ◦ h [6, 19]. The following
theorem can be verified by using the arguments presented in [3].

Theorem 2.3 Suppose that X and Y are metric spaces and a flow (semi-flow) f
on X is topologically conjugate to a flow (semi-flow) g on Y. If there exists an
unpredictable point whose trajectory is contained in a compact subset of X, then
there also exists an unpredictable point whose trajectory is contained in a compact
subset of Y.

Since the shift map σ on Σ2 is topologically conjugate to the Smale horseshoe
[6, 19], one can conclude by using Theorem 2.3 that the horseshoe map possesses
an unpredictable point and a trajectory. On the other hand, let us consider the Hénon
map



2.5 Notes 21

xn+1 = α − βyn − x2
n

yn+1 = xn, (2.4.1)

where β �= 0 and α ≥ (5+2
√

5)(1+|β|)2/4. It was proved by Devaney and Nitecki
[5] that the map (2.4.1) possesses a Cantor set in which the map is topologically
conjugate to the shift map σ on Σ2. Therefore, Theorem 2.3 also implies the
presence of an unpredictable point and a trajectory in the dynamics of (2.4.1).

Next, as an example of a semi-flow, consider the following space of infinite
sequences [6]:

Σ2 = {s = (s0s1s2 . . .) : sj = 0 or 1 for each j}

with the metric

d[s, s] =
∞∑

k=0

|sk − sk|
2k

,

where s = (s0s1s2 . . .), s = (s0s1s2 . . .) ∈ Σ2. The shift map σ : Σ2 → Σ2 is
defined as σ(s0s1s2 . . .) = (s1s2s3 . . .). As in the case of the space of bi-infinite
sequences, the metric space Σ2 is compact and the map σ is continuous [6, 19].

Let us take into account the sequence

s∗ = ( 0 1︸︷︷︸
1 blocks

| 00 01 10 11︸ ︷︷ ︸
2 blocks

| 000 001 010 011 . . .︸ ︷︷ ︸
3 blocks

| . . .),

which is constructed by successively listing all blocks of 0’s and 1’s of length n,
then length n + 1, etc. This sequence is non-periodic and its trajectory T (s∗) =
{σn(s∗) : n = 0, 1, 2, . . .} is dense in Σ2 [6]. Note that the number of all blocks
of length n in s∗ is 2n. Based upon the construction of s∗, there exists a sequence
{tn} satisfying tn ≥ ∑n

j=1 j2j , n ∈ N, such that s∗i = σ tn(s∗)i for each i =
0, 1, 2, . . . , n. Clearly, tn → ∞ as n → ∞ and d[σ tn(s∗), s∗] ≤ 1/2n so that
σ tn(s∗) → s∗ as n → ∞. Hence, s∗ is stable P+. In a very similar way to the
bi-infinite sequences, one can show the existence of a sequence {τn} , τn → ∞ as
n → ∞, such that d[σ tn+τn(s∗), σ τn(s∗)] ≥ 1 for each n ∈ N. Thus, s∗ is an
unpredictable point in Σ2.

It was shown in [16] that the logistic map xn+1 = μxn(1 − xn) possesses an
invariant Cantor set Λ ⊂ [0, 1], and the map on Λ is topologically conjugate to σ
on Σ2 for μ > 4. Therefore, the map with μ > 4 possesses an unpredictable point
and a trajectory in accordance with Theorem 2.3.

2.5 Notes

Emphasizing the ingredients of Devaney [6] and Li–Yorke [9] chaos, one can see
that the definitions of chaos have been considered by means of sets of motions,
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but not through a single motion description. This is the first time in the literature
that chaos is initiated from a single function. Thus, the line, equilibrium, periodic
function, quasi-periodic function, almost periodic function, recurrent function,
Poisson stable motion are prolonged with the new element-unpredictable motion.
This supplement to the line creates the possibility of other functions behind the
known ones.

An essential point to discuss is the sensitivity or unpredictability. In the literature,
sensitivity has been considered through initially nearby different motions. However,
we say about unpredictability as an interior property of a single trajectory. Then
chaos appears in a neighborhood of the trajectory. The symbolic dynamics illustrates
all the results and it is an important tool for the investigation of the complicated
dynamics of continuous-time systems such as the Lorenz and Rössler equations [12,
20]. It is worth noting that unpredictable points can be replicated by the techniques
summarized in [1].

One can see the proximity of chaos and quasi-minimal sets by comparing their
definitions [6, 9, 13]. Transitivity is a common feature of them, and the closure of
a Poisson stable trajectory contains infinitely many Poisson stable orbits. In its own
turn we know that a periodic trajectory is also Poisson stable. Possibly, continuum
of Poisson stable trajectories is an ultimate form of infinitely many cycles known
for a chaos. One may also ask whether sensitivity is proper for any quasi-minimal
set. These are the questions to discover more relations between quasi-minimal sets
and chaos. The results of this chapter are published in paper [2].
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Chapter 3
Unpredictability in Bebutov Dynamics

In this chapter, an unpredictable solution is considered as a generator of the chaos
in a quasilinear system by means of Bebutov dynamical system. The results can
be easily extended to different types of differential equations. An example of an
unpredictable function is provided. A proper irregular behavior in coupled Duffing
equations is observed through simulations.

3.1 Introduction

The row of periodic, quasi-periodic, almost periodic, recurrent, Poisson stable
motions had been successively developed in the theory of dynamical systems.
Then, chaotic dynamics started to be considered, which is not a single motion
phenomenon, since a prescribed set of motions is required for a definition [17,
23, 32]. This chapter serves for proceeding the row and involving chaos as a
purely functional object in nonlinear dynamics. In our paper [13], we introduced
unpredictable motions based on Poisson stability. This time, we introduce the
concept of an unpredictable function as an unpredictable point in the Bebutov
dynamics [30].

It was proved in [13] that an unpredictable point gives rise to the existence of
chaos in the quasi-minimal set. Thus, if one shows the existence of an unpredictable
solution of an equation, then the chaos exists. The present chapter as well as our
previous results concerning replication of chaos [1] supports the opinion of Holmes
[21] that the theory of chaos has to be a part of the theory of differential equations.
Since the main body of the results on chaotic motions has been formulated in terms
of differential and difference equations, we may suggest that all these achievements
have to be embedded and developed in the theory of dynamical systems or more
specifically, in the theory of differential equations or hybrid systems.
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The rest of the chapter is organized as follows: In the next section, we give
the auxiliary results from the paper [13]. Section 3.3 is concerned with the
Bebutov dynamics and the description of unpredictable functions. The existence of
unpredictable solutions in a quasilinear system is considered in Sect. 3.4. Section 3.5
is devoted to examples. Finally, some concluding remarks are given in Sect. 3.6.

3.2 Preliminaries

Throughout the chapter, we will denote by R,R+,N, and Z the sets of real numbers,
non-negative real numbers, natural numbers, and integers, respectively. Moreover,
we will make use of the usual Euclidean norm for vectors and the norm induced by
the Euclidean norm for square matrices [22].

Let (X, d) be a metric space. A mapping π : R+ ×X → X is a semi-flow on X
[30] if:

(i) π(0, p) = p for all p ∈ X;
(ii) π(t, p) is continuous in the pair of variables t and p;

(iii) π(t1, π(t2, p)) = π(t1 + t2, p) for all t1, t2 ∈ R+ and p ∈ X.
Suppose that π is a semi-flow on X. A point p ∈ X is stable P+ (positively

Poisson stable) if there exists a sequence {tn} , tn → ∞ as n → ∞, such that
π(tn, p) → p as n → ∞ [25]. For a fixed p ∈ X, let us denote by Θp the closure
of the trajectory T (p) = {π(t, p) : t ∈ R+} , i.e., Θp = T (p).

It was demonstrated by Hilmy [20] that if the trajectory corresponding to a
Poisson stable point p is contained in a compact subset of X and it is neither a
rest point nor a cycle, then the quasi-minimal set contains an uncountable set of
motions everywhere dense and Poisson stable. The following theorem can be proved
by adapting the technique given in [20, 25].

Theorem 3.1 ([20, 25]) Suppose that p ∈ X is stable P+ and T (p) is contained
in a compact subset of X. If Θp is neither a rest point nor a cycle, then it contains
an uncountable set of motions everywhere dense and stable P+.

The results of the present chapter are correct if one considers stable P−
(negatively Poisson stable) points for a semi-flow with negative time or both stable
P+ and stable P− (Poisson stable) points for a flow. The definition of a quasi-
minimal set is given for a Poisson stable point in [25].

The description of an unpredictable point and trajectory are as follows.

Definition 3.1 ([13]) A point p ∈ X and the trajectory through it are unpredictable
if there exist a positive number ε0 (the unpredictability constant) and sequences
{tn} and {τn} , both of which diverge to infinity, such that lim

n→∞π(tn, p) = p and

d(π(tn + τn, p), π(τn, p)) ≥ ε0 for each n ∈ N.
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An important point to discuss is the sensitivity or unpredictability. In the famous
research studies [17, 23, 24, 27, 31], sensitivity was considered as a property of
a system on a certain set of initial data since it compares the behavior of at least
couples of solutions. Definition 3.1 allows to formulate unpredictability for a single
trajectory. Indicating an unpredictable point p, one can make an error by taking a
point π(tn, p). Then d(π(τn, π(tn, p)), π(τn, p)) ≥ ε0, and this is unpredictability
for the motion. Thus, we say about the unpredictability of a single trajectory,
whereas the former definitions considered the property in a set of motions.

It was proved in [13] that if p ∈ X is an unpredictable point, then T (p) is neither
a rest point nor a cycle, and that if a point p ∈ X is unpredictable, then every point of
the trajectory T (p) is also unpredictable. It is worth noting that the unpredictability
constant ε0 is common for each point on an unpredictable trajectory.

The dynamics on a set S ⊆ X is sensitive [17, 24] if there exists a positive number
ε0 such that for each u ∈ S and each positive number δ there exist a point uδ ∈ S
and a positive number τδ such that d(uδ, u) < δ and d(π(τδ, uδ), π(τδ, u)) ≥ ε0.

A result concerning sensitivity in a quasi-minimal set is given in the next
theorem.

Theorem 3.2 ([13]) The dynamics on Θp is sensitive if p ∈ X is an unpredictable
point.

Theorem 3.2 mentions the presence of sensitivity in the set Θp if p is an
unpredictable point in X. According to Theorem 3.1, if the trajectory T (p) of
an unpredictable point p ∈ X is contained in a compact subset of X, then Θp
contains an uncountable set of everywhere dense stable P+ motions. Additionally,
since T (p) is dense in Θp, the transitivity is also valid in the dynamics. We have
named this type of chaos as Poincaré chaos in the paper [13]. (See also Chap. 2.)

3.3 Unpredictable Functions

This section is devoted to the description of unpredictable functions and their
connection with chaos. For that purpose the results provided in [30] will be utilized.

Let us denote by C(R) the set of continuous functions defined on R with values
in R

m, and assume that C(R) has the topology of uniform convergence on compact
sets, i.e., a sequence {hk} inC(R) is said to converge to a limit h if for every compact
set U ⊂ R the sequence of restrictions {hk|U } converges to {h|U } uniformly.

One can define a metric d on C(R) as [30]

d(h1, h2) =
∞∑

k=1

2−kρk(h1, h2), (3.3.1)
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where h1, h2 belong to C(R) and

ρk(h1, h2) = min

{

1, sup
s∈[−k,k]

‖h1(s)− h2(s)‖
}

, k ∈ N.

Let us define the mapping π : R+ × C(R) → C(R) by π(t, h) = ht , where
ht (s) = h(t + s). The mapping π defines a semi-flow on C(R) and it is called the
Bebutov dynamical system [30].

We describe an unpredictable function as follows.

Definition 3.2 ([14]) An unpredictable function is an unpredictable point of the
Bebutov dynamical system.

According to Theorem III.3 [30], a motion π(t, h) lies in a compact set if
h is a bounded and uniformly continuous function. Assuming this, by means of
Theorem 3.2, we obtain that an unpredictable function h determines chaos if it
is bounded and uniformly continuous. On the basis of this result, one can say
that if a differential equation admits an unpredictable solution which is uniformly
continuous and bounded, then chaos is present in the set of solutions. In the next
section, we will prove the existence of an unpredictable solution whose quasi-
minimal set is a chaotic attractor.

3.4 Unpredictable Solutions of Quasilinear Systems

Consider the following quasilinear system:

x′ = Ax + f (x)+ g(t), (3.4.2)

where the m×m constant matrix A has eigenvalues all with negative real parts, the
function f : Rm → R

m is continuous and g : R → R
m is a uniformly continuous

and bounded function.
Since the eigenvalues of the matrixA have negative real parts, there exist positive

numbers K and ω such that ‖eAt‖ ≤ Ke−ωt , t ≥ 0 [19].
The following conditions are required:

(C1) There exists a positive numberMf such that sup
x∈Rm

‖f (x)‖ ≤ Mf ;
(C2) There exists a positive number Lf such that ‖f (x1)− f (x2)‖ ≤

Lf ‖x1 − x2‖ for all x1, x2 ∈ R
m;

(C3) KLf − ω < 0.

The main result of the present chapter is mentioned in the next theorem.
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Theorem 3.3 ([14]) Suppose that the conditions (C1)–(C3) are valid. If the
function g(t) is unpredictable, then system (3.4.2) possesses a unique uniformly
exponentially stable unpredictable solution, which is uniformly continuous and
bounded on R.

Proof Using the technique for quasilinear equations [19], one can confirm under the
conditions (C1)–(C3) that system (3.4.2) possesses a unique bounded on R solution
φ(t) which satisfies the relation

φ(t) =
∫ t

−∞
eA(t−u)[f (φ(u))+ g(u)]du. (3.4.3)

Moreover, sup
t∈R

‖φ(t)‖ ≤ Mφ, where Mφ = K(Mf +Mg)
ω

and Mg = sup
t∈R

‖g(t)‖.
The solution φ(t) is uniformly continuous on R since sup

t∈R

∥∥φ′(t)
∥∥ ≤ ‖A‖Mφ +

Mf +Mg.
Suppose that x(t) is a solution of (3.4.2) such that x(t0) = x0 for some t0 ∈ R

and x0 ∈ R
m. It can be verified that

‖x(t)− φ(t)‖ ≤ K ‖x0 − φ(t0)‖ e(KLf−ω)(t−t0), t ≥ t0,

and therefore, φ(t) is uniformly exponentially stable.
Since the function g(t) is unpredictable, there exist a positive number ε0 ≤ 1 and

sequences {tn}, {τn}, both of which diverge to infinity, such that d(gtn, g) → 0 as
n → ∞ and d(gtn+τn , gτn) ≥ ε0 for all n ∈ N, where the distance function d is
given by (3.3.1).

First of all, we shall show that d(φtn, φ) → 0 as n → ∞. Fix an arbitrary
small positive number ε < 1 and suppose that α is a positive number satisfying

α ≤ ω −KLf
2ω +K − 2KLf

. Let k0 be a sufficiently large natural number such that

k0 ≥ max

{
ln(1/αε)

ln 2
,

1

ω −KLf ln

(
2K(Mf +Mg)

ωαε

)}
. (3.4.4)

There exists a natural number n0 such that if n ≥ n0 then d(gtn, g) < 2−2k0αε.

Therefore, for n ≥ n0, the inequality ρ2k0(gtn , g) < αε is valid. Since αε < 1, we
have that ‖g(tn + s)− g(s)‖ < αε for s ∈ [−2k0, 2k0].

Making use of the relation (3.4.3), one can obtain that

φ(tn + s)−φ(s)=
∫ s

−∞
eA(s−u)[f (φ(tn + u))−f (φ(u))+g(tn + u)− g(u)]du.

Thus, if s belongs to the interval [−2k0, 2k0], then it can be verified that
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‖φ(tn + s)− φ(s)‖ ≤ 2K(Mf +Mg)
ω

e−ω(s+2k0) + Kαε

ω

(
1 − e−ω(s+2k0)

)

+KLf
∫ s

−2k0

e−ω(s−u) ‖φ(tn + u)− φ(u)‖ du. (3.4.5)

Now, let us define the functions

ψn(s) = eωs ‖φ(tn + s)− φ(s)‖ , n ≥ n0.

Inequality (3.4.5) implies that

ψn(s) ≤ Kαε

ω
eωs +

(
2K(Mf +Mg)−Kαε

ω

)
e−2ωk0 +KLf

∫ s

−2k0

ψn(u)du.

Applying the Gronwall’s Lemma [15], one can confirm that

ψn(s) ≤ Kαε

ω−KLf e
ωs
(

1−e(KLf−ω)(s+2k0)
)

+ 2K(Mf +Mg)
ω

eKLf se2(KLf−ω)k0 .

Hence, the inequality

‖φ(tn + s)− φ(s)‖ < Kαε

ω −KLf + 2K(Mf +Mg)
ω

e(KLf−ω)(s+2k0)

is valid. Since the number k0 satisfies (3.4.4), we have e(KLf−ω)k0 ≤
ωαε

2K(Mf +Mg) so that

‖φ(tn + s)− φ(s)‖ <
(

1 + K

ω −KLf
)
αε

for s ∈ [−k0, k0]. Therefore, the inequality

sup
s∈[−k,k]

‖φ(tn + s)− φ(s)‖ <
(

1 + K

ω −KLf
)
αε

holds for each integer k with 1 ≤ k ≤ k0. It is clear that

(
1 + K

ω −KLf
)
αε < 1.

Thus,

ρk(φtn, φ) <

(
1 + K

ω −KLf
)
αε, 1 ≤ k ≤ k0.

For n ≥ n0, it can be obtained by using (3.4.4) one more time that
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d(φtn, φ) =
∞∑

k=1

2−kρk(φtn, φ)

<

(
1 + K

ω −KLf
)
αε

k0∑

k=1

2−k +
∞∑

k=k0+1

2−k

<

(
2 + K

ω −KLf
)
αε

≤ ε.

Hence, d(φtn, φ)→ 0 as n→ ∞.
Next, we will verify the presence of a positive number ε0 and a sequence {τn} ,

τ n → ∞ as n→ ∞, such that d(φtn+τn , φτn) ≥ ε0 for all n ∈ N.

Let N be a natural number such that
∞∑

k=N+1

2−k ≤ ε0

2
. One can confirm that

N∑

k=1

2−kρk(gtn+τn , gτn) ≥ ε0

2
.

In this case, for each n ∈ N, there exist integers kn0 between 1 and N such that

ρkn0
(gtn+τn , gτn) ≥ 2k

n
0 ε0

2N
≥ ε0

N
.

Therefore, it can be verified that

sup
s∈[−kn0 ,kn0 ]

‖g(tn + τn + s)− g(τn + s)‖ ≥ ε0

N
, n ∈ N.

The last inequality implies the existence of numbers ηn ∈ [−kn0 , kn0 ] satisfying

‖g(tn + τn + ηn)− g(τn + ηn)‖ ≥ ε0

N
, n ∈ N. (3.4.6)

Suppose that g(s) = (g1(s), g2(s), . . . , gm(s)), where each gi, 1 ≤ i ≤ m, is a
real-valued function. In accordance with (3.4.6), for each n ∈ N, there is an integer
jn, 1 ≤ jn ≤ m, with

∣∣gjn(tn + τn)− gjn(τn)
∣∣ ≥ ε0

Nm
,

where τn = τn + ηn, n ∈ N. Since the function g is uniformly continuous, there
exists a positive number Δ ≤ 1, which does not depend on the sequences {tn} and
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{τn} , such that both of the inequalities

‖g(tn + τn)− g(tn + τn + s)‖ ≤ ε0

4Nm

and

‖g(τn)− g(τn + s)‖ ≤ ε0

4Nm

are valid for s ∈ [−Δ,Δ]. Thus, we have for s ∈ [−Δ,Δ] that

∣∣gjn(tn + τn + s)− gjn(τn + s)∣∣ ≥ ∣∣gjn(tn + τn)− gjn(τn)
∣∣

− ∣∣gjn(tn + τn)− gjn(tn + τn + s)∣∣
− ∣∣gjn(τn)− gjn(τn + s)∣∣

≥ ε0

2Nm
. (3.4.7)

For each n ∈ N, one can find numbers sn1 , s
n
2 , . . . , s

n
m ∈ [−Δ,Δ] such that

∥∥∥
∫ Δ

−Δ
[g(tn + τn + u)− g(τn + u)] du

∥∥∥

= 2Δ
( m∑

i=1

[gi(tn + τn + sni )− gi(τn + sni )]2
)1/2

. (3.4.8)

Hence, it can be deduced by means of (3.4.7) and (3.4.8) that

∥∥∥
∫ Δ

−Δ
[g(tn + τn + u)− g(τn + u)] du

∥∥∥ ≥ 2Δ
∣∣∣gjn(tn + τn + snjn)− gjn(τn + snjn)

∣∣∣

≥ Δε0

Nm
.

Now, using the equation

φ(tn + τn + s)− φ(τn + s) = φ(tn + τn −Δ)− φ(τn −Δ)
+
∫ s

−Δ
A[φ(tn + τn + u)− φ(τn + u)]du

+
∫ s

−Δ
[f (φ(tn + τn + u))− f (φ(τn + u))]du

+
∫ s

−Δ
[g(tn + τn + u)− g(τn + u)]du,
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we attain that

‖φ(tn + τn +Δ)− φ(τn +Δ)‖ ≥
∥∥∥
∫ Δ

−Δ
[g(tn + τn + u)− g(τn + u)]du

∥∥∥

−‖φ(tn + τn −Δ)− φ(τn −Δ)‖

−
∫ Δ

−Δ
(‖A‖ + Lf

) ‖φ(tn + τn + u)− φ(τn + u)‖ du.

The last inequality implies that

sup
s∈[−Δ,Δ]

‖φ(tn + τn + s)− φ(τn + s)‖ ≥ ε0, n ∈ N,

where ε0 = Δε0

2Nm[1 +Δ(‖A‖ + Lf )] . Therefore, we have d(φtn+τn , φτn) ≥ ε0 for

each n ∈ N.

The theorem is proved. �	
In the definition of Devaney chaos [17], periodic motions constitute a dense

subset. However, in our case, instead of periodic motions, Poisson stable motions
take place in the dynamics. More precisely, we say that the dynamics on the quasi-
minimal set of functions on R is chaotic if the dynamics on it is sensitive, transitive
and there exists a continuum of Poisson stable trajectories dense in the quasi-
minimal set. Nevertheless, in the framework of chaos there may be infinitely many
periodic motions. For instance, the symbolic dynamics of bi-infinite sequences
possesses both an uncountable set of non-periodic Poisson stable motions as well as
infinitely many cycles [13, 32].

3.5 Examples

Example 1 We will construct an unpredictable function in this example.
Consider the function z(t) = (z1(t), z2(t)) defined as z1(t) = pi, z2(t) = qi for

t ∈ [i, i + 1), i ∈ Z, such that (pi, qi) is an unpredictable trajectory [13] of the
Hénon map

pi+1 = α0 − β0qi − p2
i

qi+1 = pi, (3.5.1)

where β0 �= 0 and α0 ≥ (5 + 2
√

5)(1 + |β0|)2/4. The unpredictable trajectory
belongs to a Cantor set such that there exists a positive number R satisfying
‖(pi, qi)‖ ≤ R for each i ∈ Z [16, 28].

Define the continuous on R function ψ(t) such that
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ψ(t) = e−γ (t−i)ψ(i)+
∫ t

i

e−γ (t−u)z(u)du, t ∈ [i, i + 1], i ∈ Z,

where γ is a positive number and ψ(0) =
∫ 0

−∞
eγuz(u)du.

Let us show that ψ(t) is an unpredictable function. Fix an arbitrary
small positive number ε < 1, and let β be a positive number such that

β ≤ γ

2γ + 1
. Suppose that r0 is a sufficiently large natural number such that

r0 ≥ max

{
ln(1/βε)

ln 2
,

1

γ
ln

(
2R

γβε

)}
. Since (pi, qi) is an unpredictable trajectory

of (3.5.1), there exist a positive number ε0 and sequences {in} , {jn} , both of which
diverge to infinity, such that

∥∥(pi+in , qi+in )− (pi, qi)
∥∥ < βε, n ∈ N, i = −2r0,−2r0 + 1, . . . , r0 − 1,

and

∥∥(pin+jn , qin+jn)− (pjn, qjn)
∥∥ ≥ ε0, n ∈ N.

If s ∈ [−r0, r0], then one can confirm that ‖ψ(in + s)− ψ(s)‖ <
(

1 + 1

γ

)
βε

for each n ∈ N. Therefore, π(in, ψ) → ψ as n → ∞ so that ψ(t) is a positively
Poisson stable point of the Bebutov dynamical system. On the other hand, we have

sup
s∈[0,1]

‖ψ(in + jn + s)− ψ(jn + s)‖ ≥ (1 − e−γ )ε0

γ (1 + e−γ ) , and this proves that ψ(t) is

an unpredictable function.

Example 2 In this example, we will show how an unpredictable point may cause
irregular dynamics. For that purpose, we will make use of coupled Duffing equations
such that the first one is forced with a relay function and the second one is perturbed
with the solutions of the former.

Let us consider the following forced Duffing equation:

x′′ + 0.68x′ + 1.6x + 0.008x3 = ν(t, ζ, λ), (3.5.2)

where the forcing term ν(t, ζ, λ) is a relay function defined as

ν(t, ζ, λ) =
{

1.2, if ζ2j (λ) < t ≤ ζ2j+1(λ), j ∈ Z,

0.4, if ζ2j−1(λ) < t ≤ ζ2j (λ), j ∈ Z.
(3.5.3)

In (3.5.3), the sequence ζ = {
ζj
}
j∈Z of switching moments is defined through the

equation ζj = j + κj , j ∈ Z, where the sequence
{
κj
}
j∈Z is a solution of the

logistic map
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κj+1 = λκj (1 − κj ). (3.5.4)

By means of the variables x1 = x and x2 = x′, Eq. (3.5.2) can be written as a
system in the following form:

x′
1 = x2

x′
2 = −1.6x1 − 0.68x2 − 0.008x3

1 + ν(t, ζ, λ). (3.5.5)

We suppose that the parameter λ in (3.5.4) is greater than 4 such that the map
possesses an invariant Cantor set Λ ⊂ [0, 1] [28], and it was demonstrated in [13]
that for such values of the parameter the map possesses an unpredictable point
in Λ. Let us consider system (3.5.5) with ζ0 ∈ Λ. For each natural number p,
system (3.5.5) admits an unstable periodic solution with period 2p if p is odd and
an unstable periodic solution with period p if p is even [4]. The reader is referred to
[1–12] for more information about the dynamics of relay systems.

In order to illustrate the irregular dynamics of (3.5.5), we make use of the value
λ = 4.007 in the system and depict the solution corresponding to the initial data
x1(0.41) = 0.6, x2(0.41) = 0.5 and ζ0 = 0.41 in Fig. 3.1. The simulation results
seen in Fig. 3.1 confirm the presence of irregular behavior in the dynamics of (3.5.5).
It is worth noting that even if the logistic map (3.5.4) with λ = 4.007 has an invariant
Cantor set, the chosen initial value of the sequence

{
ζj
}

allows to simulate the
solution for 0.41 ≤ t ≤ 100. Due to the instability, simulations of the system cannot
be provided for large intervals of time.

Next, we take into account another Duffing equation,

y′′ + 0.95y′ + 1.8y + 0.005y3 = 0. (3.5.6)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

t

x 1
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0

0.5
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Fig. 3.1 The solution of (3.5.5) with x1(0.41) = 0.6, x2(0.41) = 0.5 and κ0 = 0.41. The value
λ = 4.007 is used in the simulation. The figure reveals the presence of chaos in the dynamics
of (3.5.5)
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Using the variables y1 = y and y2 = y′, Eq. (3.5.6) can be reduced to the system

y′
1 = y2

y′
2 = −1.8y1 − 0.95y2 − 0.005y3

1 .
(3.5.7)

We perturb (3.5.7) with the solutions of (3.5.5), and set up the system

z′1 = z2 + x1(t)

z′2 = −1.8z1 − 0.95z2 − 0.005z3
1 + x2(t).

(3.5.8)

System (3.5.8) is in the form of (3.4.2), where A =
(

0 1

−1.8 −0.95

)

, f (z1, z2) =

(0,−0.005z3
1) and g(t) = (x1(t), x2(t)). Both eigenvalues of A have real parts

−0.475, and the coefficient of the nonlinear term is chosen sufficiently small in
absolute value so that the conditions (C1)–(C3) are valid for (3.5.8).

Figure 3.2 shows the solution of (3.5.8) with z1(0.41) = 0.1 and z2(0.41) = 0.2.
For the simulation, the solution (x1(t), x2(t)) which is represented in Fig. 3.1 is
used. One can observe in Fig. 3.2 that the represented solution behaves irregularly.

Next, we will demonstrate the presence of periodic motions in system (3.5.8)
by means of the Ott–Grebogi–Yorke (OGY) control technique [26]. Since the
logistic map (3.5.4) is the main source of the chaotic behavior in the coupled
system (3.5.5)+ (3.5.8), we will apply the OGY method to the map. Let us explain
briefly the method for the logistic map [29]. Suppose that the parameter λ in (3.5.4)
is allowed to vary in the range [4.007 − ε, 4.007 + ε], where ε is a given small
positive number. Consider an arbitrary solution

{
κj
}
, κ0 ∈ Λ, of the map and

denote by κ(i), i = 1, 2, . . . , p, the target p-periodic orbit to be stabilized. In the

0 10 20 30 40 50 60 70 80 90 100

−0.5
0

0.5
1

t

z 1

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

t

z 2

Fig. 3.2 Chaotic behavior in the dynamics of system (3.5.8). The solution (x1(t), x2(t)) repre-
sented in Fig. 3.1 is utilized as the perturbation in (3.5.8). The irregularity is observable in both z1
and z2 coordinates
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OGY control method [29], at each iteration step j after the control mechanism is
switched on, we consider the logistic map with the parameter value λ = λ̄j , where

λ̄j = 4.007

(

1 + (2κ(i) − 1)(κj − κ(i))
κ(i)(1 − κ(i))

)

, (3.5.9)

provided that the number on the right-hand side of the formula (3.5.9) belongs to
the interval [4.007 − ε, 4.007 + ε]. In other words, formula (3.5.9) is valid if the
trajectory

{
κj
}

is sufficiently close to the target periodic orbit. Otherwise, we take
λ̄j = 4.007, so that the system evolves at its original parameter value, and wait until
the trajectory

{
κj
}

enters in a sufficiently small neighborhood of the periodic orbit

κ(i), i = 1, 2, . . . , p, such that the inequality −ε ≤ 4.007
(2κ(i) − 1)(κj − κ(i))

κ(i)(1 − κ(i)) ≤
ε holds. If this is the case, the control of chaos is not achieved immediately after
switching on the control mechanism. Instead, there is a transition time before the
desired periodic orbit is stabilized. The transition time increases if the number ε
decreases [18].

Figure 3.3 shows the stabilization of an unstable 2-periodic solution of (3.5.8).
Here, the OGY control method is used around the fixed point 3.007/4.007 of the
logistic map (3.5.4), and the simulation is performed for the initial data x1(0.41) =
0.6, x2(0.41) = 0.5, z1(0.41) = 0.1, z2(0.41) = 0.2, ζ0 = 0.41. The control
is switched on at t = ζ20 and the value ε = 0.095 is utilized. One can confirm
that even if the control is switched on at t = ζ20 there is a transition time before
the stabilization such that the control becomes dominant approximately at t = 76.
Figure 3.3 reveals that the OGY control technique is appropriate for the stabilization
of the unstable periodic motions of system (3.5.8).
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Fig. 3.3 The stabilization of the 2-periodic solution of (3.5.8) corresponding to the fixed point
3.007/4.007 of the logistic map (3.5.4). The value ε = 0.095 is used and the control is switched
on at t = ζ20
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Fig. 3.4 The stabilization of the 2-periodic solution of (3.5.8) corresponding to the 2-periodic
orbit κ(1) ≈ 0.34459, κ(2) ≈ 0.90497 of (3.5.4). The value ε = 0.072 is used and the control is
switched on at t = ζ25

On the other hand, Fig. 3.4 shows the simulation result for (3.5.8) when the OGY
method is applied around the 2-periodic orbit κ(1) ≈ 0.34459, κ(2) ≈ 0.90497
of (3.5.4). The represented solution corresponds again to the initial data x1(0.41) =
0.6, x2(0.41) = 0.5, z1(0.41) = 0.1, z2(0.41) = 0.2, ζ0 = 0.41. The value ε =
0.072 is used and the control is switched on at t = ζ25. The presence of a transition
time before the stabilization is observable in Fig. 3.4 such that the control becomes
dominant approximately at t = 46. One can observe that the stabilized 2-periodic
solutions seen in Figs. 3.3 and 3.4 are different, and this reveals the presence of
periodic motions.

3.6 Notes

The unpredictable function has been defined as an unpredictable point of the
Bebutov dynamics, and chaos in the quasi-minimal set of the function is verified.
This is the first time in the literature that the existence of an unpredictable solution
for a quasilinear ordinary differential equation is proved.

The concept of unpredictable solutions can be useful for finding more delicate
features of chaos in systems with complicated dynamics. Researches based on
unpredictable functions may pave the way for the functional analysis of chaos to
involve the operator theory results. Hopefully, our approach will give a basis for a
deeper comprehension and possibility to unite different appearances of chaos. In this
framework, the results can be developed for partial differential equations, integro-
differential equations, functional differential equations, and evolution systems. The
results of this chapter are published in paper [14].
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Chapter 4
Nonlinear Unpredictable Perturbations

The results of this chapter are continuation of the research of Poincaré chaos
initiated in Chaps. 2 and 3. We focus on the construction of an unpredictable
function, continuous on the real axis. This is the first time that perturbations depend
nonlinearly on unpredictable functions. (See also Chap. 3, Definition 3.2.) As
auxiliary results, unpredictable orbits for the symbolic dynamics and the logistic
map are obtained. By shaping the unpredictable function as well as Poisson function
we have performed the first step in the development of the theory of unpredictable
solutions for differential and discrete equations. The results are preliminary ones
for deep analysis of chaos existence in differential and hybrid systems. Illustrative
examples concerning unpredictable solutions of differential equations are provided.

4.1 Preliminaries

It is useless to say that the theory of dynamical systems is a research of oscillations,
and the latest motion of the theory is the Poisson stable trajectory [17]. In paper
[8] inspired by chaos investigation we have introduced a new type of oscillation,
next to the Poisson stable one, and called the initial point for it the unpredictable
point and the trajectory itself the unpredictable orbit. These novelties make a
connection of the homoclinic chaos and the latest types of chaos possible through
the concept of unpredictability, that is sensitivity assigned to a single orbit. Thus,
the Poincaré chaos concept has been eventually shaped in our paper [8]. We have
also determined the unpredictable function on the real axis as an unpredictable
point of the Bebutov dynamics in paper [9] to involve widely differential and
discrete equations to the chaos investigation. Nonetheless, we need a more precise
description of what one understands as unpredictable function. The present chapter
is devoted to this constructive duty. One can say that the analysis became productive,
since we have learnt that the unpredictable functions can be bounded, and this is also
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true for Poisson functions, newly introduced in this chapter. Thus, the discussion is
focused on chaotic attractors bounded in the space variables. This is important for
applications, and it remains legal through our suggestions.

We utilize the topology of uniform convergence on any compact subset of the
real axis to introduce the unpredictable functions. More precisely, the Bebutov
dynamical system [18] has been applied. Additionally, using the same dynamics
we have introduced Poisson functions. All these make our duty of incorporating
chaos investigation to theory of differential equations initiated in papers [1–6] and
in the book [7] seems to proceed in the correct way.

The main goal of this chapter is the construction of a concrete unpredictable
function and its application to differential equations. To give the procedure we start
with unpredictable sequences as motions of symbolic dynamics and the logistic
map. Then an unpredictable function is determined as an improper convolution
integral with a relay function. Finally, we demonstrated in examples unpredictable
functions as solutions of differential equations.

Let (X, d) be a metric space and π : T+ ×X → X, where T+ is either the set of
non-negative real numbers or the set of non-negative integers, be a semi-flow on X,
i.e., π(0, x) = x for all x ∈ X, π(t, x) is continuous in the pair of variables t and
x, and π(t1, π(t2, x)) = π(t1 + t2, x) for all t1, t2 ∈ T+, x ∈ X.

A point x ∈ X is called positively Poisson stable (stable P+) if there exists a
sequence {tn} satisfying tn → ∞ as n → ∞ such that lim

n→∞π(tn, x) = x [16].

For a given point x ∈ X, let us denote by Θx the closure of the trajectory T (x) =
{π(t, x) : t ∈ T+} , i.e., Θx = T (x). The set Θx is a quasi-minimal set if the point
x is stable P+ and T (x) is contained in a compact subset of X [16].

It was demonstrated by Hilmy [15] that if the trajectory corresponding to a
Poisson stable point x is contained in a compact subset of X and it is neither a
rest point nor a cycle, then the quasi-minimal set contains an uncountable set of
motions everywhere dense and Poisson stable. The following theorem can be proved
by adapting the technique given in [15, 16].

Theorem 4.1 ([8]) Suppose that x ∈ X is stable P+ and T (x) is contained in a
compact subset of X. If Θx is neither a rest point nor a cycle, then it contains an
uncountable set of motions everywhere dense and stable P+.

The definitions of an unpredictable point and unpredictable trajectory are as
follows.

Definition 4.1 ([8]) A point x ∈ X and the trajectory through it are unpredictable
if there exist a positive number ε0 (the unpredictability constant) and sequences
{tn} and {τn} , both of which diverge to infinity, such that lim

n→∞π(tn, x) = x and

d(π(tn + τn, x), π(τn, x)) ≥ ε0 for each n ∈ N.

Markov [16] proved that a trajectory stable in both Poisson and Lyapunov
(uniformly) senses must be an almost periodic one. Since Definition 4.1 implies
instability, an unpredictable motion cannot be almost periodic. In particular, it is
neither an equilibrium nor a cycle.
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Based on unpredictable points, a new chaos definition was provided in the paper
[8] (see also Chap. 2) as follows.

Definition 4.2 ([8]) The dynamics on the quasi-minimal set Θx is called Poincaré
chaotic if x is an unpredictable point.

It is worth noting that Poincaré chaos admits properties similar to the ingredients
of Devaney chaos [12]. In the paper [8], it was proved that if x is an unpredictable
point, then the dynamics on Θx is sensitive. That is, there exists a positive number
ε̃0 such that for each x1 ∈ Θx and for each positive number δ there exist a point x2 ∈
Θx and a positive number t̄ such that d(x1, x2) < δ and d(f (t̄, x1), f (t̄, x2)) ≥ ε̃0.

Besides, since the trajectory T (x) is dense in Θx, transitivity is also present in the
dynamics. Moreover, according to Theorem 4.1, there exists a continuum of stable
P+ orbits inΘx. In our paper [8] we gave the definition of Poincaré chaos for flows,
but in this chapter we give the definition for semi-flows, since the discussion in the
paper [8] is valid also for the latter case.

Let us denote by C(R) the set of continuous functions defined on R with values
in R

m, and assume that C(R) has the topology of uniform convergence on compact
sets, i.e., a sequence {hk} inC(R) is said to converge to a limit h if for every compact
set U ⊂ R the sequence of restrictions {hk|U } converges to {h|U } uniformly.

One can define a metric ρ on C(R) as [18]

ρ(h1, h2) =
∞∑

k=1

2−kρk(h1, h2), (4.1.1)

where h1, h2 belong to C(R) and

ρk(h1, h2) = min

{
1, sup
s∈[−k,k]

‖h1(s)− h2(s)‖
}
, k ∈ N.

Let us define the mapping π : R+ × C(R) → C(R) by π(t, h) = ht , where
ht (s) = h(t + s). The mapping π is a semi-flow on C(R), and it is called the
Bebutov dynamical system [18].

Using the Bebutov dynamical system, we give the descriptions of a Poisson
function and an unpredictable function in the next definitions.

Definition 4.3 ([9]) A Poisson function is a Poisson stable point of the Bebutov
dynamical system.

Definition 4.4 ([9]) An unpredictable function is an unpredictable point of the
Bebutov dynamical system.

It is clear that an unpredictable function is a Poisson function. According to
Theorem III.3 [18], a motion π(t, h) lies in a compact set if h is a bounded and
uniformly continuous function. Therefore, an unpredictable function h determines
Poincaré chaos in the Bebutov dynamical system if it is bounded and uniformly
continuous. Moreover, any system of differential equations which admits uniformly
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continuous and bounded unpredictable solution has a Poincaré chaos. For differ-
ential equations, we say that a solution is an unpredictable one if it is uniformly
continuous and bounded on the real axis.

Let us consider the system

x′(t) = Ax(t)+ f (x(t))+ g(t), (4.1.2)

where all eigenvalues of the constant p × p matrix A have negative real parts, the
function f : Rp → R

p is bounded, and the function g : R → R
p is a uniformly

continuous and bounded. Since the eigenvalues of the matrix A have negative real
parts, there exist positive numbers K0 and ω such that

∥∥eAt
∥∥ ≤ K0e

ωt for t ≥ 0
[13].

The presence of an unpredictable solution in the dynamics of (4.1.2) is mentioned
in the next theorem.

Theorem 4.2 ([9]) If g(t) is an unpredictable function and the function f (x) is
Lipschitzian with a sufficiently small Lipschitz constantLf such thatK0Lf−ω < 0,
then system (4.1.2) possesses a unique uniformly exponentially stable unpredictable
solution.

In the next two sections we will consider unpredictable functions whose domain
consists of all integers, that is, unpredictable sequences.

4.2 An Unpredictable Sequence of the Symbolic Dynamics

In this section, we will show the presence of an unpredictable point in the symbolic
dynamics [12, 21] with a distinguishing feature.

Let us consider the space Σ2 = {
s = (s0s1s2 . . .) | sj = 0 or 1

}
of infinite

sequences of 0’s and 1’s with the metric

d(s, t) =
∞∑

k=0

|sk − tk|
2k

,

where s = (s0s1s2 . . .), t = (t0t1t2 . . .) ∈ Σ2. The Bernoulli shift σ : Σ2 → Σ2
is defined as σ(s0s1s2 . . .) = (s1s2s3 . . .). The map σ is continuous and Σ2 is a
compact metric space [12, 21].

In the book [12], the sequence

s∗ = ( 0 1︸︷︷︸
1 blocks

| 00 01 10 11︸ ︷︷ ︸
2 blocks

| 000 001 010 011 . . .︸ ︷︷ ︸
3 blocks

| . . .), (4.2.3)

was considered, which is constructed by successively listing all blocks of 0’s and
1’s of length n, then length n + 1, etc. In the proof of the next lemma, an element
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s∗∗ = (s∗∗
0 s

∗∗
1 s

∗∗
2 . . .) of Σ2 will be constructed in a similar way to s∗ with the only

difference that the order of the blocks will be chosen in a special way. An extension
of the constructed sequence to the left-hand side will also be provided.

Lemma 4.2.1 ([10]) For each increasing sequence {mn} of positive integers, there
exist a sequence s∗∗ ∈ Σ2 and sequences {αn} , {βn} of positive integers, both of
which diverge to infinity, such that

(i) d(σαn+r (s∗∗), σ r (s∗∗)) ≤ 2−mn, r = −n,−n+ 1, . . . , n,
(ii) d(σαn+βn(s∗∗), σβn(s∗∗)) ≥ 1 for each n ∈ N.

Proof Fix an arbitrary increasing sequence {mn} of positive integers. For each n ∈
N, define αn = ∑n+mn

k=1 k2k and βn = n + mn + 1. Clearly, both of the sequences
{αn} and {βn} diverge to infinity. We will construct a sequence s∗∗ ∈ Σ2 such that
the inequalities (i) and (ii) are valid.

First of all, we choose the terms s∗∗
0 , s

∗∗
1 , . . . , s

∗∗
α1−1 by successively placing the

blocks of 0’s and 1’s in an increasing length, starting from the blocks of length
1 till the end of the ones with length m1 + 1. The order of the blocks with the
same length can be arbitrary without any repetitions. Let us take s∗∗

α1+k = s∗∗
k for

k = 0, 1, . . . , m1 + 1, i.e., the terms of the first block (s∗∗
α1
s∗∗
α1+1 · · · s∗∗

α1+m1+1) of
length m1 + 2 is chosen the same as the first m1 + 2 terms of the sequence s∗∗.
Moreover, we take the second block of lengthm1+2 in a such a way that its first term
s∗∗
α1+β1

is different from s∗∗
β1
. After that we continue placing the remaining blocks of

length m1 + 2 and the ones with length greater than m1 + 2 till the last block of
length m2 + 2, and again, the blocks of the same length can be in any order without
repetitions.

For each n ≥ 2, we set the last block of length mn + n such that s∗∗
αn−k = s∗∗

αk−k
for each k = 1, 2, . . . , n− 1. Then, the terms of the first block of length mn+n+ 1
are constituted by taking s∗∗

αn+k = s∗∗
k , k = 0, 1, . . . , mn + n.Moreover, the second

block of length mn + n+ 1 is chosen such that s∗∗
αn+βn �= s∗∗

βn
. Lastly, the remaining

blocks of 0’s and 1’s are successively placed similar to the case mentioned above
so that the lengths of the blocks in s∗∗ are in an increasing order and there are
no repetitions within the blocks of the same length. By this way the construction
of the sequence s∗∗ ∈ Σ2 is completed. We fix the extension of the sequence s∗∗
to the left by choosing σ−k(s∗∗)0 = s∗∗

αk−k, k ∈ N. For each n ∈ N, we have

σαn−n(s∗∗)k = σ−n(s∗∗)k, k = 0, 1, . . . , mn + 2n and σαn+βn(s∗∗)0 �= σβn(s∗∗)0
so that the inequalities (i) and (ii) are valid. �	

The technique presented in [12] can be used to show that the trajectory T (s∗∗) ={
σ i(s∗∗) : i ∈ Z

}
is dense in Σ2, i.e., Θs∗∗ = Σ2. By Lemma 2.2 in [8] any

sequence σ i(s∗∗), i ∈ Z, is an unpredictable point of the Bernoulli dynamics on
Σ2, and Σ2 is a quasi-minimal set. It implies from the last theorem that T (s∗∗)
is an unpredictable function on Z, i.e., an unpredictable sequence. According to
Theorem 3.1 presented in [8], the dynamics on Σ2 is Poincaré chaotic. Moreover,
there are infinitely many unpredictable sequences in the set.
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4.3 An Unpredictable Solution of the Logistic Map

In this section, we will demonstrate the presence of an unpredictable solution of the
equation

ηn+1 = Fμ(ηn), (4.3.4)

where Fμ(s) = μs(1 − s) is the logistic map.
The result is provided in the next theorem.

Theorem 4.3 ([10]) For each μ ∈ [3 + (2/3)1/2, 4] and sequence of positive
numbers δn → 0, there exists a solution {ηn} , n ∈ Z, of Eq. (4.3.4) such that

(i)
∣∣ηin+r − ηr

∣∣ < δn, r = −h0n,−h0n+ 1, . . . , h0n,

(ii)
∣∣ηin+jn − ηjn

∣∣ ≥ ε0 for each n ∈ N,

where ε0 is a positive number, h0 > 4 is a natural number, and {in} , {jn} are integer
valued sequences both of which diverge to infinity.

Proof Fix μ ∈ [3 + (2/3)1/2, 4] and a sequence {δn} of positive real numbers with
δn → 0 as n→ ∞. Take a neighborhoodU ⊂ [0, 1] of the point 1−1/μ.According
to Theorem 6 of paper [19], there exist a natural number h0 > 4 and a Cantor set
Λ ⊂ U such that the map Fh0

μ on Λ is topologically conjugate to the Bernoulli
shift σ on Σ2. Therefore, there exists a homeomorphism S : Σ2 → Λ such that
S ◦ σ = F

h0
μ ◦ S. Since S is uniformly continuous on Σ2, for each n ∈ N, there

exists a number δn > 0 such that for each s1, s2 ∈ Σ2 with d(s1, s2) < δn, we have∣∣η1 − η2
∣∣ < δn/μh0−1, where η1 = S(s1), η2 = S(s2).

Let {mn} be an increasing sequence of natural numbers such that 2−mn < δn
for each n ∈ N. According to Lemma 4.2.1, there exist a sequence s∗∗ ∈ Σ2 and
sequences {αn} , {βn} both of which diverge to infinity such that

d(σαn+r (s∗∗), σ r(s∗∗)) ≤ 2−mn, r = −n,−n+ 1, . . . , n,

and d(σαn+βn(s∗∗), σβn(s∗∗)) ≥ 1 for each n ∈ N.

Now, let {ηn} , n ∈ Z, be the solution of (4.3.4) with ηh0k = S(σ k(s∗∗)),
k ∈ Z. Since the inequality

∣∣Fμ(u1)− Fμ(u2)
∣∣ ≤ μ |u1 − u2| is valid for every

u1, u2 ∈ [0, 1], we have for each n ∈ N that
∣∣ηin+r − ηr

∣∣ < δn, r = −h0n,−h0n+
1, . . . , h0n, where in = h0αn. Besides, using the arguments presented in [11], one
can verify the existence of a positive number ε0 such that

∣∣ηin+jn − ηjn
∣∣ ≥ ε0,

n ∈ N, where jn = h0βn. �	
By the topological equivalence and results on Σ2 of the last section, one can

make several observations from the proved theorem. Any number ηn, n ∈ Z, is an
unpredictable point of the logistic map dynamics, and the Cantor set Λ mentioned
in the proof of Theorem 4.3 is a quasi-minimal set. Moreover, the sequence {ηn} is
unpredictable. By Theorem 3.1 mentioned in [8], the dynamics on the quasi-minimal
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set is Poincaré chaotic, and there are infinitely many unpredictable sequences in
the set. The last observation will be applied in the next section to construct an
unpredictable function.

4.4 An Unpredictable Function

In this section, we provide an example of an unpredictable function benefiting from
the dynamics of the logistic map (4.3.4).

Let us fix two different points d1 and d2 in R
p, and suppose that γ is a positive

number. Take a sequence {kn} of positive integers satisfying both of the inequalities

2−kn ≤ 1

2n
and e−γ kn ≤ γ

4 ‖d1 − d2‖ n for each n ∈ N. Fix μ ∈ [3 + (2/3)1/2, 4]

and a sequence {δn} of positive numbers such that δn ≤ 1

12 ‖d1 − d2‖ nkn , n ∈ N.

In a similar way to the items (i) and (ii) of Theorem 4.3, one can verify that there
exist a positive number ε0, a sequence {in} of even positive integers, a sequence {jn}
of positive integers, and a solution {ηn} , n ∈ Z, of the logistic map (4.3.4) such that
the inequalities

∣∣ηin+r − ηr
∣∣ ≤ δn, r = −2kn,−2kn + 1, . . . , kn − 1, (4.4.5)

and

∣∣ηin+jn − ηjn
∣∣ ≥ ε0 (4.4.6)

hold for each n ∈ N.

It is easy to observe that the constructed sequence {ηn} is unpredictable and
consequently, it generates a quasi-minimal set and Poincaré chaos similar to that
of the last section.

Now, consider the function φ : R → R
p defined as

φ(t) =
t∫

−∞
e−γ (t−s)ν(s)ds, (4.4.7)

where the function ν(t) is defined as

ν(t) =
{
d1, if ζ2j < t ≤ ζ2j+1, j ∈ Z,

d2, if ζ2j−1 < t ≤ ζ2j , j ∈ Z,

and the sequence
{
ζj
}
, j ∈ Z, of switching moments is defined through the

equation ζj = j + ηj for each j, in which
{
ηj
}

is the solution of (4.3.4)
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satisfying (4.4.5) and (4.4.6). The function φ(t) is bounded such that sup
t∈R

‖φ(t)‖ ≤
max {‖d1‖ , ‖d2‖}

γ
. Moreover, φ(t) is uniformly continuous since its derivative is

bounded.
In the proof of the following theorem, we will denote by (̂a, b] the oriented

interval such that (̂a, b] = (a, b] if a < b and (̂a, b] = (b, a] if a > b.

Theorem 4.4 ([10]) The function φ(t) is unpredictable.

Proof First of all, we will show that ρ(φin, φ) → 0 as n → ∞, where ρ is the
metric defined by Eq. (4.1.1). Let us fix an arbitrary natural number n. The functions
φ(in + s) and φ(s) satisfy the equation

φ(in + s)− φ(s) =
s∫

−∞
e−γ (s−u) (ν(in + u)− ν(u)) du.

It is worth noting that for each r ∈ Z both of the points ζr and ζin+r − in
belong to the interval (r, r + 1). Moreover, ‖ν(in + s)− ν(s)‖ = ‖d1 − d2‖ for

s ∈
∞⋃

r=−∞
̂(ζr , ζin+r − in], and ‖ν(in + s)− ν(s)‖ = 0, otherwise.

Since for each r = −2kn,−2kn + 1, . . . , kn − 1 the distance between the points
ζr and ζin+r − in are at most δn, one can verify for each s ∈ [−kn, kn] that

‖φ(in + s)− φ(s)‖ ≤
−2kn∫

−∞
e−γ (s−u) ‖ν(in + u)− ν(u)‖ du

+
kn−1∑

r=−2kn

∣∣∣∣

ζr∫

ζin+r−in
‖ν(in + u)− ν(u)‖ du

∣∣∣∣

≤ ‖d1 − d2‖
γ

e−γ kn + 3knδn ‖d1 − d2‖

≤ 1

2n
.

Hence, we have

ρ(φin, φ) =
∞∑

k=1

2−kρk(φin, φ) ≤
kn∑

k=1

2−kρk(φin, φ)+ 2−kn ≤ 1

n
.

The last inequality implies that ρ(φin, φ) → 0 as n → ∞, i.e., φ(t) is a Poisson
function.
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Now, let us show the existence of a positive number ε0 satisfying ε0 → 0 as
ε0 → 0 such that ρ(φin+jn , φjn) ≥ ε0 for each n ∈ N. For a fixed natural number
n, using the equations

φ(in + jn + s) = e−γ sφ(in + jn)+
s∫

0

e−γ (s−u)ν(in + jn + u)du

and

φ(jn + s) = e−γ sφ(jn)+
s∫

0

e−γ (s−u)ν(jn + u)du,

we obtain that

‖φ(in + jn + 1)− φ(jn + 1)‖ ≥
∥∥∥∥

ζjn−jn∫

ζin+jn−in−jn
e−γ (1−u)(d1 − d2)du

∥∥∥∥

−e−γ ‖φ(in + jn)− φ(jn)‖
≥ eγ ε0 −1

γ eγ
‖d1 −d2‖ −e−γ ‖φ(in + jn)− φ(jn)‖ .

Therefore, it can be verified for each k ∈ N that

sup
s∈[−k,k]

‖φ(in + jn + s)− φ(jn + s)‖ ≥ (eγ ε0 − 1) ‖d1 − d2‖
γ (1 + eγ ) . (4.4.8)

Let us denote

ε0 = min

{
1,
(eγ ε0 − 1) ‖d1 − d2‖

γ (1 + eγ )
}
.

It can be confirmed by means of inequality (4.4.8) that ρk(φin+jn , φjn) ≥ ε0, k ∈ N.

Thus, ρ(φin+jn , φjn) ≥ ε0 for each n ∈ N. Consequently, the function φ(t) is
unpredictable. �	

One of the possible ways useful for applications to generate unpredictable
functions from a given one is provided in the next theorem.

Theorem 4.5 ([10]) Let φ : R → H be an unpredictable function, where H is a
bounded subset of Rp. If h : H → R

q is a function such that there exist positive
numbers L1 and L2 satisfying L1 ‖u− u‖ ≤ ‖h(u)− h(u)‖ ≤ L2 ‖u− u‖ for all
u, u ∈ H , then the function ψ : R → R

q defined as ψ(t) = h(φ(t)) is also
unpredictable.
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Proof Since φ(t) is an unpredictable function, there exist a positive number
ε0 and sequences {tn} and {τn} , both of which diverge to infinity, such that
lim
n→∞ ρ(φtn, φ) = 0 and ρ(φtn+τn , φτn) ≥ ε0 for each n ∈ N.

Firstly, we will show that lim
n→∞ ρ(ψtn, ψ) = 0. Fix an arbitrary positive number

ε, and let us denote α = max {1, L2} . There exists a natural number n0 such that
for all n ≥ n0 the inequality ρ(φtn, φ) < ε/α is valid. For each k ∈ N, one can
confirm that

ρk(ψtn, ψ) = min

{
1, sup
s∈[−k,k]

‖h(φ(tn + s))− h(φ(s))‖
}

≤ min

{
1, L2 sup

s∈[−k,k]
‖φ(tn + s)− φ(s)‖

}

≤ αρk(φtn, φ).

Therefore, it can be verified for each n ≥ n0 that

ρ(ψtn, ψ) ≤ αρ(φtn, φ) < ε.

Hence, lim
n→∞ ρ(ψtn, ψ) = 0.

Next, we will show the existence of a positive number ε0 such that
ρ(ψtn+τn , ψτn) ≥ ε0 for each n ∈ N. Denote β = min {1, L1} . For each k ∈ N, we
have that

ρk(ψtn+τn , ψτn) = min

{
1, sup
s∈[−k,k]

‖h(φ(tn + τn + s))− h(φ(τn + s))‖
}

≥ min

{
1, L1 sup

s∈[−k,k]
‖φ(tn + τn + s)− φ(τn + s)‖

}

≥ βρk(φtn+τn , φτn).

Thus, the inequality

ρ(ψtn+τn , ψτn) ≥ βρ(φtn+τn , φτn) ≥ ε0

holds for each n ∈ N, where ε0 = βε0. Consequently, the function ψ(t) is
unpredictable. �	

A corollary of Theorem 4.5 is as follows.

Corollary 4.1 ([10]) If φ : R → H is an unpredictable function, where H is a
bounded subset of Rp, then the function ψ : R → R

p defined as ψ(t) = Pφ(t),

where P is a constant, nonsingular, p×p matrix, is also an unpredictable function.
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Proof The function h : H → R
p defined as h(u) = Pu satisfies the inequality

L1 ‖u1 − u2‖ ≤ ‖h(u1)− h(u2)‖ ≤ L2 ‖u1 − u2‖ ,

for u1, u2 ∈ H with L1 = 1/
∥∥P−1

∥∥ and L2 = ‖P ‖ . Therefore, by Theorem 4.5,
the function ψ(t) is unpredictable. �	

In the next section, the existence of Poincaré chaos in the dynamics of differential
equations will be presented.

4.5 Unpredictable Solutions of Differential Equations

Consider the differential equation

x′(t) = −3

2
x(t)+ ν(t), (4.5.9)

where the function ν(t) is defined as

ν(t) =
{

0.7, if ζ2j < t ≤ ζ2j+1, j ∈ Z,

−0.4, if ζ2j−1 < t ≤ ζ2j , j ∈ Z.
(4.5.10)

In (4.5.10), the sequence
{
ζj
}

is defined as ζj = j + ηj , j ∈ Z, and
{
ηj
}

is the
unpredictable sequence determined in Sect. 4.4 for the map (4.3.4) with μ = 3.91.

According to Theorem 4.4,

ψ(t) =
t∫

−∞
e−3(t−s)/2ν(s)ds

is a globally asymptotically stable unpredictable solution of (4.5.9). We represent a
solution of (4.5.9) corresponding to the initial data x(ζ0) = 0.3, ζ0 = 0.4 in Fig. 4.1.

0 10 20 30 40 50 60 70 80 90 100

−0.2

0

0.2

0.4

t

x

Fig. 4.1 Chaotic behavior in equation (4.5.9). The figure confirms that Poincaré chaos takes place
in the dynamics of equation (4.5.9)
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The choice of the coefficient μ = 3.91 and the initial value ζ0 = 0.4 is approved by
the shadowing analysis in paper [14]. The simulation seen in Fig. 4.1 supports the
result of Theorem 4.4 such that the Eq. (4.5.9) behaves chaotically.

Next, we will demonstrate the chaotic behavior of a multidimensional system of
differential equations.

Let us take into account the system

x′(t) = Ax(t)+ ν(t), (4.5.11)

where x(t) = (x1(t), x2(t), x3(t)) ∈ R
3, A =

⎛

⎝
−3 0 −1
−2 1 −2
−2 4 −4

⎞

⎠ , and the function

ν : R → R
3 is defined as

ν(t) =
{
(−1, 1, 2), if ζ2j < t ≤ ζ2j+1, j ∈ Z,

(3, 1,−1), if ζ2j−1 < t ≤ ζ2j , j ∈ Z.
(4.5.12)

Similarly to equation (4.5.10), in (4.5.12), the sequence
{
ζj
}

of switching moments
is defined through the equation ζj = j + ηj , where

{
ηj
}

is the unpredictable
sequence determined in Sect. 4.4 for the map (4.3.4) with μ = 3.86.

By means of the transformation y = P−1x, where P =
⎛

⎝
1 2 1
0 1 −1

−1 0 −2

⎞

⎠ , system

(4.5.11) can be written as

y′(t) = Dy(t)+ ν(t), (4.5.13)

where D =
⎛

⎝
−2 0 0
0 −3 0
0 0 −1

⎞

⎠ , and

ν(t) =
{
(0, 0,−1), if ζ2j < t ≤ ζ2j+1, j ∈ Z,

(1, 1, 0), if ζ2j−1 < t ≤ ζ2j , j ∈ Z.

System (4.5.13) admits an unpredictable solution ψ(t) in accordance with The-
orem 4.4. Therefore, Corollary 4.1 implies that ψ(t) = Pψ(t) is an unpredictable
solution of (4.5.11).

To demonstrate the chaotic behavior, we depict in Fig. 4.2 the x2-coordinate of
the solution of (4.5.11) corresponding to the initial data x1(ζ0) = 0.17, x2(ζ0) =
0.51, x3(ζ0) = 0.48, ζ0 = 0.4. The coefficient μ = 3.86 and the initial value
ζ0 = 0.4 are considered for shadowing in [14]. The chaotic behavior is also valid
in the remaining coordinates, which are not just pictured here. Moreover, Fig. 4.3
shows the 3-dimensional chaotic trajectory of the same solution. It is worth noting
that the chaotic solutions of (4.5.11) take place inside the compact region



4.5 Unpredictable Solutions of Differential Equations 53
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Fig. 4.2 The x2-coordinate of the chaotic solution of system (4.5.11)

Fig. 4.3 Chaotic trajectory
of system (4.5.11). The figure
reveals the presence of
Poincaré chaos in
system (4.5.11)
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H = {(x1, x2, x3) ∈ R
3 | − 1 ≤ x1 ≤ 1.1,

0.3 ≤ x2 ≤ 1, −0.4 ≤ x3 ≤ 1.9
}
. (4.5.14)

Figures 4.2 and 4.3 support the results of Theorem 4.4 and Corollary 4.1 such that
the represented solution behaves chaotically.

Now, we will demonstrate the extension of unpredictable solutions and Poincaré
chaos. For that purpose, we consider the system

z′(t) = Bz(t)+ f (z(t))+ h(ψ(t)), (4.5.15)

where z(t) = (z1(t), z2(t), z3(t)) ∈ R
3, B =

⎛

⎝
−3 2 −1
0 −5/2 0
2 −11/2 −1

⎞

⎠ , and ψ(t) is the

unpredictable solution of (4.5.11). In system (4.5.15), the function f : R3 → R
3,

f (u) = (f1(u), f2(u), f3(u)), is defined as f1(u) = 0.03 sin u1, f2(u) = 0.04u2
2

for |u2| ≤ 1, f2(u) = 0.04 for |u2| > 1, f3(u) = 0.06 tanh u3, and the function
h : R3 → R

3, h(u) = (h1(u), h2(u), h3(u)), is defined as h1(u) = 2 arctan(u1),

h2(u) = u3 + 0.1u3
3, h3(u) = 0.5u2

2, where u = (u1, u2, u3).
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The eigenvalues of the matrix B are −5/2, −2 ± i, and eBt = PeJ tP−1, where

J =
⎛

⎝
−5/2 0 0

0 −2 −1
0 1 −2

⎞

⎠ and P =
⎛

⎝
1 0 −1

1/2 0 0
1/2 1 1

⎞

⎠ . One can verify that
∥∥eBt

∥∥ ≤

K0e
−ωt , t ≥ 0, with K0 = ‖P ‖ ∥∥P−1

∥∥ ≈ 7.103 and ω = 2. The function f (u)
is bounded and it satisfies the Lipschitz condition ‖f (u)− f (u)‖ ≤ Lf ‖u− u‖ ,
u, u ∈ R

3, with Lf = 0.08 such that the inequality K0Lf − ω < 0 is valid.
On the other hand, the function h(u) satisfies the conditions of Theorem 4.5 with

L1 = 0.3 and L2 = 2.083 inside the region H defined by (4.5.14) so that h(x(t)) is
an unpredictable function if x(t) is an unpredictable function. Therefore, according
to Theorem 4.2, system (4.5.15) possesses a unique uniformly exponentially stable
unpredictable solution.

Let us denote by θ(t) the solution of (4.5.11) whose trajectory is shown in
Fig. 4.3. To demonstrate the extension of Poincaré chaos, we take into account the
system

z′(t) = Bz(t)+ f (z(t))+ h(θ(t)). (4.5.16)

We depict in Fig. 4.4 the z3-coordinate of the solution of (4.5.16) with z1(ζ0) =
0.53, z2(ζ0) = 0.57, z3(ζ0) = −1.51, where ζ0 = 0.4. Moreover, the trajectory
of the same solution is represented in Fig. 4.5. The simulations shown in Figs. 4.4
and 4.5 support Theorem 4.2 such that the Poincaré chaos of system (4.5.11) is
extended by (4.5.16).

4.6 Notes

In Chap. 3, an unpredictable function was defined as an unpredictable point of the
Bebutov dynamical system. In the present chapter, we have obtained samples of
unpredictable functions and sequences, which are in the basis of Poincaré chaos.
The unpredictable sequences are utilized in the construction of piecewise continuous
functions, and such functions in their own turn are utilized for the construction
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Fig. 4.4 The z3-coordinate of the chaotic solution of system (4.5.16). The figure manifests the
presence of Poincaré chaos in system (4.5.16)
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Fig. 4.5 Chaotic trajectory
of system (4.5.16). It is seen
in the figure that the Poincaré
chaos of system (4.5.11) is
extended by (4.5.16)
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of continuous unpredictable functions. Thus, one can claim that the basics of
the new theory of unpredictable functions have been lied in the present chapter.
Automatically, the results concerning the analyses of functions and sequences make
it possible to formulate new problems of the existence of unpredictable solutions for
differential equations of different types as well as for discrete and hybrid systems
of equations, similar to the results for periodic, almost periodic, and other types of
solutions. These are all strong arguments for the insertion of chaos research to the
theory of differential equations. In addition to the role of the present chapter for
the theory of differential equations, the concept of unpredictable points and orbits
introduced in our studies [8, 9] and the additional results of the present chapter will
bring the chaos research to the scope of the classical theory of dynamical systems.
Moreover, not less importantly, these concepts extend the boundaries of the theory
of dynamical systems significantly, since we are dealing with a new type of motions,
which are behind and next to Poisson stable trajectories. From another point of
view, the results of this chapter request the development of techniques to determine
whether a point is an unpredictable one in concrete dynamics. For that purpose one
can apply the results which exist for the indication of Poisson stable points [20].
One more interesting study depending on the present results can be performed if
one tries to find a numerical approach for the recognition of unpredictable points.
The results of this chapter are published in paper [10].
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Chapter 5
Unpredictability in Topological Dynamics

In this chapter, the topology of uniform convergence on compact sets is applied to
define unpredictable functions. The unpredictable sequence is defined as a specific
unpredictable function on the set of integers. The definitions are convenient to
be verified as solutions of differential and discrete equations. The topology is
metrizable and easy for applications with integral operators. To demonstrate the
effectiveness of the approach, the existence and uniqueness of the unpredictable
solution for a delay differential equation is proved as well as for quasilinear discrete
systems. As a corollary of the theorem, a similar assertion for a quasilinear ordinary
differential equation is formulated. The results are demonstrated numerically, and
an application to Hopfield neural networks is provided. In particular, Poincaré chaos
near periodic orbits is observed. The completed research contributes to the theory
of chaos as well as to the theory of differential and discrete equations, considering
unpredictable solutions.

5.1 Introduction

In this chapter, another step in the adaptation of unpredictable functions to the
theory of differential equations has been made. We apply the uniform convergence
on compact subsets of the real axis to determine unpredictable functions for two
reasons. The first reason is that the topology is easily metrizable, in particular, to
the metric for Bebutov dynamical system [28], and consequently, the unpredictable
functions and solutions immediately imply the presence of Poincaré chaos according
to our results in [5]. The second one is the easy verification of the convergence.
Thus, the present chapter is useful for the theory of differential equations as well as
chaos researches. For the construction of unpredictable functions we have applied
the results on the equivalence of discrete dynamics obtained in papers [29, 30].
Moreover, an application to Hopfield neural networks [17, 23] is provided.
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In the instrumental sense, discreteness has been the main object in chaos
investigation. To check this, it is sufficient to recall definitions of chaos [10, 22, 32],
which are based on sequences and maps, as well as Smale horseshoe and logistic
maps, Bernoulli shift [32], which are in the core of the chaos theory. One can
say that stroboscopic observation of a motion was the single way to indicate the
irregularity in a continuous dynamics. The definitions of chaos for continuous
dynamics, which are not related to discreteness [1–4], are requested for embedding
the research to the theory of differential equations. The research as well as the
origin of the chaos [25] gave us strong arguments for the development of motions in
classical dynamical systems theory [9] by proceeding behind Poisson stable points
to unpredictable points [5]. Then, the dynamics has been specified such that a
function that is bounded on the real axis is an unpredictable point [6, 7]. In the papers
[6, 7], we have demonstrated that unpredictable functions are easy to be analyzed
as solutions of differential equations. This paradigm is not completed, if one does
not consider discrete equations. Therefore, in this chapter we also deliver discrete
analogues for unpredictable functions, calling them unpredictable sequences, and
prove assertions on the existence and uniqueness of unpredictable solutions of
discrete equations for the first time in the literature. The results can be useful for
applications and theoretical analyses, in particular, for the modern development of
computer technologies, software, and robotics [11, 31].

5.2 Quasilinear Delay Differential Equations

Let us introduce the following definition.

Definition 5.1 ([8]) A uniformly continuous and bounded function ϑ : R → R
m is

unpredictable if there exist positive numbers ε0, δ and sequences {tn} , {un} both of
which diverge to infinity such that ‖ϑ(t + tn)− ϑ(t)‖ → 0 as n → ∞ uniformly
on compact subsets of R and ‖ϑ(t + tn)− ϑ(t)‖ ≥ ε0 for each t ∈ [un− δ, un+ δ]
and n ∈ N.

To create Poincaré chaos [5], uniform continuity is not a necessary condition for
an unpredictable function ϑ(t), and instead of the condition ‖ϑ(t + tn)− ϑ(t)‖ ≥
ε0 for each t ∈ [un − δ, un + δ] and n ∈ N, one can request that
‖ϑ(tn + un)− ϑ(un)‖ ≥ ε0 for each n ∈ N. For the needs of verification of
theorems on the existence of unpredictable solutions of differential equations we
apply Definition 5.1, but for the future studies the following definitions may also be
beneficial.

Definition 5.2 ([8]) A continuous and bounded function ϑ : R → R
m is

unpredictable if there exists a positive number ε0 and sequences {tn} , {un} both of
which diverge to infinity such that ‖ϑ(t + tn)− ϑ(t)‖ → 0 as n → ∞ uniformly
on compact subsets of R and ‖ϑ(tn + un)− ϑ(un)‖ ≥ ε0 for each n ∈ N.
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Definition 5.3 ([8]) A continuous and bounded function ϑ : R → R
m is

unpredictable if there exist a positive number ε0 and sequences {tn} , {un} both
of which diverge to infinity such that ‖ϑ(tn)− ϑ(0)‖ → 0 as n → ∞ and
‖ϑ(tn + un)− ϑ(un)‖ ≥ ε0 for each n ∈ N.

The main object of the present section is the following system of delay
differential equations:

x′(t) = Ax(t)+ f (x(t − τ))+ g(t), (5.2.1)

where τ is a positive number, the eigenvalues of the matrixA ∈ R
m×m have negative

real parts, f : Rm → R
m is a continuous function, and g : R → R

m is a uniformly
continuous and bounded function. Our purpose is to prove that system (5.2.1)
possesses a unique unpredictable solution which is uniformly exponentially stable,
provided that the function g(t) is unpredictable in accordance with Definition 5.1.

In the remaining parts of the paper, we will make use of the usual Euclidean norm
for vectors and the norm induced by the Euclidean norm for square matrices.

Since the eigenvalues of the matrix A in system (5.2.1) have negative real parts,
there exist numbers K ≥ 1 and ω > 0 such that

∥∥eAt
∥∥ ≤ Ke−ωt for t ≥ 0.

The following conditions are required.

(C1) There exists a positive numberMf such that sup
x∈Rm

‖f (x)‖ ≤ Mf ;
(C2) There exists a positive number Lf such that ‖f (x1)− f (x2)‖ ≤

Lf ‖x1 − x2‖ for all x1, x2 ∈ R
m;

(C3) ω − 2KLf eωτ/2 > 0.

The following theorem is concerned with the unpredictable solution of system
(5.2.1).

Theorem 5.1 ([8]) Suppose that conditions (C1)–(C3) are valid. If the function
g(t) is unpredictable, then system (5.2.1) possesses a unique uniformly exponen-
tially stable unpredictable solution.

Proof Under the conditions (C1)–(C3), one can verify using the techniques for
delay differential equations [12] that there exists a unique solution φ(t) of (5.2.1)
which is bounded on the whole real axis and satisfies the relation

φ(t) =
∫ t

−∞
eA(t−s)[f (φ(s − τ))+ g(s)]ds.

It is clear that sup
t∈R

‖φ(t)‖ ≤ Mφ, where Mφ = K(Mf +Mg)
ω

and Mg =
sup
t∈R

‖g(t)‖ . According to the results of [12], the solution φ(t) is uniformly

exponentially stable. We will show that the solution φ(t) is unpredictable.
Since g(t) is an unpredictable function, there exist a positive number

ε0 and sequences {tn} , {un} both of which diverge to infinity such that
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‖g(t + tn)− g(t)‖ → 0 as n → ∞ on compact subsets of R, and
‖g(tn + un)− g(un)‖ ≥ ε0 for each n ∈ N.

Fix an arbitrary ε > 0, and denote R1 = 2ωMφK

ω − 2KLf eωτ/2
, R2 = K

ω −KLf .
Condition (C3) implies that both R1 and R2 are positive numbers. Take a positive

number γ satisfying γ <
1

R1 + R2
, and suppose that E is a positive number such

that E ≥ 2

ω
ln

(
1

γ ε

)
.

Let α and β be fixed real numbers with β > α. There exists a natural
number n0 such that for each t ∈ [α − E, β] and each n ≥ n0 the inequality
‖g(t + tn)− g(t)‖ < γε holds.

Fix an arbitrary natural number n ≥ n0, and define the function ξ(t) = φ(t) −
φ(t + tn). This function satisfies the delay equation

ξ ′(t) = Aξ(t)+ f (ξ(t − τ)+ φ(t + tn − τ))
−f (φ(t + tn − τ))+ g(t)− g(t + tn). (5.2.2)

By applying arguments of equivalent integral equations for the last system, one
can find that for t ≥ α − E, ξ(t) satisfies the relation

ξ(t) = eA(t−α+E)[φ(α − E)− φ(tn + α − E)]

+
∫ t

α−E
eA(t−s)[f (ξ(s − τ)+ φ(s + tn − τ))− f (φ(s + tn − τ))]ds

+
∫ t

α−E
eA(t−s)[g(s)− g(s + tn)]ds.

Let us denote by C the set of continuous functions ξ(t) defined on R such that

‖ξ(t)‖ ≤ R1e
−ω(t−α+E)/2 + R2γ ε

for α − E − τ ≤ t ≤ β and ‖ξ‖∞ ≤ 2K

(
Mφ + Mf +Mg

ω

)
, where ‖ξ‖∞ =

sup
t∈R

‖ξ(t)‖.

Define on C the operator Π by

Πξ(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ(t)− φ(t + tn), t < α − E,
eA(t−α+E) [φ(α − E)− φ(tn + α − E)] +

∫ t

α−E
eA(t−s)[g(s)− g(s + tn)]ds

+
∫ t

α−E
eA(t−s)[f (ξ(s − τ)+ φ(s + tn − τ))− f (φ(s + tn − τ))]ds, t ≥ α − E.
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First of all, we will show thatΠ(C ) ⊆ C . If ξ(t) belongs to C , then we have for
t ∈ [α − E, β] that

‖Πξ(t)‖ ≤ Ke−ω(t−α+E) ‖φ(α − E)− φ(tn + α − E)‖ +
∫ t

α−E
Kγ εe−ω(t−s)ds

+
∫ t

α−E
KLf e

−ω(t−s) ‖ξ(s − τ)‖ ds

<

(

2MφK + 2KLfR1e
ωτ/2

ω

)

e−ω(t−α+E)/2 + Kγε(1 + LfR2)

ω

= R1e
−ω(t−α+E)/2 + R2γ ε.

The inequality ‖Πξ(t)‖ < R1e
−ω(t−α+E)/2 + R2γ ε is valid also for t ∈ [α − E −

τ, α − E) since R1 > 2Mφ. On the other hand, if ξ(t) belongs to C , then one can

confirm that ‖Πξ‖∞ ≤ 2K

(
Mφ + Mf +Mg

ω

)
. Hence, Π(C ) ⊆ C .

Now, let us take two functions ξ(t), ξ(t) ∈ C . Clearly, Πξ(t) −Πξ(t) = 0 for
each t < α − E. It can be verified for t ≥ α − E that

∥∥Πξ(t)−Πξ(t)∥∥ ≤
∫ t

α−E
KLf e

−ω(t−s) ∥∥ξ(s − τ)− ξ(s − τ)∥∥ ds

≤ KLf

ω

(
1 − e−ω(t−α+E)

)
sup

t≥α−E−τ
∥∥ξ(t)− ξ(t)∥∥ .

The last inequality yields
∥∥Πξ −Πξ∥∥∞ ≤ KLf

ω

∥∥ξ − ξ∥∥∞ . Thus, the operator

Π is contractive by means of condition (C3).
According to the uniqueness of solutions for (5.2.2), ξ(t) = φ(t)− φ(t + tn) is

the unique fixed point of the operator Π. Consequently, the sequence ξk(t), ξk+1 =
Π(ξk), k = 0, 1, 2, . . . , where

ξ0(t) =
{
φ(t)− φ(t + tn), t < α − E,
φ(α − E)− φ(α − E + tn), t ≥ α − E,

which belongs to C , is converging to φ(t)− φ(t + tn) on R. Therefore,

‖φ(t + tn)− φ(t)‖ ≤ R1e
ω(t−α+E)/2 + R2γ ε

for t ∈ [α − E, β].
Since the number E is sufficiently large such that E ≥ 2

ω
ln

(
1

γ ε

)
, we have for

each t ∈ [α, β] that



62 5 Unpredictability in Topological Dynamics

‖φ(t + tn)− φ(t)‖ ≤ (R1 + R2)γ ε < ε.

Hence, ‖φ(t + tn)− φ(t)‖ → 0 as n → ∞ uniformly on the compact interval
[α, β].

In the remaining part of the proof, we will show the existence of a sequence {un} ,
un → ∞ as n→ ∞, and positive numbers ε0, δ such that ‖φ(t + tn)− φ(t)‖ ≥ ε0
for t ∈ [un − δ, un + δ].

Since the function g(t) is uniformly continuous, there exists a positive number
δ̃, which is independent of tn and un, n ∈ N, such that both of the inequalities

‖g(t + tn)− g(tn + un)‖ ≤ ε0

4
√
m

and

‖g(t)− g(un)‖ ≤ ε0

4
√
m

hold for every t ∈ [un − δ̃, un + δ̃] and n ∈ N.

Fix an arbitrary natural number n, and suppose that g(t) = (g1(t), g2(t), . . . , gm(t)),

where each gk(t), 1 ≤ k ≤ m, is a real valued function. One can confirm that there
exists an integer jn, 1 ≤ jn ≤ m, such that

∣∣gjn(tn + un)− gjn(un)
∣∣ ≥ ε0√

m
.

Therefore, using the last inequality, we obtain for t ∈ [un − δ̃, un + δ̃] that

∣∣gjn(t + tn)− gjn(t)
∣∣ ≥ ∣∣gjn(tn + un)− gjn(un)

∣∣

− ∣∣gjn(t + tn)− gjn(tn + un)
∣∣

− ∣∣gjn(t)− gjn(un)
∣∣

≥ ε0

2
√
m
. (5.2.3)

There exist numbers sn1 , s
n
2 , . . . , s

n
m ∈

[
un − δ̃, un + δ̃

]
such that

∥∥∥∥∥

∫ un+δ̃

un−δ̃
(g(s + tn)− g(s)) ds

∥∥∥∥∥
= 2̃δ

[
m∑

i=1

(
gi(s

n
i + tn)− gi(sni )

)2
]1/2

.

Accordingly, the inequality (5.2.3) implies that
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∥∥∥∥∥

∫ un+δ̃

un−δ̃
(g(s + tn)− g(s)) ds

∥∥∥∥∥
≥ 2̃δ

∣∣∣gjn(s
n
jn

+ tn)− gjn(snjn)
∣∣∣ ≥ δ̃ε0√

m
.

Now, using the relation

φ
(
tn + un + δ̃)− φ (un + δ̃) = φ

(
tn + un − δ̃)− φ (un − δ̃)

+
∫ un+δ̃

un−δ̃
A[φ(s + tn)− φ(s)]ds

+
∫ un+δ̃

un−δ̃
[f (φ(s + tn − τ))− f (φ(s − τ))]ds

+
∫ un+δ̃

un−δ̃
[g(s + tn)− g(s)]ds,

one can verify that

∥∥φ
(
tn + un + δ̃)− φ (un + δ̃)∥∥ ≥ δ̃ε0√

m
− (1 + 2̃δ ‖A‖) sup

t∈[un−δ̃,un+δ̃]
‖φ(t + tn)− φ(t)‖

−2̃δLf sup
t∈[un−δ̃−τ,un+δ̃−τ]

‖φ(t + tn)− φ(t)‖ .

Hence, we have

sup
t∈[un−δ̃−τ,un+δ̃]

‖φ(t + tn)− φ(t)‖ ≥ δ̃ε0

2
√
m
(
1 + δ̃ ‖A‖ + δ̃Lf

) .

Let un be a point that belongs to the interval
[
un − δ̃ − τ, un + δ̃

]
satisfying

sup
t∈[un−δ̃−τ,un+δ̃]

‖φ(t + tn)− φ(t)‖ = ‖φ(tn + un)− φ(un)‖ .

Define the numbers

ε0 = δ̃ε0

4
√
m
(
1 + δ̃ ‖A‖ + δ̃Lf

)

and

δ = δ̃ε0

8
√
m
(
1 + δ̃ ‖A‖ + δ̃Lf

) (
Mφ ‖A‖ +MφLf +Mg

) .
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If t belongs to the interval [un − δ, un + δ], then it can be obtained that

‖φ(t + tn)− φ(t)‖ ≥ ‖φ(tn + ηn)− φ(ηn)‖ −
∣∣∣∣

∫ t

ηn

‖A‖ ‖φ(s + tn)− φ(s)‖ ds
∣∣∣∣

−
∣∣∣∣

∫ t

ηn

Lf ‖φ(s + tn − τ)− φ(s − τ)‖ ds
∣∣∣∣

−
∣∣∣∣

∫ t

ηn

‖g(s + tn)− g(s)‖ ds
∣∣∣∣

≥ δ̃ε0

2
√
m
(
1 + δ̃ ‖A‖ + δ̃Lf

) − 2δ
(
Mφ ‖A‖ +MφLf +Mg

)

= ε0.

Hence, ‖φ(t + tn)− φ(t)‖ ≥ ε0 for each t from the intervals [un − δ, un + δ],
n ∈ N. Clearly, un → ∞ as n → ∞. Consequently, the bounded solution φ(t) is
unpredictable. �	
Remark 5.1 The result of Theorem 5.1 is valid also for the case τ = 0. More
precisely, if (C1), (C2) are valid and ω −KLf > 0, then the system

x′(t) = Ax(t)+ f (x(t))+ g(t)

possesses a unique uniformly exponentially stable unpredictable solution provided
that g(t) is an unpredictable function.

5.3 Quasilinear Discrete Equations

The definition of an unpredictable sequence is as follows.

Definition 5.4 ([8]) A bounded sequence {κi} , i ∈ Z, in R
p is called unpredictable

if there exist a positive number ε0 and sequences {ζn} , {ηn}, n ∈ N, of positive
integers both of which diverge to infinity such that

∥∥κi+ζn − κi
∥∥ → 0 as n → ∞

for each i in bounded intervals of integers and
∥∥κζn+ηn − κηn

∥∥ ≥ ε0 for each n ∈ N.

Definition 5.4 is of main use in the present section. It is requested by the method
of the proof. Nevertheless, in future analyses, there may be needs for the following
other definition, which can be considered as an analogue of Definition 5.3.

Definition 5.5 ([8]) A bounded sequence {κi} , i ∈ Z, in R
p is called unpredictable

if there exist a positive number ε0 and sequences {ζn} , {ηn}, n ∈ N, of positive
integers both of which diverge to infinity such that

∥∥κζn − κ0
∥∥→ 0 as n→ ∞ and∥∥κζn+ηn − κηn

∥∥ ≥ ε0 for each n ∈ N.
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It is worth noting that the topologies in Definitions 5.1 and 5.4 are metrizable
[28]. Consequently, the existence of an unpredictable sequence in the sense of
Definition 5.4 indicates the presence of Poincaré chaos. Throughout the section, an
unpredictable sequence and an unpredictable solution are understood as mentioned
in Definition 5.4.

In this section, we will consider the following discrete equation:

zi+1 = Bzi + h(zi)+ ψi, (5.3.4)

where i ∈ Z, B ∈ R
p×p is a nonsingular matrix, h : Rp → R

p is a continuous
function, and {ψi} , i ∈ Z, is an unpredictable sequence.

The following assumptions on Eq. (5.3.4) are required.

(C4) There exists a positive numberMh such that sup
x∈Rp

‖h(x)‖ ≤ Mh;
(C5) There exists a positive number Lh such that ‖h(x)− h(y)‖ ≤ Lh ‖x − y‖ for

all x, y ∈ R
p;

(C6) ‖B‖ + Lh < 1.

According to the results of [21], if conditions (C4)–(C6) hold, then Eq. (5.3.4)
possesses a unique bounded solution {ϕi}, i ∈ Z, which satisfies the relation

ϕi =
i∑

j=−∞
Bi−j

(
h(ϕj−1)+ ψj−1

)
. (5.3.5)

One can show under the same conditions that the bounded solution attracts all other
solutions of (5.3.4). More precisely, the inequality

‖zi − ϕi‖ ≤ (‖B‖ + Lh)(i−i0)
∥∥∥z0 − ϕi0

∥∥∥

is valid for all i ≥ i0, where {zi}, i ∈ Z, is a solution of (5.3.4) with zi0 = z0 for
some integer i0 and z0 ∈ R

p.
The following theorem is concerned with the existence of an unpredictable

solution of the discrete equation (5.3.4).

Theorem 5.2 ([8]) The bounded solution {ϕi} , i ∈ Z, of Eq. (5.3.4) is unpre-
dictable under the conditions (C4)–(C6).

Proof Fix an arbitrary positive number ε, and suppose that γ is a positive number
satisfying

γ ≤
[

1

1 − ‖B‖ − Lh + 2(Mh +Mψ)
1 − ‖B‖

]−1

.

Let i1 and i2 be integers such that i2 > i1, and take a natural number E with
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E ≥ ln(γ ε)

ln(‖B‖ + Lh) − 1. (5.3.6)

Since {ψi} , i ∈ Z, is an unpredictable sequence, there exist a positive number ε0
and sequences {ζn} , {ηn}, n ∈ N, of positive integers, both of which diverge to
infinity, such that

∥∥ψi+ζn − ψi
∥∥ → 0 as n → ∞ for each i with i1 − E − 1 ≤ i ≤

i2 − 1 and
∥∥ψζn+ηn − ψηn

∥∥ ≥ ε0 for each n ∈ N.

First of all, we will show that
∥∥ϕi+ζn − ϕi

∥∥ → 0 as n → ∞ for each i with
i1 ≤ i ≤ i2. There exists a natural number n0, independent of i, such that for each
n ≥ n0 the inequality

∥∥ψi+ζn − ψi
∥∥ < γε is valid whenever i1−E−1 ≤ i ≤ i2−1.

Fix an arbitrary integer n ≥ n0. One can obtain using the relation (5.3.5) that

ϕi+ζn − ϕi =
i∑

j=−∞
Bi−j

(
h(ϕj+ζn−1)− h(ϕj−1)+ ψj+ζn−1 − ψj−1

)
.

Therefore, for i1 − E ≤ i ≤ i2, we have

∥∥ϕi+ζn − ϕi
∥∥ <

2(Mh +Mψ)
1 − ‖B‖ ‖B‖i−i1+E+1

+ γ ε

1 − ‖B‖
(

1 − ‖B‖i−i1+E+1
)

+ Lh
i∑

j=i1−E
‖B‖i−j ∥∥ϕj+ζn−1 − ϕj−1

∥∥ .

(5.3.7)

Let us denote

ri = ‖B‖−i ∥∥ϕi+ζn − ϕi
∥∥

and

qi = 2(Mh +Mψ)
1 − ‖B‖ ‖B‖−i1+E+1 + γ ε

1 − ‖B‖
(
‖B‖−i − ‖B‖−i1+E+1

)
.

The inequality (5.3.7) yields

ri < qi + Lh

‖B‖
i∑

j=i1−E
rj−1.

It can be verified by applying the discrete analogue of Gronwall inequality that

ri ≤ qi + Lh

‖B‖
i∑

j=i1−E
qj−1

(
1 + Lh

‖B‖
)i−j

.
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Thus, for i1 − E ≤ i ≤ i2, we have

ri ≤ 2(Mh +Mψ)
1 − ‖B‖ ‖B‖−i (‖B‖ + Lh)i−i1+E+1

+ γ ε

1 − ‖B‖ − Lh ‖B‖−i [1 − (‖B‖ + Lh)i−i1+E+1
]
.

The last inequality implies that

∥∥ϕi+ζn − ϕi
∥∥ <

2(Mh +Mψ)
1 − ‖B‖ (‖B‖ + Lh)i−i1+E+1 + γ ε

1 − ‖B‖ − Lh .

One can confirm using (5.3.6) that (‖B‖ + Lh)i−i1+E+1 ≤ γ ε for i1 ≤ i ≤ i2.
Therefore, for each n ≥ n0, the inequality

∥∥ϕi+ζn − ϕi
∥∥ <

[
2(Mh +Mψ)

1 − ‖B‖ + 1

1 − ‖B‖ − Lh
]
γ ε ≤ ε

is valid for i1 ≤ i ≤ i2. Hence,
∥∥ϕi+ζn − ϕi

∥∥ → 0 as n → ∞ for each i with
i1 ≤ i ≤ i2.

Next, we will show the existence of a positive number ε0 and a sequence {̃ηn}
with η̃n → ∞ as n→ ∞ such that

∥∥ϕζn+η̃n − ϕη̃n
∥∥ ≥ ε0 for each n ∈ N.

Using the relations

ϕζn+ηn+1 = Bϕζn+ηn + h(ϕζn+ηn)+ ψζn+ηn
and

ϕηn+1 = Bϕηn + h(ϕηn)+ ψηn
we obtain for n ∈ N that

∥∥ϕζn+ηn+1 − ϕηn+1
∥∥ ≥ ε0 − (‖B‖ + Lh)

∥∥ϕζn+ηn − ϕηn
∥∥ .

Therefore,

max
{∥∥ϕζn+ηn+1 − ϕηn+1

∥∥ ,
∥∥ϕζn+ηn − ϕηn

∥∥} ≥ ε0, (5.3.8)

where ε0 = ε0

1 + ‖B‖ + Lh .

For each n ∈ N, let us take η̃n = ηn + 1 if
∥∥ϕζn+ηn+1 − ϕηn+1

∥∥ ≥∥∥ϕζn+ηn − ϕηn
∥∥, and we set η̃n = ηn otherwise. Clearly, η̃n → ∞ as n → ∞.

According to inequality (5.3.8), we have
∥∥ϕζn+η̃n − ϕη̃n

∥∥ ≥ ε0 for each n ∈ N.

Consequently, the bounded solution {ϕi} , i ∈ Z, of (5.3.4) is unpredictable. �	
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A possible way to obtain a different unpredictable sequence from a given one is
mentioned in the following theorem.

Theorem 5.3 ([8]) Suppose that {κi}, i ∈ Z, is an unpredictable sequence such
that κi ∈ Λ for each i, where Λ is a bounded subset of Rp. If Φ : Λ → R

q is
a function such that there exist positive numbers L1 and L2 with L1 ‖s1 − s2‖ ≤
‖Φ(s1)−Φ(s2)‖ ≤ L2 ‖s1 − s2‖ for all s1, s2 ∈ Λ, then the sequence {κi} defined
through the equation κi = Φ(κi), i ∈ Z, is also unpredictable.

Proof Since {κi}, i ∈ Z, is an unpredictable sequence, there exist a positive number
ε0 and sequences {ζn} , {ηn}, n ∈ N, of positive integers, both of which diverge to
infinity, such that

∥∥κi+ζn − κi
∥∥ → 0 as n → ∞ for each i in bounded intervals of

integers and
∥∥κζn+ηn − κηn

∥∥ ≥ ε0 for each n ∈ N.

Fix an arbitrary positive number ε, and let i1 and i2 be any two integers such that
i2 > i1. One can find a natural number n0, which does not depend on i, such that
for each n ≥ n0 we have

∥∥κi+ζn − κi
∥∥ < ε/L2 whenever i1 ≤ i ≤ i2. Therefore,

the inequality

∥∥κi+ζn − κi
∥∥ ≤ L2

∥∥κi+ζn − κi
∥∥ < ε

is satisfied for each n ≥ n0 and each i with i1 ≤ i ≤ i2. This shows that∥∥κi+ζn − κi
∥∥ → 0 as n → ∞ on bounded intervals of integers. On the other hand,

for each n ∈ N, we have that

∥∥κζn+ηn − κηn
∥∥ ≥ L1

∥∥κζn+ηn − κηn
∥∥ ≥ L1ε0.

Consequently, {κi}, i ∈ Z, is an unpredictable sequence. �	

5.4 A Continuous Unpredictable Function via the Logistic
Map

Consider the space Σ2 = {
s = (s0s1s2 . . .) | sj = 0 or 1

}
of infinite sequences of

0’s and 1’s with the metric

d (s, s) =
∞∑

k=0

|sk − sk|
2k

,

where s = (s0s1s2 . . .), s = (s0s1s2 . . .) ∈ Σ2. The Bernoulli shift σ : Σ2 → Σ2
is defined as σ(s0s1s2 . . .) = (s1s2s3 . . .). The map σ is continuous and Σ2 is a
compact metric space [10, 32].

Through the proof of Lemma 3.1 [7], we constructed an element

s∗∗ = (s∗∗
0 s

∗∗
1 s

∗∗
2 . . .)
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of Σ2 which is unpredictable by placing all blocks of 0’s and 1’s in a specific
order without any repetitions and extending it to the left-hand side by appropriately
choosing the terms s∗∗

i for negative values of i.
Let us take into account the logistic map

λi+1 = Fμ(λi), (5.4.9)

where i ∈ Z and Fμ(s) = μs(1 − s). The interval [0, 1] is invariant under the
iterations of (5.4.9) for μ ∈ (0, 4] [15].

It was proved by Shi and Yu [30] that for each μ ∈ [3 + (2/3)1/2, 4], there exist
a natural number m0 > 4 and a Cantor set Λ ⊂ [0, 1] such that the map Fm0

μ on Λ
is topologically conjugate to the Bernoulli shift σ on Σ2. Using the results of paper
[30] and Lemma 3.1 [7], a property of the logistic map (5.4.9) was given in Theorem
4.1 of paper [7]. According to Theorem 4.1 [7], for each μ ∈ [3 + (2/3)1/2, 4], the
logistic map (5.4.9) possesses an unpredictable solution.

Now, let us denote by {ψi}, i ∈ Z, an unpredictable solution of the logistic map
(5.4.9) with μ = 3.91 inside the unit interval [0, 1], and consider the function

Θ(t) =
∫ t

−∞
e−2(t−s)Ω(s)ds, (5.4.10)

where the function Ω(t) is defined by Ω(t) = ψi for t ∈ [i, i + 1), i ∈ Z.

It can be verified that the function Θ(t) is the unique globally exponentially
stable solution of the differential equation

v′(t) = −2v(t)+Ω(t). (5.4.11)

Moreover, Θ(t) is bounded on the whole real axis such that sup
t∈R

|Θ(t)| ≤ 1

2
, and it

is uniformly continuous since its derivative is bounded.
Because the sequence {ψi}, i ∈ Z, is unpredictable, there exist a positive

number ε0 and sequences {ζn}, {ηn} both of which diverge to infinity such that∣∣ψi+ζn − ψi
∣∣→ 0 as n→ ∞ for each i in bounded intervals of integers and

∣∣ψζn+ηn − ψηn
∣∣ ≥ ε0

for each n.
Let us fix an arbitrary positive number ε and take an arbitrary compact subset

[α, β] ⊂ R. Suppose that N is a sufficiently large positive integer satisfying

N ≥ 1

2
ln

(
3

2ε

)
. There exists a natural number n0 such that for each n ≥ n0

the inequality
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∣∣ψi+ζn − ψi
∣∣ <

2ε

3

is valid for i = �α� − N, �α� − N + 1, . . . , �β�, where �α� and �β� denote the
largest integers which are not greater than α and β, respectively.

Fix a natural number n ≥ n0. Using the relation

Θ(t + ζn)−Θ(t) = e−2(t−�α�+N)(Θ(�α� −N + ζn)−Θ(�α� −N))

+
∫ t

�α�−N
e−2(t−s)[Ω(s + ζn)−Ω(s)]ds,

one can verify for t ∈ [�α�, �β� + 1) that |Θ(t + ζn)−Θ(t)| < ε. Hence, Θ(t +
ζn)→ Θ(t) as n→ ∞ uniformly on [α, β].

On the other hand, one can show that sup
t∈[ηn,ηn+1]

|Θ(t + ζn)−Θ(t)| ≥ ε0

4
for

each n ∈ N. The last inequality implies that the function Θ(t) is unpredictable.
It is still difficult to simulate this unpredictable solution, but there is chaos

because of unpredictability, and this is why in what follows we visualize the chaotic
behavior.

Let us take into account the differential equation

v′(t) = −2v(t)+ Ω̃(t), (5.4.12)

where the function Ω̃(t) is defined by Ω̃(t) = λi for t ∈ [i, i + 1), i ∈ Z, in which
{λi} is the solution of (5.4.9) with λ0 = 0.4.

We depict in Fig. 5.1 the solution of (5.4.12) corresponding to the initial data
v(0) = 0.37. The choice of the parameter μ = 3.91 of the logistic map (5.4.9) and
the value λ0 = 0.4 were considered for shadowing in the paper [16]. It is seen in
Fig. 5.1 that the dynamics of (5.4.12) is chaotic, and this supports that the function
Θ(t) is unpredictable.

Illustrative examples that support the theoretical results are provided in the next
section.

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

t

v

Fig. 5.1 Chaotic behavior of Eq. (5.4.12). The initial data v(0) = 0.37 is utilized
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5.5 Examples

Example 1 In this example, we take into account the retarded non-autonomous
differential equation

x′′(t)+ 4x′(t)+ 1.5x(t)+ 0.02x2(t − 0.1) = Θ(t), (5.5.13)

where Θ(t) is the unpredictable function defined by (5.4.10).
Using the variables x1(t) = x(t) and x2(t) = x′(t), Eq. (5.5.13) can be written as

x′
1(t) = x2(t),

x′
2(t) = −1.5x1(t)− 4x2(t)− 0.02x2

1 (t − 0.1)+Θ(t). (5.5.14)

System (5.5.14) is in the form of (5.2.1) with τ = 0.1, f (x1, x2) =
(
0,−0.02x2

1

)
, and A =

(
0 1

−1.5 −4

)
. The eigenvalues of the matrix A are

−2 + √
10/2 and −2 − √

10/2. One can show that

eAt = P
(
e(−2+√

10/2)t 0

0 e(−2−√
10/2)t

)

P−1,

where P =
(

1 (−4 + √
10)/3

(−4 + √
10)/2 1

)
. Thus, the inequality

∥∥eAt
∥∥ ≤

Ke−ωt is valid for t ≥ 0 with K = ‖P ‖ ∥∥P−1
∥∥ ≈ 2.0685 and ω = 2 − √

10/2.
One can verify numerically that the solutions of (5.5.14) eventually enter the

compact region

D =
{
(x1, x2) ∈ R

2 : 0.14 ≤ x1 ≤ 0.26, −0.06 ≤ x2 ≤ 0.05
}

as t increases. Therefore, it is reasonable to consider the conditions (C1) and (C2)
inside the region D .

Conditions (C1)–(C3) are valid for system (5.5.14) with Mf = 0.001352 and
Lf = 0.0104. According to Theorem 5.1, system (5.5.14) possesses a unique
uniformly exponentially stable unpredictable solution.

To demonstrate the chaos appearance due to the unpredictable function Θ(t), let
us consider the system

x′
1(t) = x2(t),

x′
2(t) = −1.5x1(t)− 4x2(t)− 0.02x2

1(t − 0.1)+ v(t), (5.5.15)

where v(t) is the solution of (5.4.12) represented in Fig. 5.1.
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The x1- and x2-coordinates of the solution of (5.5.15) corresponding to the initial
conditions x1(t) = 0.18, x2(t) = 0.01, t ∈ [−0.1, 0] are shown in Fig. 5.2.
The figure supports the result of Theorem 5.1 such that (5.5.14) possesses an
unpredictable solution, and it reveals that the dynamics of (5.5.15) is chaotic.
Moreover, the trajectory of the same solution is depicted in Fig. 5.3, and this
simulation also confirms the presence of chaos in system (5.5.15).

Example 2 We take into account the discrete system

xi+1 = xi

2
− yi

7
+ 3ψ3

i

yi+1 = −xi
8

+ yi

3
+ x

2/3
i

12
+ 4ψi,

(5.5.16)
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−0.05

0
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Fig. 5.2 Time series of the x1- and x2-coordinates of system (5.5.15). Chaotic behavior in both
coordinates is observable in the figure

0.15 0.2 0.25

−0.05

0

0.05

x
1

x 2

Fig. 5.3 The trajectory of system (5.5.15). The figure manifests that the dynamics of (5.5.15) is
chaotic
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where {ψi} is an unpredictable solution of (5.4.9) with μ = 3.91. Theorem 5.3
implies that the sequence

{
ψi
}
, i ∈ Z, defined by ψi = (3ψ3

i , 4ψi) ∈ R
2 is also

unpredictable.
In order to demonstrate the chaotic behavior of (5.5.16), we consider the system

xi+1 = xi

2
− yi

7
+ 3λ3

i

yi+1 = −xi
8

+ yi

3
+ x

2/3
i

12
+ 4λi,

(5.5.17)

where {λi} is a solution of (5.4.9), again with μ = 3.91. One can numerically verify
that for each {λi}, the bounded solutions of (5.5.17) take place inside the compact
region

D = {(x, y) ∈ R
2 : 0.1 ≤ x ≤ 2.7, 1.7 ≤ y ≤ 5.1}.

Therefore, the conditions (C4)–(C6) are satisfied for system (5.5.16), and there
exists a unique unpredictable solution of (5.5.16) in accordance with Theorem 5.2.

Figure 5.4 shows the first and second coordinates of the solution of system
(5.5.17) with the initial data λ0 = 0.4, x0 = 0.58, and y0 = 1.95. Moreover,
we represent in Fig. 5.5 the two dimensional trajectory of the same solution. Both
Figs. 5.4 and 5.5 support the result of Theorem 5.2 such that an unpredictable
sequence takes place in the dynamics of the discrete system (5.5.16) and the
behavior of the system is chaotic.

Example 3 In this example, we will demonstrate the appearance of irregular
behavior near periodic orbits of discrete systems. For that purpose, let us consider
the system

0 50 100 150
0

1

2

3

i

x i

0 50 100 150

2

3

4

5

i

y i

Fig. 5.4 The solution of (5.5.17) with the initial data λ0 = 0.4, x0 = 0.58, and y0 = 1.95. The
figure supports the result of Theorem 5.2 such that (5.5.16) possesses an unpredictable solution
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Fig. 5.5 The trajectory of the
discrete system (5.5.17)
corresponding to the initial
data λ0 = 0.4, x0 = 0.58,
and y0 = 1.95. The figure
indicates the chaotic behavior
of system (5.5.16)
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Fig. 5.6 The orbit of
system (5.5.19) with
λ0 = 0.4, x0 = 1, and
y0 = 1. The figure reveals
that the orbit behaves
chaotically near the
14-periodic orbit of (5.5.18)

xi+1 = cos(ω0)xi + sin(ω0)yi

yi+1 = − sin(ω0)xi + cos(ω0)yi,
(5.5.18)

where ω0 is a real parameter. It is shown in the book [15] that the system (5.5.18)
admits a stable periodic orbit whenever the value ω0/2π is rational. Taking μ =
3.86 in the logistic map (5.4.9) and perturbing system (5.5.18) with solutions of
(5.4.9), we set up the system

xi+1 = cos(ω0)xi + sin(ω0)yi + 0.001λi
yi+1 = − sin(ω0)xi + cos(ω0)yi + 0.001λi,

(5.5.19)

where {λi} is a solution of (5.4.9).
Let us use the value of ω0 = π/7 so that the non-perturbed system (5.5.18)

possesses a one parameter family of stable 14-periodic orbits. We depict in Fig. 5.6
the trajectory of (5.5.19) corresponding to the initial data λ0 = 0.4, x0 = 1, and
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y0 = 1. The total number of iterations used in the simulation is 65 × 106. The
utilized parameter value μ = 3.86 of the logistic map (5.4.9) and the initial point
λ0 = 0.4 were analyzed for shadowing in paper [16]. It is seen in Fig. 5.6 that the
applied perturbation makes system (5.5.19) behave chaotically near the 14-periodic
orbit of (5.5.18). It is worth noting that Fig. 5.6 represents a single orbit. The fractal
structure of the orbit is also observable in the simulation. Figure 5.6 manifests the
appearance of chaos near the periodic orbit of (5.5.18).

5.6 A Hopfield Neural Network

This section is devoted to an application of our results to neural networks. Let us,
first, consider the Hopfield neural network with delay and unpredictable input

x′
1(t) = −1.7x1(t)+ 0.01 tanh(x1(t − τ1))− 0.02 tanh(x2(t − τ1))

+ 0.04 tanh(x3(t − τ1))+ 2.1Θ(t)
x′

2(t) = −3.5x2(t)+ 0.06 tanh(x1(t − τ1))+ 0.03 tanh(x2(t − τ1))
+ 0.08 tanh(x3(t − τ1))+ 1.3Θ(t)

x′
3(t) = −2.8x3(t)− 0.05 tanh(x1(t − τ1))− 0.06 tanh(x2(t − τ1))

+ 0.03 tanh(x3(t − τ1))+ 1.9Θ(t),

(5.6.20)

where τ1 = 0.3 and Θ(t) is the unpredictable function defined by (5.4.10).
The coefficients of the nonlinear terms in (5.6.20) are sufficiently small in

absolute value such that the conditions of Theorem 5.1 hold, and accordingly,
network (5.6.20) possesses a unique uniformly exponentially stable unpredictable
solution Θ̃(t) = (Θ̃1(t), Θ̃2(t), Θ̃3(t)

)
.

To demonstrate the chaotic dynamics of (5.6.20) numerically, in a similar way to
the first example in this section, we utilize the network

x′
1(t) = −1.7x1(t)+ 0.01 tanh(x1(t − τ1))− 0.02 tanh(x2(t − τ1))

+ 0.04 tanh(x3(t − τ1))+ 2.1v(t)
x′

2(t) = −3.5x2(t)+ 0.06 tanh(x1(t − τ1))+ 0.03 tanh(x2(t − τ1))
+ 0.08 tanh(x3(t − τ1))+ 1.3v(t)

x′
3(t) = −2.8x3(t)− 0.05 tanh(x1(t − τ1))− 0.06 tanh(x2(t − τ1))

+ 0.03 tanh(x3(t − τ1))+ 1.9v(t),

(5.6.21)

where v(t) is the solution of (5.4.12) shown in Fig. 5.1. We represent in Fig. 5.7
the x2-coordinate of (5.6.21) using the initial data x1(t) = 0.34, x2(t) = 0.12,
x3(t) = 0.19, t ∈ [−τ1, 0]. Figure 5.7 reveals that the dynamics of the network
(5.6.20) is Poincaré chaotic.

Next, we will discuss the extension of Poincaré chaos by Hopfield neural
networks. For that purpose, we use the unpredictable output Θ̃(t) of (5.6.20) as
an external input for another Hopfield neural network and set up the system
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Fig. 5.7 The x2-coordinate of the output of network (5.6.21) corresponding to the initial data
x1(t) = 0.34, x2(t) = 0.12, x3(t) = 0.19, t ∈ [−τ1, 0]. The simulation result demonstrates the
presence of chaos
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Fig. 5.8 The y2-coordinate of the output of network (5.6.23) corresponding to the initial data
y1(t) = 0.15, y2(t) = 0.12, y3(t) = 0.09, t ∈ [−τ2, 0]. The figure confirms the extension of
Poincaré chaos by the Hopfield neural network (5.6.22)

y′
1(t) = −2.3y1(t)+ 0.05 tanh(y1(t − τ2))− 0.07 tanh(y3(t − τ2))+ Θ̃1(t),

y′
2(t) = −y2(t)+ 0.02 tanh(y1(t − τ2))− 0.08 tanh(y2(t − τ2))

+ 0.09 tanh(y3(t − τ2))+ Θ̃2(t),

y′
3(t) = −1.5y3(t)+ 0.04 tanh(y2(t − τ2))− 0.05 tanh(y3(t − τ2))+ Θ̃3(t),

(5.6.22)

where τ2 = 0.2.
Using the result of Theorem 5.1 one more time, it can be confirmed that (5.6.22)

admits a unique unpredictable output, which is exponentially stable. In order to
simulate the extension of unpredictability, we consider the network

y′
1(t) = −2.3y1(t)+ 0.05 tanh(y1(t − τ2))− 0.07 tanh(y3(t − τ2))+ x1(t),

y′
2(t) = −y2(t)+ 0.02 tanh(y1(t − τ2))− 0.08 tanh(y2(t − τ2))

+ 0.09 tanh(y3(t − τ2))+ x2(t),

y′
3(t) = −1.5y3(t)+ 0.04 tanh(y2(t − τ2))− 0.05 tanh(y3(t − τ2))+ x3(t),

(5.6.23)

where (x1(t), x2(t), x3(t)) is the output of (5.6.21) whose second coordinate is
depicted in Fig. 5.7.

The time series of the y2-coordinate of the Hopfield neural network (5.6.23)
is shown in Fig. 5.8, where the chaotic behavior is observable. The initial data
y1(t) = 0.15, y2(t) = 0.12, y3(t) = 0.09, t ∈ [−τ2, 0], are used in the simulation.
Figure 5.8 confirms the extension of the unpredictable behavior of (5.6.20) by the
network (5.6.22).



5.7 Notes 77

5.7 Notes

An unpredictable function was defined as an unpredictable point of the Bebutov
dynamics, and the first theorems on the existence of unpredictable solutions were
proved in [6, 7]. The metric of the Bebutov dynamics is not convenient for
applications, since it is hard to verify. For this reason, in this chapter, we apply the
topology of uniform convergence on compact sets to define unpredictable functions.
The topology is metrizable and easy for applications with integral operators. Thus,
one can accept that we lay a corner stone to the foundation of differential equations
theory related to unpredictable solutions, and consequently, chaos. Therefore, in
our opinion, a new field to analyze in the theory of differential equations has been
discovered. Since many results of differential equations have their counterparts
in discrete equations [21], one can suppose that theorems on the existence of
unpredictable solutions can be proved for discrete equations. The present chapter
is one to realize the both paradigms. The existence and uniqueness theorems for
quasilinear delay and ordinary differential equations and difference equations have
been proved, when the perturbation is an unpredictable function or sequence. This
is visualized as Poincaré chaos in simulations.

We emphasize the meaning of our results for the development of theory of
differential and discrete equations issuing from the general character of considered
systems. In the next research, one can investigate the existence of unpredictable
solutions, and consequently, chaos in discrete equations by applying well developed
techniques such as averaging method, method of integral manifolds, method of
asymptotic integrations, second Lyapunov method, and others [14].

We hope that the constructions of unpredictable functions and sequences sug-
gested in our present research will be developed to more larger classes of functions,
enlarging the applicability meaning of our results. This method of chaos appearance
and of its consequent control cannot be underestimated in neuroscience [20, 26, 27].
Our approach suggests very effective applications and analysis method of generation
and control of chaos in neural networks through a single function, an unpredictable
one. This is why we can say that the motivation for our results is strong. In
our research we provide unpredictable functions as external inputs which are not
discontinuous but obtained from discontinuous functions by integration. This may
enrich application variance for chaos analysis of neural network dynamics.

Our results can trigger further extension of the theory for discrete dynamical
systems which can be defined as iterated maps. For this reason, we expect that the
introduction of unpredictability in the discrete dynamics will be beneficial for new
researches in hyperbolic dynamics, strange attractors, and ergodic theory [13, 14,
18, 19, 24, 32].

Unpredictable functions are compulsorily accompanied by Poincaré chaos, and
this is considered in our previous papers [6, 7], too. It is significant that the
unpredictable motion is still a Poisson stable one. On the basis of unpredictable
functions one immediately considers a new type of chaos, Poincaré chaos, and
consequently, the next question is how the chaos is related to previously known
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types of chaos. Developing this line of research, one will increase the practical role
of the unpredictable functions and motions as much as of the previously known
types of chaos. The results of this chapter are published in paper [8].
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Chapter 6
Unpredictable Solutions of Hyperbolic
Linear Equations

In this chapter, the existence and uniqueness of unpredictable solutions in the
dynamics of non-homogeneous linear systems of differential and discrete equations
are investigated. The hyperbolic cases are under discussion. The presence of
unpredictable solutions confirms the existence of Poincaré chaos. Simulations
illustrating the chaos are provided. The results of this chapter are published in
paper [3].

6.1 Preliminaries

The concept of the unpredictable functions was introduced in the study [1]. The
paper [2] was devoted to the investigation of sufficient conditions for the existence
of unpredictable solutions of retarded quasilinear differential equations in the case
that all eigenvalues of the matrix of coefficients admit negative real parts.

In this chapter, we investigate the existence and uniqueness of unpredictable
solutions of linear differential and discrete equations in which unpredictable per-
turbations are used (Theorems 6.1 and 6.2). The results of the present chapter have
two principal novelties compared to the previous results in the field. The first one is
that we consider the hyperbolic cases such that the eigenvalues of the matrix of coef-
ficients can admit positive real parts in the case of differential equations. The second
one is that we propose a simpler and more comprehensible proof. Additionally, we
consider new properties of unpredictable functions (Lemmas 6.1.1 and 6.1.2). An
example of a piecewise constant unpredictable function is constructed. Moreover,
continuous function as solution of a linear non-homogeneous scalar equation has
been found, which approximates an unpredictable function asymptotically. These
functions are used in numerical simulations which confirm the theoretical result of
the chapter.
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It was shown in papers [1, 2] that the existence of an unpredictable solution
implies Poincaré chaos so that irregularity is observable in the solutions. In such
a case, the chaos is present in the dynamics where unpredictable functions are
considered as points moving by shifts of the time argument [9], and the irregularity
of the solutions is a consequence of this chaotic dynamics. The reason for the
appearance of Poincaré chaos relies on the fact that the topology of uniform
convergence on compact sets of the real axis is metrizable [9], p. 29.

In the remaining parts of the chapter, we will make use of the usual Euclidean
norm for vectors and the norm induced by the Euclidean norm for square matrices.

Definition 6.1 ([2]) A uniformly continuous and bounded function ϑ : R → R
m is

unpredictable if there exist positive numbers ε0, δ and sequences {tn}, {un} both of
which diverge to infinity such that ‖ϑ(t + tn) − ϑ(t)‖ → 0 as n → ∞ uniformly
on compact subsets of R and ‖ϑ(t + tn)− ϑ(t)‖ ≥ ε0 for each t ∈ [un − δ, un + δ]
and n ∈ N.

Definition 6.2 ([2]) A bounded sequence {κi}, i ∈ Z, in R
m is called unpredictable

if there exist a positive number ε0 and the sequences {ζn}, {ηn}, n ∈ N, of positive
integers both of which diverge to infinity such that ‖κi+ηn − κi‖ → 0 as n → ∞
for each i in bounded intervals of integers and ‖κζn+ηn − κηn‖ ≥ ε0 for each n ∈ N.

Definitions 6.1 and 6.2 are utilized in Sects. 6.2 and 6.3, respectively. Next, let us
remind the definition of a Poisson stable function [9], p. 124, adapted to our case.

Definition 6.3 ([2]) A continuous and bounded function ϑ : R → R
m is positively

Poisson stable if there exists a sequence {tn}, tn → ∞ as n → ∞, such that
‖ϑ(t + tn)− ϑ(t)‖ → 0 as n→ ∞ uniformly on compact subsets of R.

By comparing Definitions 6.1 and 6.3 one can see that any unpredictable function is
Poisson stable. The Poisson stable function is a specification of Poisson stable point
considered for dynamical systems in [9, p. 85], [8, p. 344, 345].

It is worth noting that in the literature a large number of results are obtained
for periodic, quasi-periodic, and almost periodic solutions of differential equations
due to the established mathematical methods and important applications. On the
other hand, recurrent and Poisson stable solutions are also crucial for the theory
of differential equations [4, 9]. The proposal can revive interests of specialists
in differential equations theory for two reasons. The first one is related to the
verification of the unpredictability which requests a more sophisticated technique
than for recurrent and Poisson stable solutions. Thus the problem of the existence
of unpredictable solutions is a challenging one. Unpredictable solutions can be
investigated for various types of differential equations such as partial differential
equations, evolution equations, and hybrid systems. Thus, a new approach for chaos
extension in many types of dynamics is suggested in our study.

The following lemmas can be useful for applications of our results.

Lemma 6.1.1 ([3]) Suppose that φ(t) : R → R is an unpredictable function. Then
the function φ3(t) is unpredictable.
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Proof One can find numbers ε0 > 0, δ > 0 and sequences {tn}, {un} both of which
diverge to infinity such that ‖φ(t + tn) − φ(t)‖ → 0 as n → ∞ uniformly on
compact subsets of R and ‖φ(t + tn) − φ(t)‖ ≥ ε0 for each t ∈ [un − δ, un + δ]
and n ∈ N. It is easy to check that ‖φ3(t + tn)− φ3(t)‖ → 0 as n→ ∞ uniformly
on compact subsets of R, since it follows from the uniform continuity of the cubic
function on a compact set.

Fix a natural number n. Let us show that for t ∈ [un − δ, un + δ] the inequality
‖φ(t + tn)− φ(t)‖ ≥ ε0 implies ‖φ3(t + tn)− φ3(t)‖ ≥ ε3

0/4.
We have that

|φ3(t + tn)− φ3(t)| = 1

2
|φ(t + tn)− φ(t)|

[
φ2(t + tn)+ φ2(t)+ (φ(t + tn)+ φ(t))2

]

≥ 1

2

(
φ2(t + tn)+ φ2(t)

)
ε0.

Consider the function F(a, b) = a2+b2 for |a−b| ≥ ε0. The minimum of F occurs
at the points (a, b) with |a| = |b| = ε0/2. Therefore, |φ3(t + tn) − φ3(t)| ≥ ε3

0/4
for t ∈ [un − δ, un + δ]. �	
Lemma 6.1.2 ([3]) If the function φ(t) : R → R is unpredictable, then the function
φ(t)+ c, where c is a constant, is also unpredictable.

Proof There exist positive numbers ε0, δ and sequences {tn}, {un} both of which
diverge to infinity such that ‖φ(t + tn) − φ(t)‖ → 0 as n → ∞ uniformly on
compact subsets of R and ‖φ(t + tn)−φ(t)‖ ≥ ε0 for each t ∈ [un− δ, un+ δ] and
n ∈ N. Let us denote ω(t) = φ(t) + c. Then we have that ‖ω(t + tn) − ω(t)‖ =
‖φ(t + tn) − φ(t)‖ → 0 as n → ∞ uniformly on compact subsets of R and
‖ω(t + tn) − ω(t)‖ = ‖φ(t + tn) − φ(t)‖ ≥ ε0 for each t ∈ [un − δ, un + δ] and
n ∈ N. Therefore, the function φ(t)+ c is unpredictable. �	

6.2 Differential Equations with Unpredictable Solutions

Let us consider the system of linear differential equations

x′(t) = Ax(t)+ g(t), (6.2.1)

where x ∈ R
p and the function g : R → R

p is uniformly continuous and bounded.
Moreover, we assume that all eigenvalues of the constant matrix A ∈ R

p×p have
nonzero real parts.

Assume that the following condition is valid:

(C1) �eλi < 0, i = 1, 2, . . . , r, and �eλi > 0, i = r+1, r+2, . . . , p, 1 ≤ r < p,
where λi , i = 1, . . . , p, are the eigenvalues of the matrix A and �eλi denotes
the real part of λi.
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One can find a nonsingular matrix B such that the substitution x = By transforms
system (6.2.1) to the equation

y′(t) = B−1ABy(t)+ B−1g(t), (6.2.2)

with the block diagonal matrix of coefficients [5]. Therefore, we assume without
loss of generality that the matrix A in system (6.2.1) is block diagonal such that
A = diag(A−, A+), where the eigenvalues of the matrices A− and A+ possess
negative and positive real parts, respectively. There exist numbersK ≥ 1 and α > 0
such that ‖eA−t‖ ≤ Ke−αt for t ≥ 0 and ‖eA+t‖ ≤ Keαt for t ≤ 0.

From Eq. (6.2.2), it implies that the following auxiliary assertion is needed.

Lemma 6.2.3 ([3]) If the function g(t) is unpredictable, then the function f (t) =
B−1g(t) is also unpredictable.

The proof of the lemma immediately follows from the inequalities ‖f (t + tn) −
f (t)‖ ≤ ‖B−1‖‖g(t+ tn)−g(t)‖ and ‖f (t+ tn)−f (t)‖ ≥ 1

‖B‖‖g(t+ tn)−g(t)‖.

In what follows we will denote g(t) = (g−(t), g+(t)), where the vector-
functions g−(t) and g+(t) are of dimensions r and p − r , respectively.

As it is known from the theory of differential equations [5], system (6.2.1) admits
a unique bounded on R solution ϕ(t) = (ϕ−(t), ϕ+(t)),

ϕ−(t) =
∫ t

−∞
eA−(t−s)g−(s)ds, ϕ+(t) = −

∫ ∞

t

eA+(t−s)g+(s)ds, (6.2.3)

if the function g(t) is bounded on R. One can confirm that sup
t∈R

‖ϕ(t)‖ ≤ 2MgK

α
,

where Mg = sup
t∈R

‖g(t)‖. Moreover, ϕ(t) is periodic, quasi-periodic, or almost

periodic if the perturbation function g(t) is, respectively, of the same type.
The following theorem is concerned with the unpredictable solution of system

(6.2.1).

Theorem 6.1 ([3]) Assume that g(t) is an unpredictable function and condition
(C1) is valid. Then system (6.2.1) possesses a unique unpredictable solution.
Additionally, if all eigenvalues of the matrix A have negative real parts, then the
unpredictable solution is uniformly asymptotically stable.

Proof The boundedness of g(t) implies that system (6.2.1) admits a unique
bounded solution ϕ(t) = (ϕ−(t), ϕ+(t)), which satisfies (6.2.3), and it is uniformly
continuous since its derivative is bounded. Moreover, the bounded solution is
uniformly asymptotically stable provided that all eigenvalues of the matrix A have
negative real parts. Hence, it is sufficient to prove that ϕ(t) is an unpredictable
function.



6.2 Differential Equations with Unpredictable Solutions 85

The function ϕ(t) is uniformly continuous since its derivative is bounded.
According to the Poisson stability of g(t), there exists a sequence {tn} with tn → ∞
as n → ∞ such that ‖g(t + tn) − g(t)‖ → 0 uniformly on compact subsets of R.
One can easily find that

‖ϕ−(t + tn)− ϕ−(t)‖ =
∥∥∥∥

∫ t

−∞
eA−(t−s)[g−(s + tn)− g−(s)]ds

∥∥∥∥

≤
∫ t

−∞
Ke−α(t−s)‖g−(s + tn)− g−(t)‖ds

and

‖ϕ+(t + tn)− ϕ+(t)‖ =
∥∥∥∥

∫ ∞

t

eA+(t−s)[g+(s + tn)− g+(s)]ds
∥∥∥∥

≤
∫ ∞

t

Keα(t−s)‖g+(s + tn)− g+(t)‖ds.

Fix an arbitrary positive number ε and a closed interval [a, b], −∞ < a <

b < ∞, of the real axis. We will show that for sufficiently large n it is true that
‖ϕ(t + tn)− ϕ(t)‖ < ε on [a, b]. Let us choose numbers c < a, d > b, ξ > 0 such

that
2MgK

α
e−α(a−c) ≤ ε

4
,

2MgK

α
e−α(d−b) ≤ ε

4
, and

Kξ

α
≤ ε

4
.

Consider n sufficiently large such that ‖g(t+ tn)−g(t)‖ < ξ for t ∈ [c, d]. Then
we have for all t ∈ [a, b] that

‖ϕ−(t + tn)− ϕ−(t)‖ ≤
∫ c

−∞
Ke−α(t−s)‖g−(s + tn)− g−(s)‖ds

+
∫ t

c

Ke−α(t−s)‖g−(s + tn)− g−(s)‖ds

≤
∫ c

−∞
2MgKe

−α(t−s)ds +
∫ t

c

Kξe−α(t−s)ds

<
2MgK

α
e−α(a−c) + Kξ

α

≤ ε

2

and similarly one can show that

‖ϕ+(t + tn)− ϕ+(t)‖ ≤
∫ d

t

Keα(t−s)‖g+(s + tn)− g+(s)‖ds

+
∫ ∞

d

Keα(t−s)‖g+(s + tn)− g+(s)‖ds



86 6 Unpredictable Solutions of Hyperbolic Linear Equations

≤
∫ d

t

Kξeα(t−s)ds +
∫ ∞

d

2MgKe
α(t−s)ds

<
Kξ

α
+ 2MgK

α
e−α(d−b)

≤ ε

2
.

Thus, for sufficiently large n it is true that

‖ϕ(t + tn)− ϕ(t)‖ ≤ ‖ϕ+(t + tn)− ϕ+(t)‖ + ‖ϕ−(t + tn)− ϕ−(t)‖ < ε

for t ∈ [a, b].
Next, we will show the existence of a sequence {ūn}, ūn → ∞ as n → ∞, and

positive numbers ε̄0, δ such that ‖ϕ(t + tn)− ϕ(tn)‖ ≥ ε̄0 for t ∈ [ūn − δ, ūn + δ].
According to uniform continuity of g(t), there exists a positive number δ̄, which

does not depend on the sequences {tn} and {un}, such that the inequalities

‖g(t + tn)− g(tn + un)‖ ≤ ε0

4
√
p

and

‖g(t)− g(un)‖ ≤ ε0

4
√
p

are valid for every t ∈ [un − δ̄, un + δ̄] and n ∈ N.
Fix an arbitrary natural number n, and suppose that g(t) = (g1(t), g2(t), . . . ,

gp(t)), where each gk(t), k = 1, 2, . . . , p, is a real valued function. It can be
verified that there exists an integer jn, 1 ≤ jn ≤ p, such that

|gjn(tn + un)− gjn(un)| ≥ ε0√
p
.

Hence, we have

|gjn(t + tn)− gjn(t)| ≥ |gjn(tn + un)− gjn(un)| − |gjn(t + tn)− gjn(tn + un)|
−|gjn(t)− gjn(un)|
≥ ε0

2
√
p

(6.2.4)

for t ∈ [un − δ̄, un + δ̄].
One can confirm that there exist numbers sn1 , s

n
2 , . . . , s

n
p in the interval [un −

δ̄, un + δ̄] such that the equation
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∥∥∥∥

∫ un+δ̄

un−δ̄
(g(s + tn)− g(s))ds

∥∥∥∥ = 2δ̄
[ p∑

i=1

(gi(s
n
i + tn)− gi(sni ))2

]1/2

is valid. Using inequality (6.2.4) we obtain that

∥∥∥∥

∫ un+δ̄

un−δ̄
(g(s + tn)− g(s))ds

∥∥∥∥ ≥ 2δ̄|gjn(snjn + tn)− gjn(snjn)| ≥ δ̄ε0√
p
.

By means of the equation

ϕ(tn + un + δ̄)− ϕ(un + δ̄) = ϕ(tn + un − δ̄)− ϕ(un − δ̄)

+
∫ un+δ̄

un−δ̄
A[ϕ(s + tn)− ϕ(s)]ds

+
∫ un+δ̄

un−δ̄
[g(s + tn)− g(s)]ds,

one can obtain that

‖ϕ(tn+ un+ δ̄)−ϕ(un+ δ̄)‖≥ δ̄ε0√
p

− (1 + 2δ̄‖A‖) sup
t∈[un− δ̄,un+ δ̄]

‖ϕ(t + tn)−ϕ(t)‖

Thus, sup
t∈[un−δ̄,un+δ̄]

‖ϕ(t + tn)− ϕ(t)‖ ≥ δ̄ε0

2(1 + δ̄‖A‖)√p .
Now, suppose that sup

t∈[un−δ̄,un+δ̄]
‖ϕ(t + tn)− ϕ(t)‖ = ‖ϕ(tn + ūn)− ϕ(ūn)‖ for

some ūn ∈ [un − δ̄, un + δ̄], and let us denote

ε̄0 = δ̄ε0

4(1 + δ̄‖A‖)√p
and

δ = δ̄αε0

8Mg(1 + δ̄‖A‖) (α + 2K ‖A‖)√p .

If t ∈ [ūn − δ, ūn + δ], then we have

‖ϕ(t + tn)− ϕ(t)‖ ≥ ‖ϕ(tn + ūn)− ϕ(ūn)‖ −
∣∣∣∣

∫ t

ūn

‖A‖ϕ(s + tn)− ϕ(s)‖ds
∣∣∣∣

−
∣∣∣∣

∫ t

ūn

‖g(s + tn)− g(s)‖ds
∣∣∣∣
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≥ δ̄ε0

2(1 + δ̄‖A‖)√p − 4δMgK ‖A‖
α

− 2δMg

= ε̄0.

Hence, ‖ϕ(t + tn) − ϕ(t)‖ ≥ ε̄0 for each t from the intervals [ūn − δ, ūn + δ],
n ∈ N. One can confirm that the sequence {ūn} diverges to infinity. Consequently,
ϕ(t) is the unique unpredictable solution of system (6.2.1). �	

The next section is devoted to unpredictable solutions of linear discrete equa-
tions.

6.3 Discrete Equations with Unpredictable Solutions

Let us take into account the discrete equation

zi+1 = Dzi + φi, (6.3.5)

where i ∈ Z, D ∈ R
q×q is a nonsingular matrix, and {φi} is a bounded sequence.

In this section the following condition is needed:

(C2) D = diag(D−,D+), whereD− andD+ are, respectively, k×k and (q−k)×
(q − k) matrices with 0 ≤ k ≤ q such that ‖D−‖ < 1 and ‖D+‖ > 1.

We will denote φi = (φ−
i , φ

+
i ), where φ−

i , φ+
i are, respectively, k and q − k

dimensional.
According to the results of [7], Eq. (6.3.5) possesses a unique bounded solution

ψi = (ψ−
i , ψ

+
i ), i ∈ Z, which satisfies the relations

ψ−
i =

i∑

j=−∞
D
i−j
− φ−

j−1 (6.3.6)

and

ψ+
i = −

∞∑

j=i
D
i−j−1
+ φ+

j . (6.3.7)

One can verify for each i ∈ Z that ‖ψ−
i ‖ ≤ Mφ

1 − ‖D−‖ and ‖ψ+
i ‖ ≤ Mφ

‖D+‖ − 1
,

whereMφ = sup
i∈Z

‖φi‖.

The following theorem is concerned with the existence of an unpredictable
solution of Eq. (6.3.5).
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Theorem 6.2 ([3]) If {φi}, i ∈ Z, is an unpredictable sequence and the condition
(C2) is valid, then the Eq. (6.3.5) possesses a unique unpredictable solution.

Proof Because the sequence {φi}, i ∈ Z, is unpredictable, according to Defini-
tion 6.2, there exist a positive number ε0 and sequences {ζn}, {ηn}, n ∈ N, of positive
integers both of which diverge to infinity such that ‖φi+ζn − φi‖ → 0 as n → ∞
on each bounded intervals of integers and ‖φζn+ηn − φηn‖ ≥ ε0 for each n ∈ N. We
will show that the unique bounded solution ψi = (ψ−

i , ψ
+
i ), i ∈ Z, of (6.3.5) is

unpredictable.
It is easy to check that

ψ−
i+ζn − ψ−

i =
i+ζn∑

j=−∞
D
i+ζn−j− φ−

j+ζ−1 −
i∑

j=−∞
D
i−j
− φ−

j−1

=
i∑

j=−∞
D
i−j
− (φ−

j+ζn−1 − φ−
j−1),

and

ψ+
i+ζn − ψ+

i = −
∞∑

j=i+ζn
D
i+ζn−j−1
+ φ+

j +
∞∑

j=i
D
i−j−1
+ φ+

j

=
∞∑

j=i
D
i−j−1
+ (φ+

j − φ+
j+ζn).

Fix an arbitrary positive number ε and let a and b be integers with a < b. We will
show that for sufficiently large n it is true that ‖ψi+ζn −ψi‖ < ε for a ≤ i ≤ b. Let

us choose integers c < a, b < d, ξ > 0, such that
1

1 − ‖D−‖ (2Mφ‖D−‖a−c+ξ) <
ε

2
and

1

‖D+‖ − 1
(ξ + 2Mφ‖D+‖d−b+1) <

ε

2
.

Consider n sufficiently large such that ‖ψi+ζn − ψi‖ < ξ for c ≤ i ≤ d. Then
we have for a ≤ i ≤ b that

‖ψ−
i+ζn − ψ−

i ‖ = ‖
c∑

j=−∞
D
c−j
− (φ−

j+ζn−1 − φ−
j−1)+

i∑

j=c
D
i−j
− (φ−

j+ζn−1 − φ−
j−1)‖

≤ 2Mφ‖D−‖a−c
1 − ‖D−‖ + ξ

1 − ‖D−‖ <
ε

2
,

and similarly,
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‖ψ+
i+ζn − ψ+

i ‖ = ‖
d∑

j=i
D
d−j−1
+ (φ+

j − φ+
j+ζn)+

∞∑

j=d
D
d−j
+ (φ+

j − φ+
j+ζn)‖

≤ ξ

‖D+‖ − 1
+ 2Mφ‖D+‖b−d+1

‖D+‖ − 1
<
ε

2
.

Thus, ‖ψi+ζn − ψi‖ ≤ ‖ψ+
i+ζn − ψ+

i ‖ + ‖ψ−
i+ζn − ψ−

i ‖ < ε for a ≤ i ≤ b, and
hence, ‖ψi+ζn − ψi‖ → 0 as n→ ∞ on each bounded intervals of integers.

On the other hand, the equation

ψζn+ηn+1 − ψηn+1 = D (ψζn+ηn − ψηn
)+ φζn+ηn − φηn

implies that

‖ψζn+ηn+1 − ψηn+1‖ ≥ ε0 − ‖D‖‖ψζn+ηn − ψηn‖.

Therefore, the inequality

(1 + ‖D‖)max{‖ψζn+ηn+1 − ψηn+1‖, ‖ψζn+ηn − ψηn‖} ≥ ε0

holds.
Let us define the sequence ηn, n ∈ N, such that ηn = ηn if ‖ψζn+ηn − ψηn‖ ≥

‖ψζn+ηn+1 − ψηn+1‖ and ηn = ηn + 1, otherwise. Accordingly, we have that

‖ψζn+ηn − ψηn‖ ≥ ε0

1 + ‖D‖
for each n ∈ N. It is clear that ηn → ∞ as n → ∞. Consequently, the bounded
solution ψi, i ∈ Z, of (6.3.5) is unpredictable. �	

6.4 Examples

It was shown in paper [2] that the presence of an unpredictable function is inevitably
accompanied with Poincaré chaos. Consequently, we can look for a confirmation of
the results for unpredictability observing irregularity in simulations. The approach is
effective for asymptotically stable unpredictable solutions, and it is just illustrative
for hyperbolic systems with unstable solutions. In the latter case we rely on the fact
that any solution becomes unpredictable ultimately.

In this section, first of all, we will show the construction of an unpredictable
function using the dynamics of the logistic map in a similar way to paper [2].

Let us take into account the logistic map
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λi+1 = Fμ(λi), (6.4.8)

where i ∈ Z and Fμ(s) = μs(1 − s). The interval [0, 1] is invariant under the
iterations of (6.4.8) for μ ∈ (0, 4] [6].

Using the results of paper [10], it was shown in Theorem 4.1 [1] that the logistic
map (6.4.8) possesses an unpredictable solution for each μ ∈ [3 + (2/3)1/2, 4].

Let {ρi} , i ∈ Z, be an unpredictable solution of the logistic map (6.4.8) with
μ = 3.92 inside the unit interval [0, 1], and consider the function

Θ(t) =
∫ t

−∞
e−5(t−s)/2Ω(s)ds, (6.4.9)

where Ω(t) is a piecewise constant function defined on the real axis through the
equation Ω(t) = ρi for t ∈ [i, i + 1), i ∈ Z.

It is worth noting that Θ(t) is the unique globally exponentially stable solution
of the differential equation

v′(t) = −5

2
v(t)+Ω(t).

Additionally, one can confirm that the function Θ(t) is bounded on the whole real
axis such that

sup
t∈R

|Θ(t)| ≤ 2

5
,

and it is uniformly continuous since its derivative is bounded.
Because the sequence {ρi} is unpredictable, there exist a positive number ε0 and

sequences {ζn}, {ηn} both of which diverge to infinity such that |ρi+ζn − ρi | → 0 as
n→ ∞ for each i in bounded intervals of integers and |ρζn+ηn −ρηn | ≥ ε0 for each
n ∈ N.

Fix an arbitrary positive number ε and arbitrary real numbers α, β with β > α.
Let N be a sufficiently large natural number satisfying

N ≥ 2

5
ln

(
6

5ε

)
.

There exists a natural number n0 such that for each n ≥ n0 the inequality

|ρi+ζn − ρi | < 5ε

6

holds for i = �α� − N, �α� − N + 1, . . . , �β�, where �α� and �β�, respectively,
denote the largest integers which are not greater than α and β. Accordingly, if n ≥
n0, then we have
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|Ω(t + ζn)−Ω(t)| < 5ε

6
(6.4.10)

for t ∈ [�α� −N, �β� + 1
)
.

Fix a natural number n ≥ n0. Using the relations

Θ(t) = e−5(t−�α�+N)/2Θ (�α� −N)+
∫ t

�α�−N
e−5(t−s)/2Ω(s)ds

and

Θ (t + ζn) = e−5(t−�α�+N)/2Θ (�α� −N + ζn)+
∫ t

�α�−N
e−5(t−s)/2Ω(s + ζn)ds

together with inequality (6.4.10), we obtain for t ∈ [�α� −N, �β� + 1
)

that

|Θ(t + ζn)−Θ(t)| ≤ e−5(t−�α�+N)/2 |Θ(�α� −N + ζn)−Θ(�α� −N)|

+
∫ t

�α�−N
e−5(t−s)/2 |Ω(s + ζn)−Ω(s)| ds

≤ 4

5
e−5(t−�α�+N)/2 + ε

3

(
1 − e−5(t−�α�+N)/2) .

The last inequality implies that |Θ(t + ζn) − Θ(t)| < ε for t ∈ [�α�, �β� + 1].
Hence, |Θ(t + ζn)−Θ(t)| → 0 as n→ ∞ uniformly on the interval [α, β].

On the other hand, one can confirm for each n ∈ N that |Ω(t + ζn)−Ω(t)| ≥ ε0
for t ∈ [ηn, ηn + 1). For fixed n ∈ N, using the equation

Θ(t + ζn)−Θ(t) = Θ(ζn + ηn)−Θ(ηn)− 5

2

∫ t

ηn

(Θ(s + ζn)−Θ(s)) ds

+
∫ t

ηn

(Ω(s + ζn)−Ω(s)) ds

we attain that

|Θ(ζn + ηn + 1)−Θ(ηn + 1)| ≥
∣∣∣∣

∫ ηn+1

ηn

(Ω(s + ζn)−Ω(s)) ds
∣∣∣∣

− |Θ(ζn + ηn)−Θ(ηn)|

−5

2

∣∣∣∣

∫ ηn+1

ηn

(Θ(s + ζn)−Θ(s)) ds
∣∣∣∣ .

Therefore, one can verify that
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sup
t∈[ηn,ηn+1]

|Θ(t + ζn)−Θ(t)| ≥ 2ε0

9
.

Thus, there exists a sequence {un} with ηn ≤ un ≤ ηn + 1, n ∈ N, such that

|Θ(un + ζn)−Θ(un)| ≥ 2ε0

9
.

For t ∈ [un − δ, un + δ], where δ = ε0/36, we have

|Θ(t + ζn)−Θ(t)| ≥ |Θ(un + ζn)−Θ(un)| − 5

2

∣∣∣∣

∫ t

un

|Θ(s + ζn)−Θ(s)| ds
∣∣∣∣

−
∣∣∣∣

∫ t

un

|Ω(s + ζn)−Ω(s)| ds
∣∣∣∣

≥ ε0

9
.

It is clear that un → ∞ as n→ ∞. Thus, the function Θ(t) is unpredictable.

Example 1 ([3]) Consider the system

x′
1 = −2x1 + 2x2 − 50Θ(t)
x′

2 = x1 − 3x2 + 5Θ3(t),
(6.4.11)

where Θ(t) is the unpredictable function defined by (6.4.9). The eigenvalues of the
matrix of coefficients of system (6.4.11) are −2 and −0.5. One can confirm that
the perturbation function (−50Θ(t), 5Θ3(t)) is unpredictable in accordance with
Lemma 6.1.1. By the main result of our paper, there is an asymptotically stable
unpredictable solution (ϕ1(t), ϕ2(t)) of system (6.4.11). Consequently, any solution
of the equation behaves irregularly ultimately. This is seen from the simulation of
the solution with x1(0) = 0, 18, x2(0) = 0, 01 in Fig. 6.1.

The next example is devoted to a system of differential equations whose matrix
of coefficients admits both positive and negative eigenvalues.

Example 2 ([3]) Let us take into account the system

y′
1 = −1000y1 + 0.23y2 + 120x3

2(t)+ 160
y′

2 = 6y1 + 0.000002y2 − 0.1x1(t)+ 20,
(6.4.12)

where (x1(t), x2(t)) is the solution of (6.4.11) depicted in Fig. 6.1. The eigen-
values of the matrix of coefficients of system (6.4.12) are −1000 and 0.00138.
The perturbation function (120x3

2(t) + 160,−0.1x1(t) + 20) is unpredictable by
Lemmas 6.1.1 and 6.1.2. According to the result of Theorem 6.1, system (6.4.12)
possesses a unique unpredictable solution. The simulation results for system
(6.4.12) corresponding to the initial conditions y1(0) = 0 and y2(0) = 0.1 are
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Fig. 6.1 The time series of the x1 and x2 coordinates of system (6.4.11) with the initial conditions
x1(0) = 0, 18, x2(0) = 0, 01. The figure manifests the irregular behavior of the solution
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Fig. 6.2 The time series for the y1 and y2 coordinates of system (6.4.12) with the initial conditions
y1(0) = 0, y2(0) = 0.1. The irregular behavior of the solution reveals the presence of an
unpredictable solution in the dynamics of (6.4.12)

shown in Fig. 6.2. The time series of both y1 and y2 coordinates in the figure confirm
the presence of irregularity in the dynamics of system (6.4.12).



References 95

References

1. M. Akhmet, M.O. Fen, Poincaré chaos and unpredictable functions. Commun. Nonlinear Sci.
Numer. Simul. 48, 85–94 (2017)

2. M. Akhmet, M.O. Fen, Non-autonomous equations with unpredictable solutions. Commun.
Nonlinear Sci. Numer. Simul. 59, 657–670 (2018)

3. M. Akhmet, M.O. Fen, M. Tleubergenova, A. Zhamanshin, Unpredictable solutions of linear
differential and discrete equations. Turk. J. Math. 43, 2377–2389 (2019)

4. P.R. Bener, Recurrent solutions to systems of ordinary differential equations. J. Differ. Equ. 5,
271–282 (1969)

5. J.K. Hale, Ordinary Differential Equations (Krieger Publishing Company, Malabar, Florida,
1980)

6. J. Hale, H. Koçak, Dynamics and Bifurcations (Springer, New York, 1991)
7. V. Lakshmikantham, D. Trigiante, Theory of Difference Equations: Numerical Methods and

Applications (Marcel Dekker, USA, 2002)
8. V.V. Nemytskii, V.V. Stepanov, Qualitative Theory of Differential Equations (Princeton

University Press, Princeton, New Jersey, 1960)
9. G.R. Sell, Topological Dynamics and Ordinary Differential Equations (Van Nostrand Reinhold

Company, London, 1971)
10. Y. Shi, P. Yu, On chaos of the logistic maps. Dynam. Contin. Discrete Impuls. Syst. Ser. B 14,

175–195 (2007)



Chapter 7
Strongly Unpredictable Solutions

This chapter is devoted to strongly unpredictable solutions, that is, solutions
whose all coordinates are unpredictable functions, of nonautonomous systems of
differential equations. Moreover, systems with perturbations which are strongly
unpredictable in the time variable are considered. The results of this chapter are
published in paper [5].

7.1 Preliminaries

Considerable amount of researches in the theory of differential equations focus on
oscillations owing to their importance and applications in science and industry.
For that reason the investigation of periodic, quasiperiodic, and almost periodic
solutions [6–9, 11] are crucial for the development of the theory and science.

A new type of oscillation, unpredictable function, has been introduced in the
study [2]. It was shown in papers [2] and [3] that the existence of an unpredictable
solution implies Poincaré chaos for a special dynamics in a functional space.
Owing to the presence of the chaos, irregularity is observable in the oscillations.
Consequently, the investigation of unpredictable solutions is as much beneficial
as it is of chaos. The existence of unpredictable solutions in the dynamics of
hyperbolic quasilinear systems whose matrix of coefficients possesses eigenvalues
with negative and positive real parts was studied in paper [4]. In the present
chapter we consider oscillations with all coordinates unpredictable. The novelty
may increase the application meaning of the solutions, because irregularity is
guaranteed in all dimensions of a dynamical process. Another significant novelty
is that perturbations are assumed to be nonlinear functions of the time and space
variables, and they are strongly unpredictable in the time variable.

Throughout the chapter, R and N will stand for the set of real and natural
numbers, respectively. Additionally, the norm ‖u‖1 = supt∈R ‖u(t)‖, where
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‖u‖ = max
1≤i≤p

|ui | , u = (u1, . . . , up), ui ∈ R, i = 1, 2, . . . , p, will be used.

Correspondingly, for a square matrix A = {aij }, i, j = 1, 2, . . . , p, the norm

‖A‖ = max
i=1,...,p

p∑

j=1

|aij |, will be utilized.

The following definition is the starting point of our research.

Definition 7.1 ([2]) A uniformly continuous and bounded function v : R → R
p

is unpredictable if there exist positive numbers ε0, σ and sequences {tn}, {un} both
of which diverge to infinity such that v(t + tn) → v(t) as n → ∞ uniformly on
compact subsets of R and ‖v(t + tn)− v(t)‖ ≥ ε0 for each t ∈ [un−σ, un+σ ] and
n ∈ N.

In papers [1, 3], an example of an unpredictable function was provided and it was
shown that properties of unpredictable functions are convenient to be verified and
they are easy for numerical simulations. Thus, existence of unpredictable solutions
for the differential equation

x′(t) = Ax(t)+ f (x)+ g(t), (7.1.1)

where g(t) is unpredictable function, was investigated.
In the present investigation we extend Definition 7.1 to the class of functions with

several independent variables. The following new definition will be of use.

Definition 7.2 ([5]) A continuous and bounded function f (t, x) : R × G → R
p,

f = (f1, f2, . . . , fp), G ⊂ R
p is a bounded domain, is unpredictable in t if it is

uniformly continuous in t and there exist positive numbers ε0, σ and sequences {tn},
{un} both of which diverge to infinity such that sup

G

‖f (t + tn, x)−f (t, x)‖ → 0 as

n → ∞ uniformly on compact sets in R and inf
G

‖f (t + tn, x) − f (t, x)‖ ≥ ε0 for

t ∈ [un − σ, un + σ ] and n ∈ N.

The present chapter contains two principal novelties. The first one is that strongly
unpredictable solutions are considered instead of unpredictable ones. Second, we
consider nonlinear perturbations, which are functions unpredictable in the time
variable. Thus, in this chapter we have significantly enlarged the set of systems,
which can be investigated for unpredictable solutions. To this end, we shall need the
following two new notions, which are analogues to the last two definitions.

Definition 7.3 ([5]) A uniformly continuous and bounded function v : R →
R
p, v = (v1, . . . , vp), is strongly unpredictable if there exist positive numbers ε0, σ

and sequences tn, un both of which diverge to infinity such that v(t + tn)→ v(t) as
n → ∞ uniformly on compact subsets of R and |vi(t + tn) − vi(t)| ≥ ε0 for each
t ∈ [un − σ, un + σ ], i = 1, 2, . . . , p and n ∈ N.

Definition 7.4 ([5]) A continuous and bounded function f (t, x) : R × G → R
p,

f = (f1, f2, . . . , fp), G ⊂ R
p is a bounded domain, is strongly unpredictable

in t if it is uniformly continuous in t and there exist positive numbers ε0, σ and
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sequences tn, un both of which diverge to infinity such that sup
G

‖f (t + tn, x) −
f (t, x)‖ → 0 as n→ ∞ uniformly on compact sets in R and inf[un−σ,un+σ ]×G |fi(t+
tn, x)− fi(t, x)| > ε0 for all i = 1, 2, . . . , p and n ∈ N.

Comparing Definitions 7.1 and 7.3 as well as Definitions 7.2 and 7.4 one can
realize that an unpredictable function may admit some of coordinates which are
not unpredictable, whereas each coordinate of a strongly unpredictable function is
unpredictable. That is, the set of all strongly unpredictable functions is a subclass of
unpredictable functions.

In this chapter, we take into account the system of quasilinear differential
equations

x′(t) = Ax(t)+ f (t, x), (7.1.2)

where t ∈ R, x ∈ R
p, p is a fixed natural number, all eigenvalues of the constant

matrix A ∈ R
p×p have negative real parts, f : R × G → R

p, f = (f1, . . . , fp),

G = {x ∈ R
p, ‖x‖ < H }, where H is a positive number. It is true that there exist

two real numbers K ≥ 1 and γ < 0 such that ‖eAt‖ ≤ Keγ t for all t ≥ 0.
One can see that the main difference between system (7.1.1) and system (7.1.2)

is that the perturbation in the former one is less general than that of the latter one.
The following conditions will be needed in the paper:

(C1) the function f(t, x) is strongly unpredictable in the sense of Definition 7.4;
(C2) there exists a positive constant L such that the function f (t, x) satisfies the

inequality ‖f (t, x1)− f (t, x2)‖ ≤ L ‖x1 − x2‖ for all t ∈ R, x1, x2 ∈ G;
Definition 7.4 implies that there exists a positive numberM such that
sup
R×G

‖f (t, x)‖ = M <∞.

(C3) γ < −KM
H

;
(C4) γ < −KL.

Our purpose is to prove that system (7.1.2) possesses a unique strongly unpre-
dictable solution, provided that the function f (t, x) is strongly unpredictable
in t . Moreover, we prove that the solution is uniformly globally exponentially
stable. Additionally, existence of an unpredictable solution, which is not strongly
unpredictable, is considered for the system.

7.2 Main Results

Let U be the set of all uniformly continuous functions ψ(t) = (ψ1(t), ψ2(t), . . . ,

ψp(t)), where for each i = 1, 2, . . . , p, ψi(t) is a real valued function defined on
R, such that ‖ψ‖1 ≤ H , and ψ(t + tn) → ψ(t) as n → ∞ uniformly on each
closed and bounded interval of the real axis, where the sequence {tn} is the same as
for function f (t, x) in system (7.1.2) in the case that condition (C1) is valid.
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According to the theory of differential equations [10], a function ω(t) =(
ω1(t), ω2(t), . . . , ωp(t)

)
bounded on the whole real axis, where for each i =

1, 2, . . . , p, ωi(t) is a real valued function defined on R, is a solution of system
(7.1.2) if and only if the integral equation

ω(t) =
∫ t

−∞
eA(t−s)f (t, ω(s))ds, t ∈ R, (7.2.3)

is satisfied.

Lemma 7.2.1 ([5]) Suppose that conditions (C1)–(C4) are valid, then the system
(7.1.2) possesses a unique solution ω(t) ∈ U.
Proof Define an operator Π on U by the equation

Πψ(t) =
∫ t

−∞
eA(t−s)f (s, ψ(s))ds, t ∈ R. (7.2.4)

Fix an arbitrary function ψ(t) that belongs to U . We have that

‖Πψ(t)‖ ≤
∫ t

−∞
‖eA(t−s)‖‖f (s, ψ(s))‖ds ≤ KM

|γ |
for all t ∈ R. Thus, according to condition (C3) we have that ‖Πψ‖1 ≤ H .

Fix an arbitrary positive number ε and a closed interval [a, b], −∞ < a <

b < ∞, of the real axis. We will show that for sufficiently large n it is true that
‖Πψ(t + tn) − Πψ(t)‖ < ε on [a, b]. Let us choose two numbers c < a, and
ξ > 0 satisfying

2KM

|γ | e
γ (a−c) < ε

2
(7.2.5)

and

K

|γ |ξ(L+ 1)[1 − eγ (b−c)] < ε
2
. (7.2.6)

Consider n sufficiently large such that ‖f (t + tn, x) − f (t, x)‖ < ξ and ‖ψ(t +
tn)− ψ(t)‖ < ξ for t ∈ [c, b] and x ∈ G. Then, the inequality

‖Πψ(t + tn)−Πψ(t)‖ ≤
∫ c

−∞
‖eA(t−s)‖‖f (s + tn, ψ(s + tn))− f (s, ψ(s))‖ds +

∫ t

c

‖eA(t−s)‖‖f (s + tn, ψ(s + tn))− f (s, ψ(s))‖ds ≤
∫ c

−∞
2KMeγ (t−s)ds +

∫ t

c

ξ(L+ 1)Keγ (t−s)ds ≤ 2

|γ |KMe
γ (a−c) + K

|γ |ξ(L+ 1)[1 − eγ (b−c)] (7.2.7)
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is correct for all t ∈ [a, b].
By inequalities (7.2.5) and (7.2.6) it is true that ‖Πψ(t + tn)−Πψ(t)‖ < ε for

t ∈ [a, b], and, therefore, Πψ(t + tn) → Πψ(t) uniformly as n → ∞ on each
closed and bounded interval of R.

It is easy to verify that Πψ(t) is a uniformly continuous function. Thus, the set
U is invariant for the operator Π .

We proceed to show that the operator Π : U → U is contractive. Let u(t) and
v(t) be members of U . Then, we obtain that

‖Πu(t)−Πv(t)‖ ≤
∫ t

−∞
‖eA(t−s)‖‖f (s, u(s))− f (s, v(s))‖ds ≤

∫ t

−∞
Keγ (t−s)L‖u(s)− v(s)‖ds ≤ KL

|γ | ‖u(t)− v(t)‖1

for all t ∈ R. Therefore, the inequality ‖Πu−Πv‖1 ≤ KL

|γ | ‖u− v‖1 holds, and

according to condition (C4) the operator Π : U → U is contractive. The next task
is to show that the space U is complete. Consider a Cauchy sequence φk(t) in U ,
which converges to a limit function φ(t) on R. Fix a closed and bounded interval
I ⊂ R.We have that

‖φ(t + tp)− φ(t)‖ < ‖φ(t + tn)− φk(t + tn)‖ +
‖φk(t + tn)− φk(t)‖ + ‖φk(t)− φ(t)‖. (7.2.8)

Now, one can take sufficiently large n and k such that each term on right-hand
side of (7.2.8) is smaller than ε

3 for an arbitrary small ε and t ∈ I . The inequality
implies that ‖φ(t + tn)− φ(t)‖ < ε on I. That is the sequence φ(t + tn) uniformly
converges to φ(t) on I. Likewise, one can check that the limit function is bounded
and uniformly continuous [10]. The completeness of U is proved. By contraction
mapping theorem there exists the unique fixed point, ω(t) ∈ U, of the operator Π,
which is the unique bounded solution of the system (7.1.2). The lemma is proved.

�	
Theorem 7.1 ([5]) If conditions (C1)–(C4) are fulfilled, then system (7.1.2) admits
a unique uniformly globally exponentially stable strongly unpredictable solution.

Proof According to Lemma 7.2.1, system (7.1.2) has a unique solution ω(t) ∈ U .
What is left is to verify that the unpredictability property is valid.

One can show that there exist a positive number κ and natural numbers l and k
such that the following inequalities are valid:

κ < σ, (7.2.9)
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κ
(

1 − 2

k
(L+ ‖A‖)) ≥ 3

l
, (7.2.10)

‖ω(t + s)− ω(t)‖ < ε0

k
, t ∈ R, |s| < κ. (7.2.11)

Let the numbers l, k and κ as well as a number n ∈ N, and i = 1, 2, . . . , p, be
fixed.

Using the relations

ωi(t) = ωi(un)+
∫ t

un

p∑

j=1

aijωj (s)ds +
∫ t

un

fi(s, ω(s))ds

and

ωi(t + tn) = ωi(un + tn)+
∫ t

un

p∑

j=1

aijωj (s + tn)ds +
∫ t

un

fi(s + tn, ω(s + tn))ds

we obtain that

ωi(t + tn)−ωi(t)=ωi(un + tn)− ωi(un)+
∫ t

un

p∑

j=1

aij [ωj (s+ tn)−ωj (s)]ds+

∫ t

un

[fi(s + tn, ω(s + tn))− fi(s, ω(s))]ds. (7.2.12)

Denote Δ = |ωi(un + tn) − ωi(un)| and consider two cases (i) Δ ≥ ε0/l, (ii)
Δ < ε0/l such that the remaining proof naturally falls into two parts.

(i) One can find positive number κ1 < κ such that ‖ω(t) − ω(s)‖ < ε0
4l provided

|t − s| < κ1. Therefore, the inequality

|ωi(tn + t)− ωi(t)| ≥ |ωi(tn + un)− ωi(un)| − |ωi(un)− ωi(t)| −
|ωi(tn + t)− ωi(tn + un)| ≥ ε0

l
− ε0

4l
− ε0

4l
= ε0

2l

is valid if t ∈ [un − κ1, un + κ1].
(ii) It is true that |fi(t + un, x) − fi(un, x)| ≥ ε0, for all ‖x‖ < H, t ∈ [un −

σ, un + σ ].
Then, using relations (7.2.9)–(7.2.11) we get that
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|ωi(tn + t)− ωi(t)| ≥
∫ t

un

|fi(tn + s, ω(tn + s))− fi(s, ω(tn + s))|ds −
∫ t

un

|fi(s, ω(tn + s))− fi(s, ω(s))|ds −
∫ t

un

|
p∑

j=1

aij [ωj (s)− ωj (tn + s)]|ds −

|ωj (tn + un)− ωj (un)| ≥ κ

2
ε0 − κ 1

k
ε0(L+ ‖A‖)− ε0

l
≥ ε0

2l
,

for t ∈ [un + κ
2 , un + κ].

Thus, one can conclude that ω(t) is a strongly unpredictable function.
The asymptotical stability of the solution ω(t) can be verified as stability of a

bounded solution in [10]. The theorem is proved. �	
We have considered the problem of existence and uniqueness of strongly

unpredictable solutions. In what follows, we will search for quasilinear systems
with unpredictable solutions, which are not strongly unpredictable. For this reason,
assume that the following condition is valid.

(C5) The function f(t, x) is unpredictable in the sense of Definition 7.2.

Theorem 7.2 ([5]) Suppose that the conditions (C2)–(C5) hold. Then system
(7.1.2) admits a unique uniformly globally exponentially stable unpredictable
solution.

Proof One can easily see, proceeding in the way of the last theorem, that there exists
a unique solution ω(t) ∈ U for system (7.1.2). The solution is globally uniformly
asymptotically stable. What is left is to show that the unpredictability property is
valid.

We have that

ω(t + tn)− ω(t) = ω(un + tn)− ω(un)+
∫ t

un

A[ω(s + tn)− ω(s)]ds

+
∫ t

un

[f (tn + s, ω(s + tn))− f (s, ω(s))]ds, t ∈ R. (7.2.13)

One can find a positive number κ, natural numbers l, k and j = 1, . . . , p, such that

κ < σ, (7.2.14)

‖ω(t + s)− ω(t)‖ < ε0

k
, t ∈ R, |s| < κ, (7.2.15)

|fj (tn + un + s, x)− fj (un + s, x)| ≥ ε0/2, ‖x‖ < H, |s| < κ, n ∈ N, (7.2.16)
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κ
(

1/2 − (1
l

+ 2

k
)(L+ ‖A‖)

)
>

3

2l
. (7.2.17)

Denote Δ = ‖ω(tn + un) − ω(un)‖ and consider two alternative cases (i) Δ ≥
ε0/l and (ii) Δ < ε0/l.

(i) For the case Δ ≥ ε0/l, fix additionally a positive number κ1 sufficiently small
for

‖ω(t + s)− ω(t)‖ < ε0

4l
, t ∈ R, |s| < κ1.

Therefore,

‖ω(tn + t)− ω(t)‖ ≥ ‖ω(tn + un)− ω(un)‖ − ‖ω(un)− ω(t)‖ −
‖ω(tn + t)− ω(tn + un)‖ ≥ ε0

l
− ε0

4l
− ε0

4l
= ε

2l
, (7.2.18)

if t ∈ [un − κ1, un + κ1] and n ∈ N.

(ii) One can find that from (7.2.15) it follows that

‖ω(tn + t)− ω(t)‖ < ε0

l
+ ε0

k
+ ε0

k
= ε0

(1

l
+ 2

k

)
(7.2.19)

if t ∈ [un, un + κ].
We obtain from (7.2.14)–(7.2.17) that

|ωj (tn + t)− ωj (t)| ≥
∫ t

un

|fj (tn + s, ω(tn + s))− fj (s, ω(tn + s))|ds −
∫ t

un

|fj (s, ω(tn + s))− fj (s, ω(s))|ds −
∫ t

un

|
p∑

j=1

aji[ωi(s)− ωi(tn + s)]|ds −

|ωi(tn + un)− ωi(un)| ≥ κ

2
ε0 − κLε0

(1

l
+ 2

k

)
− κ‖A‖ε0

(1

l
+ 2

k

)
− ε0

l
≥ ε0

2l

for t ∈ [un + κ/2, un + κ].
Thus, the solution ω(t) is unpredictable. The asymptotical stability of the

solution ω(t) can be verified as stability of a bounded solution in [10]. The theorem
is proved. �	

7.3 Examples

First, we will construct two examples of unpredictable functions.

Example 1 Let {ψi} , i ∈ Z, be an unpredictable solution [2] of the logistic map
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λi+1 = μλi(1 − λi) (7.3.20)

with μ = 3.92. The sequence belongs to the unit interval [0, 1]. There exist a
positive number ε0 and sequences {ζn}, {ηn} both of which diverge to infinity such
that |ψi+ζn − ψi | → 0 as n → ∞ for each i in bounded intervals of integers and
|ψζn+ηn − ψηn | ≥ ε0 for each n ∈ N.

Let us take into account the function Θ : R → R defined by

Θ(t) =
∫ t

−∞
e−2(t−s)Ω(s)ds, t ∈ R, (7.3.21)

where Ω(t) is the piecewise constant function defined on the real axis through the
equation Ω(t) = ψi for t ∈ [i, i + 1), i ∈ Z.

One can confirm that Θ(t) is bounded on the whole real axis such that
sup
t∈R

|Θ(t)| ≤ 1/2.

Next, we will show that Θ(t) is an unpredictable scalar function.
Consider a fixed bounded and closed interval [α, β], of the axis and a positive

number ε. Without loss of generality one can assume that α and β are integers.
Let us fix a positive number ξ and an integer γ < α, which satisfy the following
inequalities e−2(α−γ ) < ε

2 and ξ [1−e−2(β−γ )] < ε. Let n be a large natural number
such that |Ω(t + ζn)−Ω(t)| < ξ on [γ, β]. Then for all t ∈ [α, β] we obtain that

|Θ(t + ζn)−Θ(t)| = |
∫ t

−∞
e−2(t−s)(Ω(s + ζn)−Ω(s))ds| =

|
∫ γ

−∞
e−2(t−s)(Ω(s + ζn)−Ω(s))ds +

∫ t

γ

e−2(t−s)(Ω(s + ζn)−Ω(s))ds| ≤
∫ γ

−∞
e−2(t−s)2ds +

∫ β

γ

e−2(t−s)ξds ≤ e−2(α−γ )+ ξ
2
[1 − e−2(β−γ )] < ε

2
+ ε

2
= ε.

Thus, |Θ(t + ζn)−Θ(t)| → 0 as n → ∞ uniformly on the interval [α, β].
Moreover, the following inequalities are valid, |Ω(t + ζn) − Ω(t)| = |ψζn+ηn −
ψηn | ≥ ε0, t ∈ [ηn, ηn + 1), n ∈ N.

Let us fix the numbers κ and n and consider two alternative cases: (i) |Θ(ηn +
ζn)−Θ(ηn)| < ε0

8 and (ii) |Θ(ηn + ζn)−Θ(ηn)| ≥ ε0
8 .

(i) Let κ < 1 be a positive number satisfying equation e−2κ = 2
3 . Using the

relation

Θ(t + ζn)−Θ(t) = Θ(ηn + ζn)−Θ(ηn)+
∫ t

ηn

e−2(t−s)(Ω(s + ζn)−Ω(s))ds (7.3.22)

we obtain that
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|Θ(t + ζn)−Θ(t)| ≥
∫ t

ηn

e−2(t−s)|Ω(s + ζn)−Ω(s))|ds

−|Θ(ηn + ζn)−Θ(ηn)| ≥
∫ t

ηn

e−2(t−s)ε0ds − ε0

8
≥ ε0

2
(1 − e−2κ)− ε0

8
= ε0

24

for t ∈ [ηn + κ, ηn + 1).
(ii) Let κ < 1 be a positive number satisfying equation 1 − e−2κ = ε0

12 . From the
relation (7.3.22) we get

|Θ(t + ζn)−Θ(t)| ≥ |Θ(ηn + ζn)

−Θ(ηn)| − |
∫ t

ηn

e−2(t−s)(Ω(s + ζn)−Ω(s))ds|

≥ ε0

8
−
∫ t

ηn

e−2(t−s)2ds ≥ ε0

8
− [1 − e−2κ ] = ε0

24

for t ∈ [ηn, ηn + κ).
Thus, Θ(t) is an (strongly) unpredictable function.

Example 2 ([5]) Consider the function g(t, x) = (arctan(x) + 2)Θ(t) of two
variables t and x, where Θ(t) is the function from defined by Eq. (7.3.21). The
function g(t, x) is continuously differentiable if t �= i, i ∈ Z, and it is bounded such

that sup
R×G

|g(t, x)| = π

4
+ 1.Moreover, sup

R×G
|∂g(t, x)
∂x

| = 1/2, t �= i, i ∈ Z.

Let us fix an arbitrary compact interval I ⊂ R and positive number ε. We have
that |Θ(t + tn)−Θ(t)| < ε for t ∈ I sufficiently large n. Consequently,

|g(t + tn, x)− g(t, x)| ≤ |arctan(x)+ 2||Θ(t + tn)−Θ(t)| < (π
2

+ 2)ε.

Hence, g(t + tn, x)→ g(t, x) as n→ ∞ uniformly for (t, x) ∈ I ×G.
On the other hand, it is true that |Θ(t+tn)−Θ(t)| ≥ ε̄0 for all t ∈ [un−κ, un+κ]

and n ∈ N. Therefore, we have

|g(t + tn, x)− g(t, x)| = |arctan(x)+ 2||Θ(t + ζn)−Θ(t)| ≥ (−π
2

+ 2)ε̄0,

for every (t, x) ∈ [un − κ, un + κ] × G,n ∈ N. Thus, g(t, x) is an unpredictable
(strongly) in t function.

Example 3 ([5]) Let us consider the system of differential equations
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Fig. 7.1 The coordinates of the solution, ψ(t), of system (7.3.23)

x′
1 = −3x1 − x2 − x3 + 0.51g(t, x3)

x′
2 = −x1 − 3x2 − x3 − 0.62g(t, x1)

x′
3 = x1 + x2 − x3 + 0.51g(t, x2),

(7.3.23)

where g(t, x) is the function from the previous example. The eigenvalues of the
matrix of coefficients are −2 and −3. It can be verified that conditions (C2)–(C5)
are valid for system (7.3.23) with γ = −2, K = 6, and L = 0.31. According to
Theorem 7.1, there exists the unique asymptotically stable unpredictable solution of
system (7.3.23). The simulation results for the solution of (7.3.23) with initial data
ψ1(0) = 0.05, ψ2(0) = −0.1, ψ3(0) = 0.15 are depicted in Fig. 7.1. The figure
confirms the irregularity of the dynamics.
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Chapter 8
Li–Yorke Chaos in Hybrid Systems on a
Time Scale

In this chapter, we apply the method of replication of chaos introduced and
developed in our studies [1–9, 11–13, 15–17, 19]. We rigorously prove the presence
of chaos in dynamic equations on time scales by using the reduction technique
to impulsive differential equations [20]. The results are based on the Li–Yorke
definition of chaos. An illustrative example is presented by means of a Duffing
equation on a time scale.

8.1 Introduction

The concept of chaos has come into prominence starting with the studies of
Poincaré [23], Cartwright and Littlewood [31], Levinson [41], Lorenz [44], and
Ueda [50]. Another subject that is also popular is the theory of time scales, which
is first presented by Hilger [35]. Both concepts have many applications in various
disciplines such as mechanics, electronics, neural networks, population models, and
economics. See, for instance, [25, 26, 32, 33, 45, 46, 48, 49, 51] and the references
therein.

Dynamic equations on time scales (DETS) have been extensively investigated in
the literature [26, 38]. However, to the best of our knowledge, the presence of chaos
has never been achieved in DETS. Motivated by the deficiency of mathematical
methods for the investigation of chaos in such equations, we suggest the results of
the present chapter.

The studies [2, 4, 5, 10–12, 14] were concerned with the extension of chaos
in continuous-time systems that possess asymptotically stable and hyperbolic
equilibria as well as orbitally stable limit cycles. It was found in these papers that
the solutions admit the same type of chaos as the perturbations. The paper [2] deals
with the general technique of dynamical synthesis, which was developed in [27–30].
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In the present chapter, we develop the concept of Li–Yorke chaos for DETS and
prove its existence rigorously. Our results are appropriate to obtain chaotic DETS
with arbitrary high dimensions.

Throughout the chapter, we will denote by R, Z, and N the sets of real
numbers, integers, and natural numbers, respectively. In this chapter, we consider
the following equation:

yΔ(t) = Ay(t)+ f (t, y(t))+ g(t, ζ ), t ∈ T0, (8.1.1)

where A is a constant n× n real valued matrix, the function f : T0 × R
n → R

n is
rd-continuous and the function g(t, ζ ) is defined through the equation g(t, ζ ) = ζk
for t ∈ [θ2k−1, θ2k], k ∈ Z, such that ζ = {ζk} is a sequence generated by the map

ζk+1 = F(ζk), (8.1.2)

where ζ0 ∈ Λ, F : Λ → Λ is a continuous function and Λ is a compact subset
of Rn. In Eq. (8.1.1) the time scale T0 is defined as T0 = ⋃∞

k=−∞[θ2k−1, θ2k] in
which {θk} is a strictly increasing sequence of real numbers such that |θk| → ∞ as
|k| → ∞ and

∑
−∞(θ2k − θ2k−1) = ∞,∑∞

(θ2k − θ2k−1) = ∞.
In the present chapter, we investigate the existence of chaos in the dynamics

of Eq. (8.1.1). The system under discussion is a hybrid one, since it combines the
continuous dynamics on the time scale with the discrete equation used in the right-
hand side of the system. We theoretically prove that chaos exists in (8.1.1) provided
that the map (8.1.2) is chaotic. For that purpose, we make use of the reduction
technique to impulsive differential equations, which was presented by Akhmet and
Turan [20]. As far as we know, there is no paper on chaos in dynamics on time scales.
The reason is that the dynamics is essentially non-autonomous and it is difficult to
verify the ingredients of chaos for unspecified time scales. That is why we utilize
the time scale introduced in the papers [20, 21] and the method of reduction of the
dynamics to impulsive differential equations [20].

The rest of this chapter is organized as follows. In Sect. 8.2, some preliminary
results as well as basic concepts about DETS are mentioned. Section 8.3 is devoted
to the bounded solutions of (8.1.1). In Sect. 8.4, we give the description of the
chaos of equation (8.1.1) and prove its presence rigorously. An example concerning
Duffing equations on a time scale is presented in Sect. 8.5 to support the theoretical
results. Finally, some concluding remarks are given in Sect. 8.6.

8.2 Preliminaries

The basic concepts on differential equations on time scales that are needed in this
chapter are as follows [26, 38–40]. A time scale is a nonempty closed subset of R.
On a time scale T, the forward and backward jump operators are defined as σ(t) =
inf {s ∈ T : s > t} and ρ(t) = sup {s ∈ T : s < t} , respectively. We say that a point
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t ∈ T is right-scattered if σ(t) > t and right-dense if σ(t) = t . In a similar way,
if ρ(t) < t, then t ∈ T is called left-scattered, and otherwise it is called left-dense.
Besides, a function h : T × R

n → R
n is called rd-continuous if it is continuous

at each (t, u) ∈ T × R
n with right-dense t, and the limits lim

(r,ν)→(t−,u)
h(r, ν) =

h(t−, u) and lim
ν→u

h(t, ν) = h(t, u) exist at each (t, u) with left-dense t. At a right-

scattered point t ∈ T, the Δ-derivative of a continuous function ϑ is defined as

ϑΔ (t) = ϑ (σ (t))− ϑ (t)
σ (t)− t . On the other hand, at a right-dense point t, we have

ϑΔ (t) = lim
r→t

ϑ (t)− ϑ (r)
t − r provided that the limit exists.

It is worth noting that on the time scale T0 used in system (8.1.1) the points
θ2k−1, k ∈ Z, are left-scattered and right-dense, and the points θ2k , k ∈ Z, are right-
scattered and left-dense. Moreover, σ(θ2k) = θ2k+1, ρ(θ2k+1) = θ2k , k ∈ Z, and
σ(t) = ρ(t) = t for any t ∈ T0 except at the points θk, k ∈ Z.

Suppose that the time scale T0 used in the description of Eq. (8.1.1) satisfies the
ω-property. That is, there exists a number ω > 0 such that t + ω ∈ T0 whenever
t ∈ T0. In this case, there exists a natural number p such that δk+p = δk for all
k ∈ Z, where δk = θ2k+1 − θ2k [20]. Suppose that p is the minimal among those
numbers.

We assume without loss of generality that θ−1 < 0 < θ0. Define on the set
T

′
0 = T0 \⋃∞

k=−∞ {θ2k−1} the ψ-substitution [20] as

ψ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t −
∑

0<θ2k<t

δk, t ≥ 0,

t +
∑

t≤θ2k<0

δk, t < 0.
(8.2.3)

The function ψ(t) is one-to-one, ψ(0)= 0, ψ(T′
0)=R and lim

t→∞, t∈T′
0

ψ(t)=∞.
According to the results of the paper [20], dψ(t)/dt = 1, t ∈ T

′
0, and

dψ−1(s)/ds = 1 provided that s �= sk, k ∈ Z, where

ψ−1(s) =

⎧
⎪⎪⎨

⎪⎪⎩

s +
∑

0<sk<s

δk, s ≥ 0,

s −
∑

s≤sk<0

δk, s < 0,
(8.2.4)

and the sequence {sk} , k ∈ Z, is defined through the equation sk = ψ(θ2k). The
function ψ−1 is piecewise continuous with discontinuities of the first kind at the
points sk, k ∈ Z, such that ψ−1(sk+) − ψ−1(sk) = δk, where ψ−1(sk+) =
lim
s→s+k

ψ−1(s), the sequence {sk} is (ψ(ω), p)-periodic, i.e., sk+p = sk + ψ(ω) for

all k ∈ Z, and ψ(t + ω) = ψ(t) + ψ(ω), t ∈ T
′
0. Moreover, if a function h(t) is

ω-periodic on T0, then h(ψ−1(s)) is ψ(ω)-periodic, and vice versa.
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Let us denote by Crd (T0) the set of all functions which are rd-continuous on T0,

and let C 1
rd (T0) ⊂ Crd (T0) be the set of all continuously differentiable functions

on T0, assuming that the functions have a one sided derivative at θk, k ∈ Z.

On the other hand, we say that a function defined on R is an element of the set
PC 0 if it is left-continuous on R and continuous on R \ ⋃∞

k=−∞ {sk} , and it
has discontinuities of the first kind at the points sk, k ∈ Z. Moreover, a function
h : R → R

n belongs to the set PC 1
0 if both h and h′ are elements of PC 0, where

h′(sk) = lim
s→s−k

h(s)− h(sk)
s − sk , k ∈ Z. It was shown by Akhmet and Turan [20] that

a function ϑ(t) belongs to Crd (T0)
(
C 1
rd (T0)

)
if and only if ϑ(ψ−1(s)) belongs to

PC 0

(
PC 1

0

)
.

In accordance with the equation yΔ(θ2k) = y(θ2k+1)− y(θ2k)

θ2k+1 − θ2k
, k ∈ Z, system

(8.1.1) can be written as

y′(t) = Ay(t)+ f (t, y(t))+ g(t, ζ ), t ∈ T0,

y(θ2k+1) = δkAy(θ2k)+ f (θ2k, y(θ2k))δk + ζkδk + y(θ2k).
(8.2.5)

Applying the transformation s = ψ(t) to (8.2.5) we obtain the following impulsive
system:

x′(s) = Ax(s)+ f (ψ−1(s), x(s))+ g(ψ−1(s), ζ ), s �= sk,
Δx|s=sk = δkAx(sk)+ f (ψ−1(sk), x(sk))δk + ζkδk, (8.2.6)

where x(s) = y(ψ−1(s)), Δx|s=sk = x(sk+) − x(sk), k ∈ Z, and x(sk+) =
lim
s→s+k

x(s).

In what follows, we will make use of the usual Euclidean norm for vectors and
the norm induced by the Euclidean norm for square matrices [36].

The following conditions are required throughout the paper.

(C1) det(I + δkA) �= 0 for all k ∈ Z, where I is the n× n identity matrix;
(C2) All eigenvalues of the matrix eψ(ω)AΠp−1

j=0 (I + δjA) lie inside the unit circle;
(C3) There exists a positive numberMf such that sup

t∈T0, y∈Rn
‖f (t, y)‖ ≤ Mf ;

(C4) There exists a positive number Lf such that ‖f (t, y1)− f (t, y2)‖ ≤
Lf ‖y1 − y2‖ for all t ∈ T0 and y1, y2 ∈ R

n.

Let us denote by X(s, r) the transition matrix of the linear homogeneous system

x′(s) = Ax(s), s �= sk,
Δx|s=sk = δkAx(sk). (8.2.7)

Under the conditions (C1) and (C2) there exist positive numbers N and λ such that
‖X(s, r)‖ ≤ Ne−λ(s−r) for s ≥ r [9, 47].
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The following conditions are also needed.

(C5) NLf

(
1

λ
+ pδ̄

1 − e−λψ(ω)
)
< 1, where δ̄ = max

0≤k≤p−1
δk;

(C6) −λ+NLf + p

ψ(ω)
ln
(
1 +NLf δ̄

)
< 0;

(C7) f (t + ω, y) = f (t, y) for all (t, y) ∈ T0 × R
n.

The next section is devoted to the bounded solutions of system (8.1.1).

8.3 Bounded Solutions

Under the conditions (C1)–(C5), one can verify by using the results of [9, 47] that
for a fixed sequence ζ = {ζk} , k ∈ Z, there exists a unique bounded on R solution
φζ (s) of (8.2.6), which satisfies the relation

φζ (s) =
∫ s

−∞
X(s, r)

[
f
(
ψ−1(r), φζ (r)

)
+ g(ψ−1(r), ζ

)]
dr

+
∑

−∞<sk<s
X(s, sk+)

[
f
(
ψ−1(sk), φζ (sk)

)+ ζk
]
δk.

(8.3.8)

Moreover, sup
s∈R

∥∥φζ (s)
∥∥ ≤ K0, where

K0 = N(Mf +MF)
(1

λ
+ pδ̄

1 − e−λψ(ω)
)

and

MF = max
η∈Λ ‖F(η)‖ .

Therefore, for a fixed sequence ζ = {ζk} , the function ϕζ (t) = φζ (ψ(t)) satisfying
ϕζ (θ2k+1) = φζ (sk+), k ∈ Z, is the unique solution of (8.2.5), and hence of (8.1.1),
which is bounded on T0 such that sup

t∈T0

∥∥ϕζ (t)
∥∥ ≤ K0.

We say that the bounded solution ϕζ (t) attracts a solution y(t) of (8.1.1) if∥∥y(t)− ϕζ (t)
∥∥ → 0 as t → ∞, t ∈ T0. The attractiveness feature of the bounded

solutions of (8.1.1) is mentioned in the next assertion.

Lemma 8.3.1 ([18]) If the conditions (C1)–(C6) are valid, then for a fixed
sequence ζ, the bounded solution ϕζ (t) attracts all other solutions of (8.1.1).

Proof Consider an arbitrary solution y(t), y(t0) = y0, of (8.1.1) for some t0 ∈ T0
and y0 ∈ R

n. Assume without loss of generality that t0 �= θ2k−1 for any k ∈ Z. Let
s0 = ψ(t0) and x(s) = y(ψ−1(s)). The relation
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x(s)− φζ (s) = X(s, s0)(y0 − φζ (s0))

+
∫ s

s0

[
f
(
ψ−1(r), x(r)

)− f (ψ−1(r), φζ (r)
)]
dr

+
∑

s0≤sk<s
X(s, sk+)

[
f
(
ψ−1(sk), x(sk)

)− f (ψ−1(sk), φζ (sk)
)]
δk

implies for s ≥ s0 that

∥∥x(s)−φζ (s)
∥∥ ≤ Ne−λ(s−s0)

∥∥∥y0 −φζ (s0)

∥∥∥ +
∫ s

s0
NLf e

−λ(s−r) ∥∥x(r)−φζ (r)
∥∥ dr

+
∑

s0≤sk<s
NLf δ̄e

−λ(s−sk) ∥∥x(sk)− φζ (sk)
∥∥ .

Applying the Gronwall–Bellman Lemma for piecewise continuous functions [9] to
the last inequality, one can obtain for s ≥ s0 that

∥∥x(s)−φζ (s)
∥∥ ≤ N(1+NLf δ̄)p

∥∥∥y0 −φζ (s0)

∥∥∥ e[−λ+NLf+p ln(1+NLf δ̄)/ψ(ω)](s−s0).

Therefore, we have for t ≥ t0, t ∈ T0, that

∥∥y(t)− ϕζ (t)
∥∥ ≤ N(1 +NLf δ̄)p

∥∥∥y0 − ϕζ (t0)
∥∥∥

×e[−λ+NLf+p ln(1+NLf δ̄)/ψ(ω)](ψ(t)−ψ(t0)).

Consequently,
∥∥y(t)− ϕζ (t)

∥∥→ 0 as t → ∞, t ∈ T0. �	
In the next section, we will deal with the presence of chaos in system (8.1.1).

8.4 The Chaotic Dynamics

The map (8.1.2) is called Li–Yorke chaotic on Λ if [22, 24, 37, 42, 43]: (i) For
every natural number p0, there exists a p0-periodic point of F in Λ; (ii) There is
an uncountable set S ⊂ Λ, the scrambled set, containing no periodic points, such
that for every ζ 1, ζ 2 ∈ S with ζ 1 �= ζ 2, we have lim sup

k→∞
∥∥Fk(ζ 1)− Fk(ζ 2)

∥∥ > 0

and lim inf
k→∞

∥∥Fk(ζ 1) − Fk(ζ 2)
∥∥ = 0; (iii) For every ζ 1 ∈ S and a periodic point

ζ 2 ∈ Λ, we have lim sup
k→∞

∥∥Fk(ζ 1)− Fk(ζ 2)
∥∥ > 0.
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Let us denote by Θ the set of all sequences ζ = {ζk} , k ∈ Z, obtained by

Eq. (8.1.2). A pair of sequences ζ = {ζk} , ζ̃ =
{
ζ̃k

}
∈ Θ is proximal if lim inf

k→∞
∥∥ζk−

ζ̃k
∥∥ = 0.Moreover, the pair is frequently separated if lim sup

k→∞
∥∥ζk − ζ̃k

∥∥ > 0.

We say that a pair ϕζ (t), ϕζ̃ (t) of bounded solutions of (8.1.1) is proximal if for
an arbitrary small real number ε > 0 and an arbitrary large natural number E, there
exists an integerm such that

∥∥ϕζ (t)−ϕζ̃ (t)
∥∥ < ε for all t ∈ [θ2m−1, θ2(m+E)]∩T0.

On the other hand, the pair ϕζ (t), ϕζ̃ (t) is frequently (ε0,Δ)-separated if there exist
numbers ε0 > 0, Δ > 0 and infinitely many disjoint intervals Jq ⊂ T0, q ∈ N,

each with a length no less than Δ, such that
∥∥ϕζ (t) − ϕζ̃ (t)

∥∥ > ε0 for each t from
these intervals. Furthermore, a pair ϕζ (t), ϕζ̃ (t) of solutions of (8.1.1) is called a
Li–Yorke pair if it is proximal and frequently (ε0,Δ)-separated for some positive
numbers ε0 and Δ.

Let A be the collection of all bounded solutions ϕζ (t) of (8.1.1) such that ζ ∈ Θ.
The description of Li–Yorke chaos for system (8.1.1) is as follows.

Definition 8.1 ([18]) System (8.1.1) is called Li–Yorke chaotic if:

(i) There exists an mω-periodic solution of (8.1.1) for each m ∈ N;
(ii) There exists an uncountable set Σ ⊂ A , the scrambled set, which does not

contain any periodic solution, such that any pair of different solutions of (8.1.1)
inside Σ is a Li–Yorke pair;

(iii) For any ϕζ (t) ∈ Σ and any periodic solution ϕ
ζ̂
(t) ∈ A , the pair ϕζ (t), ϕζ̂ (t)

is frequently (ε0,Δ)-separated for some positive numbers ε0 and Δ.

One can verify that the sequence {κk} defined through the equation κk = θ2k −
θ2k−1, k ∈ Z, is p-periodic. In what follows, we will denote κ = min

0≤k≤p−1
κk

and κ = max
0≤k≤p−1

κk. Moreover, let i((a0, b0)) be the number of the terms of the

sequence {sk} that belong to the interval (a0, b0), where a0, b0 ∈ R with a0 < b0.

One can verify that i((a0, b0)) ≤ p + p

ψ(ω)
(b0 − a0).

The next assertion is about the proximality feature of bounded solutions of
Eq. (8.1.1).

Lemma 8.4.2 ([18]) Suppose that the conditions (C1)–(C6) are fulfilled. If a pair
of sequences ζ, ζ̃ ∈ Θ is proximal, then the same is true for the pair ϕζ (t), ϕζ̃ (t) ∈
A .

Proof Set R1 = 2N(Mf + MF)
(1

λ
+ pδ̄

1 − e−λψ(ω)
)

and α = λ − NLf −
p

ψ(ω)
ln(1 +NLf δ̄). Suppose that γ is a real number which satisfies the inequality

γ ≥ 1+N
(1

λ
+ δ̄p

1 − e−λψ(ω)
)(

1+ NLf (1 +NLf δ̄)p
α

+ NLf δ̄p(1 +NLf δ̄)p
1 − e−αψ(ω)

)
.
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Fix an arbitrary small number ε > 0 and an arbitrary large natural number E such
that

E ≥ 1

ακ
ln
(γR1(1 +NLf δ̄)p

ε

)
.

We assume without loss of generality that ε ≤ 2MF . Since the pair ζ, ζ̃ is proximal,
there exists an integer k0 such that

∥∥∥g
(
t, ζ
)− g(t, ζ̃ )

∥∥∥ < ε/γ

for t ∈ [θ2k0−1, θ2(k0+2E)] ∩ T0. In this case,

∥∥∥g
(
ψ−1(s), ζ

)− g(ψ−1(s), ζ̃
)∥∥∥ < ε/γ

for s ∈ (sk0−1, sk0+2E].
The bounded solutions φζ (s) = ϕζ (ψ−1(s)) and φζ̃ (s) = ϕζ̃ (ψ−1(s)) of (8.2.6)

satisfy the relation

φζ (s)− φζ̃ (s) =
∫ s

−∞
X(s, r)

[
f
(
ψ−1(r), φζ (r)

)− f (ψ−1(r), φζ̃ (r)
)

+g(ψ−1(r), ζ
)− g(ψ−1(r), ζ̃

)]
dr

+
∑

−∞<sk<s
X(s, sk+)

[
f
(
ψ−1(sk), φζ (sk)

)− f (ψ−1(sk), φζ̃ (sk)
)+ ζk − ζ̃k

]
δk.

Thus, for s ∈ (sk0−1, sk0+2E], we have that

∥∥∥φζ (s)− φζ̃ (s)
∥∥∥ ≤ R1e

−λ(s−sk0−1) + Nε

γλ

(
1 − e−λ(s−sk0−1)

)

+ Nδ̄pε

γ (1 − e−λψ(ω))
(

1 − e−λ(s−sk0−1+ψ(ω))
)

+
∫ s

sk0−1

NLf e
−λ(s−r)

∥∥∥φζ (r)− φζ̃ (r)
∥∥∥dr

+
∑

sk0−1<sk<s

NLf δ̄e
−λ(s−sk)

∥∥∥φζ (sk)− φζ̃ (sk)
∥∥∥.

(8.4.9)

Let us define the functions u(s) = eλs
∥∥∥φζ (s) − φζ̃ (s)

∥∥∥ and v(s) = β1 + β2e
λs,

where

β1 = R1e
λsk0−1 − Nε

γλ
eλsk0−1 − Nδ̄pε

γ (1 − e−λψ(ω))e
λ(sk0−1−ψ(ω))
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and

β2 = Nε

γ

(
1

λ
+ δ̄p

1 − e−λψ(ω)
)
.

One can confirm by means of (8.4.9) that

u(s) ≤ v(s)+
∫ s

sk0−1

NLf u(r)dr +
∑

sk0−1<sk<s

NLf δ̄u(sk).

It can be shown by applying the analogue of the Gronwall’s Lemma for piecewise
continuous functions that

u(s) ≤ v(s)+
∫ s

sk0−1

NLf (1 +NLf δ̄)i((r,s))eNLf (s−r)v(r)dr

+
∑

sk0−1<sk<s

NLf δ̄(1 +NLf δ̄)i((sk,s))eNLf (s−sk)v(sk).

Accordingly, the inequality

u(s) ≤ β1(1 +NLf δ̄)pe(λ−α)(s−sk0−1) + β2e
λs

+NLf β2(1 +NLf δ̄)p
α

eλs
(

1 − e−α(s−sk0−1)
)

+NLf δ̄pβ2(1 +NLf δ̄)p
1 − e−αψ(ω) eλs

(
1 − e−α(s−sk0−1+ψ(ω))

)

is valid. Therefore,

∥∥∥φζ (s)− φζ̃ (s)
∥∥∥ < R1(1 +NLf δ̄)pe−α(s−sk0−1)

+Nε
γ

(
1

λ
+ δ̄p

1 − e−λψ(ω)
)(

1 + NLf (1 +NLf δ̄)p
α

+ NLf δ̄p(1 +NLf δ̄)p
1 − e−αψ(ω)

)

for s ∈ (sk0−1, sk0+2E].
Suppose that s belongs to the interval (sk0−1+E, sk0+2E]. Because the number E

is sufficiently large such thatE ≥ 1

ακ
ln
(γR1(1 +NLf δ̄)p

ε

)
and s−sk0−1 > Eκ,

we have

R1(1 +NLf δ̄)pe−α(s−sk0−1) <
ε

γ
.

Hence,
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∥∥∥φζ (s)− φζ̃ (s)
∥∥∥

<
ε

γ
+ Nε

γ

(
1

λ
+ δ̄p

1 − e−λψ(ω)
)(

1 + NLf (1 +NLf δ̄)p
α

+ NLf δ̄p(1 +NLf δ̄)p
1 − e−αψ(ω)

)

≤ ε.

The last inequality yields
∥∥∥ϕζ (t)− ϕζ̃ (t)

∥∥∥ < ε for t ∈ [θ2(k0+E)−1, θ2(k0+2E)]∩T0.

Consequently, the couple ϕζ (t), ϕζ̃ (t) is proximal. �	
The frequent separation feature of the bounded solutions of (8.1.1) is presented

in the next lemma.

Lemma 8.4.3 ([18]) Under the conditions (C1)–(C5), if a pair of sequences ζ, ζ̃ ∈
Θ is frequently separated, then the pair of solutions ϕζ (t), ϕζ̃ (t) ∈ A is frequently
(ε0,Δ)-separated for some positive numbers ε0 and Δ.

Proof Because the pair of sequences ζ, ζ̃ is frequently separated, there exists a
positive number ε̄0 and a sequence

{
kq
}

of integers satisfying kq → ∞ as q → ∞
such that

∥∥∥ζkq − ζ̃kq
∥∥∥ > ε̄0 for each q ∈ N.

Let us fix a natural number q. For s ∈ (skq−1, skq ], the solutions φζ (s) =
ϕζ (ψ

−1(s)) and φζ̃ (s) = ϕζ̃ (ψ−1(s)) of (8.2.6) satisfy the relations

φζ (s) = φζ (skq−1+)+
∫ s

skq−1

[Aφζ (r)+ f (ψ−1(r), φζ (r))+ ζkq ]dr

and

φζ̃ (s) = φζ̃ (skq−1+)+
∫ s

skq−1

[Aφζ̃ (r)+ f (ψ−1(r), φζ̃ (r))+ ζ̃kq ]dr,

respectively. Therefore, one can obtain that

∥∥∥φζ (skq )− φζ̃ (skq )
∥∥∥ > ε̄0κ −

∥∥∥φζ (skq−1+)− φζ̃ (skq−1+)
∥∥∥

−
∫ skq

skq−1

(‖A‖ + Lf
) ∥∥∥φζ (r)− φζ̃ (r)

∥∥∥ dr

≥ ε̄0κ − [1 + (‖A‖ + Lf
)
κ] sup
s∈(skq−1,skq ]

∥∥∥φζ (s)− φζ̃ (s)
∥∥∥ .

The last inequality implies that
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sup
s∈(skq−1,skq ]

∥∥∥φζ (s)− φζ̃ (s)
∥∥∥ >

ε̄0κ

2 + (‖A‖ + Lf
)
κ
.

Define the number

Δ = min

{
κ

2
,

ε̄0κ

4[2 + (‖A‖ + Lf )κ](K0 ‖A‖ +Mf +MF)
}
.

At first, suppose that sup
s∈(skq−1,skq ]

∥∥∥φζ (s)− φζ̃ (s)
∥∥∥ =

∥∥∥φζ (η)− φζ̃ (η)
∥∥∥ for some

η ∈ (skq−1, skq ], and let

νq =
{
η, if η ≤ (skq−1 + skq )/2,
η −Δ, if η > (skq−1 + skq )/2.

It can be verified for s ∈ J̃q = [νq, νq +Δ] that

∥∥∥φζ (s)− φζ̃ (s)
∥∥∥ ≥

∥∥∥φζ (η)− φζ̃ (η)
∥∥∥−

∣∣∣∣

∫ s

η

‖A‖
∥∥∥φζ (r)− φζ̃ (r)

∥∥∥ dr
∣∣∣∣

−
∣∣∣∣

∫ s

η

∥∥∥f (ψ−1(r), φζ (r))− f (ψ−1(r), φζ̃ (r))

∥∥∥ dr
∣∣∣∣−
∣∣∣∣

∫ s

η

∥∥ηkq − η̃kq
∥∥ dr

∣∣∣∣

>
ε̄0κ

2[2 + (‖A‖ + Lf )κ] .

On the other hand, the inequality
∥∥∥φζ (s)− φζ̃ (s)

∥∥∥ >
ε̄0κ

2[2 + (‖A‖ + Lf )κ] is true

also for s ∈ J̃q = (skq−1, skq−1 +Δ] in the case that sup
s∈(skq−1,skq ]

∥∥∥φζ (s)− φζ̃ (s)
∥∥∥ =

∥∥∥φζ (skq−1+)− φζ̃ (skq−1+)
∥∥∥ .

Thus,
∥∥∥ϕζ (t)− ϕζ̃ (t)

∥∥∥ > ε0 for each t from the intervals Jq, q ∈ N, where ε0 =
ε̄0κ

2[2 + (‖A‖ + Lf )κ] and Jq = ψ−1(J̃q). Consequently, the pair ϕζ (t), ϕζ̃ (t) ∈ A

is frequently (ε0,Δ)-separated. �	
The main result of the chapter is mentioned in the following theorem.

Theorem 8.1 ([18]) Assume that the conditions (C1)–(C7) are fulfilled. If the
map (8.1.2) is Li–Yorke chaotic on Λ, then system (8.1.1) chaotic in the sense of
Definition 8.1.

Proof Suppose that ζ = {ζk} is a p0-periodic solution of (8.1.2) for some p0 ∈ N.

In this case, the function g(t, ζ ), which is used in the right-hand side of Eq. (8.1.1),
is mω-periodic, where m = lcm {p0, p} /p. Making use of the conditions (C5)
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and (C7), one can verify that the bounded solution ϕζ (t) of (8.1.1) is mω-periodic.
Therefore, (8.1.1) possesses an mω-periodic solution for each m ∈ N.

Let us denote by Σ the set consisting of bounded solutions ϕζ (t) of (8.1.1) for
which the initial value ζ0 of the sequence ζ = {ζk} belongs to the scrambled set
S of the map (8.1.2). Because the set S is uncountable, Σ is also uncountable.
Moreover, Σ does not contain any periodic solutions, since no periodic points of F
take place inside S .

According to the Lemmas 8.4.2 and 8.4.3, any pair of different solutions insideΣ
is a Li–Yorke pair, i.e., Σ is a scrambled set. Besides, Lemma 8.4.3 implies that for
any solution ϕζ (t) ∈ Σ and any periodic solution ϕ

ζ̂
(t) ∈ A , the pair ϕζ (t), ϕζ̂ (t)

is frequently (ε0,Δ)-separated for some positive numbers ε0 and Δ. Consequently,
system (8.1.1) is Li–Yorke chaotic. �	

In the next section, a Duffing equation on a time scale will be utilized to illustrate
the theoretical results.

8.5 An Example

Let T0 be the time scale defined by T0 = ⋃∞
k=−∞[θ2k−1, θ2k], where θk = 3k +

1

2

(
1 + (−1)k

)
, k ∈ Z.We consider the forced Duffing equation,

yΔΔ(t)+ 5yΔ(t)+ 35

2
y(t)+ 0.02y3(t) = 0.1 cos

(π
3
t
)

+ g(t, ζ ), (8.5.10)

where t ∈ T0. The function g(t, ζ ) is defined through the equation g(t, ζ ) = ζk for
t ∈ [θ2k−1, θ2k], k ∈ Z, in which the sequence ζ = {ζk} , ζ0 ∈ [0, 1], is generated
by the logistic map

ζk+1 = 3.9ζk(1 − ζk). (8.5.11)

The time scale T0 satisfies the ω-property with ω = 6, and one can confirm that
ψ(ω) = 4 and δk = 2 for all k ∈ Z, where δk = θ2k+1 − θ2k. According to the
results of the paper [42], the map (8.5.11) possesses Li–Yorke chaos. It is worth
noting that the unit interval [0, 1] is invariant under the iterations of the map [34].

By using the variables y1 = y and y2 = yΔ, Eq. (8.5.10) can be reduced to the
system

yΔ1 (t) = y2(t),

yΔ2 (t) = −17.5y1(t)− 5y2(t)− 0.02y3
1 (t)+ 0.1 cos

(π
3
t
)

+ g(t, ζ ), (8.5.12)

which is in the form of (8.1.1), where
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A =
(

0 1
−17.5 −5

)

and

f (t, y1, y2) =
(

0

−0.02y3
1 + 0.1 cos

(π
3
t
)
)

.

One can show that

eAt = e− 5
2 tQ

⎛

⎝
cos
(

3
√

5
2 t
)

− sin
(

3
√

5
2 t
)

sin
(

3
√

5
2 t
)

cos
(

3
√

5
2 t
)

⎞

⎠Q−1,

where

Q =
⎛

⎝
0 1

3
√

5

2
−5

2

⎞

⎠ ,

and the eigenvalues of the matrix e4A(I + 2A) are inside the unit circle, where I is
the 2 × 2 identity matrix.

Because the coefficient of the nonlinear term y3
1(t) in (8.5.12) is sufficiently small

in absolute value, it can be numerically verified for ζ0 ∈ [0, 1] that the bounded
solutions of system (8.5.12) lie inside the region

D =
{
(y1, y2) ∈ R

2 : −0.01 ≤ y1 ≤ 0.07,−0.12 ≤ y2 ≤ 0.07
}
.

Therefore, it is reasonable to consider the dynamics of (8.5.12) inside D .
The conditions (C5) and (C6) hold for (8.5.12) with N = 193, λ = 1.6, p = 1,

δ̄ = 2, and Lf = 0.000294. In accordance with Theorem 8.1, system (8.5.12) is
Li–Yorke chaotic. It is worth noting that the chaoticity of the logistic map (8.5.11)
gives rise to the presence of chaos in (8.5.12). Moreover, Lemma 8.3.1 implies that
for a fixed solution ζ = {ζk} of (8.5.11) the unique bounded solution of (8.5.12)
attracts all other solutions of the system.

Let us use the solution ζ = {ζk} of (8.5.11) with ζ0 = 0.19 in system (8.5.12).
We depict in Fig. 8.1 the y1-coordinate of the solution of (8.5.12) corresponding to
the initial data y1(0) = 0.019 and y2(0) = −0.004. Figure 8.1 supports the result
of Theorem 8.1 such that system (8.5.12) possesses chaos. Moreover, the trajectory
of the same solution in the y1 − y2 plane is represented in Fig. 8.2, which reveals
the existence of a chaotic attractor in the dynamics of (8.5.12).



122 8 Li–Yorke Chaos in Hybrid Systems on a Time Scale

0 20 40 60 80 100 120 140 160 180 200

0

0.02

0.04

0.06

t

y 1

Fig. 8.1 The chaotic behavior in the solution of system (8.5.12)
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Fig. 8.2 The chaotic trajectory of system (8.5.12)

8.6 Notes

The replication of chaos technique is applied to prove rigorously the existence
of chaos in dynamic equations on time scales, where the right-hand side of
the equations depends on a chaotic map. The reduction technique to impulsive
differential equations presented in the paper [20] is used in our investigations. A
mathematical description of chaos in the sense of Li–Yorke is provided for DETS,
and the ingredients of the Li–Yorke chaos, proximality and frequent separation, are
theoretically proved. The results can be used to obtain chaotic mechanical systems
and electrical circuits on time scales without any restriction in the dimension. The
results of this chapter are published in paper [18].
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equation ÿ − k(1 − y2)′y + y = bkcos(λt + a), k large. J. Lond. Math. Soc. 20, 180–189
(1945)
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Chapter 9
Homoclinic and Heteroclinic Motions in
Economic Models

In this chapter, the technique of replication of chaos is utilized to prove the presence
of homoclinic and heteroclinic motions in the dynamics of economic models
perturbed with exogenous shocks. An illustrative example based on the Kaldor
model of the aggregate economy is presented.

9.1 Introduction

Poincarés discovery of homoclinic orbits in the three body problem is one of the
most significant discoveries in the theory of dynamical systems [20, 26]. A criterion
for the presence of chaos is the existence of a structurally stable Poincaré homoclinic
orbit [32, 39, 40]. Likewise homoclinic orbits, heteroclinic orbits also take part in
the investigation of chaotic dynamics [23, 24].

The existence of homoclinic and heteroclinic motions in economic models
has been extensively investigated in the literature [1, 2, 31, 37, 42]. The paper
[1] deals with the occurrence of homoclinic and heteroclinic connections in a
nonlinear overlapping generations (OLG) model with credit market imperfection
and endogenous labor supply. By means of a singular perturbation method, the
presence of transverse homoclinic points to the golden rule steady state in a two-
dimensional Diamond-type OLG model was shown in [42]. In paper [2], the
presence of homoclinic tangles associated with saddle points or saddle cycles of
different period was demonstrated for a particular version of discrete-time Kaldor
business cycle model. Homoclinic bifurcations in a class of models representing
heterogeneous agents with adaptively rational rules were investigated within the
scope of the paper [31]. Moreover, the existence of a homoclinic bifurcation was
explored in [37] by using numerical simulations.
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Chaos in the sense of Devaney [26] as well as the one obtained through period-
doubling cascade [27] were investigated in our study [9] for economic models
perturbed with exogenous shocks. It was shown in the paper [10] that exogenous
shocks can cause economic models to exhibit chaotic business cycles. Other chaos
generation techniques in systems of differential equations can be found in [4–6, 11–
16, 18, 19]. In the present chapter, we theoretically prove that exogenous shocks
are capable of generating homoclinic and heteroclinic motions in the continuous-
time dynamics of economic systems, and we numerically demonstrate the presence
of such motions in the Kaldor model of the aggregate economy. The usage of
exogenous shocks in the formation of homoclinic and heteroclinic motions is the
main novelty.

Exogenous shocks in a macroeconomic model of a country can occur in two
types [9]. The first one is the generation of shocks that are either completely outside
of human control or are shaped in some worldwide marketplace. One can think of
the economic fluctuations caused by weather phenomena, commodity prices that
are determined in the world markets, and the futures prices of wheat, sugar, corn,
soybean, coffee, as well as oil product prices [25, 38, 41] as examples of the first
type. The second type of exogenous shocks can be generated outside the economic
system, but endogenous to some other system that is linked with the former through
financial, trade and information flows. Exports to the foreign country may be viewed
as an exogenous shock to the domestic economic system in the case that the real
output in a foreign economy affects the level of demand by this economy for the
exports of the home country, and exports to the foreign economy influence the
economic activity at home [9].

The generation of homoclinic and heteroclinic motions in systems of ordinary
differential equations by means of discontinuous perturbations was first considered
in [7]. According to the results of [7], homoclinic solutions take place in the chaotic
attractor of the relay system, which was introduced in [4]. On the other hand, by
taking advantage of the moments of impulses, similar results were obtained for
impulsive differential equations in [3].

The presence of homoclinic and heteroclinic motions in impulsive systems in the
case that the systems are under the influence of a discrete map is considered in the
study [29] and the existence of such motions in hybrid systems on a time scale is
discussed in paper [28]. Moreover, the paper [30] is concerned with the presence of
homoclinic and heteroclinic outputs in the dynamics of retarded shunting inhibitory
cellular neural networks with rectangular input currents.

The rest of the chapter is organized as follows. In Sect. 9.2, we introduce the
economic model that will be investigated. Section 9.3 is devoted to the theoretical
results about the existence of homoclinic and heteroclinic solutions in the model.
An example concerning the Kaldor model of the aggregate economy is presented in
Sect. 9.4 in order to support the theoretical results. Finally, some concluding remarks
are given in Sect. 9.5.
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9.2 The Model

Throughout the chapter R and Z will stand for the sets of real numbers and integers,
respectively. Moreover, the usual Euclidean norm for vectors and the norm induced
by the Euclidean norm for square matrices [35] will be utilized.

In this chapter, we take into account economic models perturbed with pulse
functions. A function p : R → R

n is called a pulse function if for each integer
i there is pi ∈ R

n such that p(t) = pi either for t ∈ (θi, θi+1] or for t ∈ [θi, θi+1),

where {θi}i∈Z is a strictly increasing sequence of real numbers such that |θi | → ∞
as |i| → ∞.

Consider the following economic model:

v̇ = H(v), (9.2.1)

where the function H : Rn → R
n is continuously differentiable in its arguments

and v : R → R
n is a function of time t. We assume that (9.2.1) possesses a steady

state at v = v0.

Let [τ ] denote the largest integer that is not greater than τ ∈ R, and fix a positive
number h.We perturb (9.2.1) with the pulse function d̃[t/h], and set up the model

v̇ = H(v)+ d̃[t/h], (9.2.2)

where t ∈ R, d̃i = (g(di), 0, 0, . . . , 0) ∈ R
n for each i ∈ Z, the function g : Λ →

R is continuous, Λ ⊂ R is a bounded interval, and the sequence {di}i∈Z , d0 ∈ Λ,
is a solution of the discrete equation

di+1 = F(di), (9.2.3)

where F : Λ → Λ is a continuous function. It is worth noting that d̃[t/h] = d̃i for
t ∈ [ih, (i + 1)h).

Because of the economic reasons mentioned in Sect. 9.4, we consider the
perturbation d̃[t/h] with only one nonzero coordinate, and the more general case
can be investigated in a similar way.

Exogenous shocks with variable values have many applications from the eco-
nomic point of view. Economic time series such as commodity prices, productivity
indices, and international trade indicators are the examples of exogenous shocks,
and they are usually gauged by economists at regular discrete intervals, no matter
how disaggregated (year, month, day, minute, second). Moreover, the government
budget that is determined once a year, earnings of a farm that sells its produce
in accordance with the seasons, and a firm’s capital equipment that changes with
periodical investment can be considered as other examples [9]. Our main purpose is
to rigorously prove that homoclinic and heteroclinic motions exist in the dynamics
of (9.2.2) by taking advantage of the exogenous shocks.
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If we transform the state variables x = v−v0 in (9.2.2), then near the equilibrium
point the linearized model takes the form

ẋ = Ax + f (x)+ d̃[t/h], (9.2.4)

where A is an n × n constant real valued matrix and f : Rn → R
n is a function

such that f (0) = 0.We suppose that all eigenvalues the matrix A have negative real
parts.

The chaotic dynamics of the model under investigation was studied in the paper
[9]. More precisely, it was theoretically proved in [9] that system (9.2.4) possesses
chaos in the sense of Devaney [26] and through period-doubling cascade [27]
provided that the same is true for the map (9.2.3). In the next section, we will
show that homoclinic as well as heteroclinic motions take place in the continuous-
time dynamics of (9.2.4) in the case that the map (9.2.3) possesses homoclinic and
heteroclinic orbits.

9.3 Homoclinic and Heteroclinic Motions

According to the assumption that the eigenvalues of the matrix A in (9.2.4) have all
negative real parts, there exist positive numbers N and ω such that

∥∥eAt
∥∥ ≤ Ne−ωt

for all t ≥ 0.
The following conditions are required.

(C1) There exist positive numbersMf andMg such that

sup
x∈Rn

‖f (x)‖ ≤ Mf

and

sup
z∈Λ

|g(z)| ≤ Mg;

(C2) There exists a positive number Lf < ω/N such that

‖f (x1)− f (x2)‖ ≤ Lf ‖x1 − x2‖

for all x1, x2 ∈ R
n;

(C3) There exists a positive number Lg such that

|g(z1)− g(z2)| ≤ Lg |z1 − z2|

for all z1, z2 ∈ Λ.
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Let D be the set of all sequences d = {di}i∈Z generated by the map (9.2.3).
Under the conditions (C1) and (C2), for a given sequence d = {di}i∈Z ∈ D, system
(9.2.4) possesses a unique solution φd(t) which is bounded on R [33]. According to
the results of [8], the bounded solution φd(t) satisfies the relation

φd(t) =
∫ t

−∞
eA(t−s)(f (φd(s))+ d̃[s/h])ds.

Denote by B the set of all bounded solutions φd(t), d ∈ D, of (9.2.4). It can

be verified that sup
t∈R

‖φd(t)‖ ≤ N(Mf +Mg)
ω

for each φd(t) ∈ B. For a given

sequence d ∈ D, if xd(t, x0) is the solution of (9.2.4) satisfying xd(0, x0) = x0,

then we have

‖xd(t, x0)− φd(t)‖ ≤ N ‖x0 − φd(0)‖ e(NLf−ω)t

for all t ≥ 0. Thus, ‖xd(t, x0)− φd(t)‖ → 0 as t → ∞ in accordance with
condition (C2), i.e., the bounded solution φd(t) attracts all other solutions of (9.2.4)
for a fixed d ∈ D .

Now, let us continue with the definitions of the stable and unstable sets as well
as the hyperbolicity for system (9.2.2) and the map (9.2.3). These definitions are
adapted from the paper [7].

The stable set of a sequence d = {di}i∈Z ∈ D is defined as

Ws(d) = {c = {ci}i∈Z ∈ D : ‖ci − di‖ → 0 as i → ∞} ,

and the unstable set of d is

Wu(d) = {c = {ci}i∈Z ∈ D : ‖ci − di‖ → 0 as i → −∞} .

The set D is called hyperbolic if for each d ∈ D the stable and unstable sets of d
contain at least one element different from d. A sequence c ∈ D is homoclinic to
another sequence d ∈ D if c ∈ Ws(d)∩Wu(d).Moreover, c ∈ D is heteroclinic to
the sequences d1, d2 ∈ D, c �= d1, c �= d2, if c ∈ Ws(d1) ∩Wu(d2).

On the other hand, a bounded solution φc(t) ∈ B belongs to the stable set
Ws(φd(t)) of φd(t) ∈ B if ‖φc(t)− φd(t)‖ → 0 as t → ∞. Besides, φc(t) is an
element of the unstable setWu(φd(t)) of φd(t) provided that ‖φc(t)− φd(t)‖ → 0
as t → −∞.

We say that the set B is hyperbolic if for each φd(t) ∈ B the setsWs(φd(t)) and
Wu(φd(t)) contain at least one element different from φd(t). A solution φc(t) ∈ B
is homoclinic to another solution φd(t) ∈ B if φc(t) ∈ Ws(φd(t)) ∩ Wu(φd(t)),

and φc(t) ∈ B is heteroclinic to the bounded solutions φd1(t), φd2(t) ∈ B, φc(t) �=
φd1(t), φc(t) �= φd2(t), if φc(t) ∈ Ws(φd1(t)) ∩Wu(φd2(t)).

In the next lemma, we deal with the connection between the stable sets of the
solutions of (9.2.3) and (9.2.4).
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Lemma 9.3.1 ([17]) Suppose that the conditions (C1)–(C3) hold, and let c =
{ci}i∈Z and d = {di}i∈Z be elements of D . If c ∈ Ws(d), then φc(t) ∈ Ws(φd(t)).

Proof Fix an arbitrary positive number ε, and let γ be a number such that

γ ≥ 1 + NLg

ω −NLf .

Since c ∈ Ws(d), there exists an integer j0 such that
∣∣cj0 − dj0

∣∣ <
ε

γ
for all i ≥ j0.

In this case, we have
∥∥̃c[t/h] − d̃[t/h]

∥∥ <
Lgε

γ
for t ≥ j0h.

By using the relation

φc(t)− φd(t) =
∫ t

−∞
eA(t−s)

[
f (φc(s))+ c̃[s/h] − f (φd(s))− d̃[s/h]

]
ds,

one can obtain for t ≥ j0h that

‖φc(t)− φd(t)‖ ≤ 2N(Mf +Mg)
ω

e−ω(t−j0h) + NLgε

ωγ

(
1 − e−ω(t−j0h)

)

+
∫ t

j0h

NLf e
−ω(t−s) ‖φc(s)− φd(s)‖ ds.

If we denote u(t)= eωt ‖φc(t)−φd(t)‖ and α=
(

2N(Mf +Mg)
ω

− NLgε
ωγ

)
eωj0h,

then we attain

u(t) ≤ α + NLgε

ωγ
eωt +

∫ t

j0h

NLf u(s)ds.

It can be verified by applying the Gronwall’s Lemma [33] that

u(t) ≤ α + NLgε

ωγ
eωt +

∫ t

j0h

NLf

(
α + NLgε

ωγ
eωs
)
eNLf (t−s)ds.

Therefore,

u(t) ≤ NLgε

ωγ
eωt + αeNLf (t−j0h) + N2LfLgε

ω(ω −NLf )γ e
ωt
(

1 − e−(ω−NLf )(t−j0h)
)
.

The last inequality yields

‖φc(t)− φd(t)‖ < NLgε

(ω −NLf )γ + 2N(Mf +Mg)
ω

e(NLf−ω)(t−j0h), t ≥ j0h.
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Now, let R be a sufficiently large positive number such that

2N(Mf +Mg)
ω

e(NLf−ω)R ≤ ε

γ
.

For t ≥ R + j0h, we have that

‖φc(t)− φd(t)‖ < ε

γ

(
1 + NLg

ω −NLf
)

≤ ε.

Consequently, φc(t) belongs to the stable setWs(φd(t)) of φd(t) ∈ B. �	
The following assertion is concerned with the unstable sets of the solutions of

(9.2.3) and (9.2.4).

Lemma 9.3.2 ([17]) Suppose that the conditions (C1)–(C3) hold, and let c =
{ci}i∈Z and d = {di}i∈Z be elements of D . If c ∈ Wu(d), then φc(t) ∈ Wu(φd(t)).

Proof Fix an arbitrary positive number ε, and let γ be a number such that γ >
NLg

ω −NLf . One can find an integer j0 such that |ci − di | < ε

γ
for all i ≤ j0 since

the sequence c belongs to the unstable setWu(d) of d ∈ D . Hence,

∥∥̃c[t/h] − d̃[t/h]
∥∥ <

Lgε

γ

for t < (j0 + 1)h.
Making use of the equation

φc(t)− φd(t) =
∫ t

−∞
eA(t−s)

[
f (φc(s))+ c̃[s/h] − f (φd(s))− d̃[s/h]

]
ds,

it can be obtained for t < (j0 + 1)h that

‖φc(t)− φd(t)‖ < NLgε
ωγ

+
∫ t

−∞
NLf e

−ω(t−s) ‖φc(s)− φd(s)‖ ds.

Therefore,

sup
t<(j0+1)h

‖φc(t)− φd(t)‖ ≤ NLgε

(ω −NLf )γ < ε.

Consequently, ‖φc(t)− φd(t)‖ → 0 as t → −∞ so that φc(t) ∈ Wu(φd(t)). �	
The following theorem, which is the main result in this chapter, can be proved by

using Lemmas 9.3.1 and 9.3.2.
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Theorem 9.1 ([17]) Under the conditions (C1)–(C3), the following assertions are
valid.

(i) If c ∈ D is homoclinic to d ∈ D, then φc(t) ∈ B is homoclinic to φd(t) ∈ B;
(ii) If c ∈ D is heteroclinic to d1, d2 ∈ D, then φc(t) ∈ B is heteroclinic to

φd1(t), φd2(t) ∈ B;
(iii) If D is hyperbolic, then the same is true for B.

An example concerning the Kaldor model of the aggregate economy will be taken
into account in the next section.

9.4 An Example

Consider the following Kaldor model [36, 43]:

Ẏ = α[I (Y,K)− S(Y,K)]
K̇ = I (Y,K)− δK, (9.4.5)

where δ ∈ (0, 1) is the constant depreciation rate, α > 0 is the adjustment
coefficient, Y is income, K is capital stock, I is gross investment, and S is savings.

Let us use I (Y,K) = Y − aY 3 + bK and S(Y,K) = sY in (9.4.5) so that the
system takes the form

Ẏ = α[(1 − s)Y − aY 3 + bK]
K̇ = Y − aY 3 + (b − δ)K, (9.4.6)

where the constant parameters satisfy a > 0, b < 0, and 0 < s < 1. In the case
that s(b− δ)+ δ > 0, system (9.4.6) admits the following steady state with positive
coordinates:

Y ∗ =
√
s(b − δ)+ δ

aδ
, K∗ = s

δ

√
s(b − δ)+ δ

aδ
.

The income Y of a given country is subject to many possible exogenous
disturbances, such as productivity shocks and global economic fluctuations, while
the capital stock K can be viewed as a mechanical relation between investment
and capital stock, where there is little room for exogenous influences. Therefore,
we modify (9.4.6) by using perturbation only in the equation for income Y, and
constitute the system

Ẏ = α[(1 − s)Y − aY 3 + bK] + g(d[t])
K̇ = Y − aY 3 + (b − δ)K, (9.4.7)
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where the function g is defined as g(z) = 0.02(z−0.4 sin z). The sequence {di}i∈Z ,
d0 ∈ [0, 1], is a solution of the logistic map

di+1 = F(di), (9.4.8)

where F(σ) = 3.8σ(1 − σ). Notice that d[t] = di for i ≤ t < i + 1,
i ∈ Z. The unit interval [0, 1] is invariant under the iterations of (9.4.8) [34].
Moreover, the inverses of the function F on the intervals [0, 1/2] and [1/2, 1] are

G1(σ ) = 1

2

(

1 −
√

1 − 4σ

3.8

)

andG2(σ ) = 1

2

(

1 +
√

1 − 4σ

3.8

)

, respectively. For

the applications of the logistic map the reader is referred to [21].
In what follows, we will make use of the values α = 1, a = 0.01, b = −1/12,

s = 1/3, and δ = 1/6. Using the transformation y = Y − Y ∗, k = K − K∗ in
(9.4.7), where Y ∗ = 5

√
2, K∗ = 10

√
2, we obtain the system

ẏ = −5

6
y − 1

12
k − 0.01y3 − 3

10
√

2
y2 + g(d[t])

k̇ = −1

2
y − 1

4
k − 0.01y3 − 3

10
√

2
y2.

(9.4.9)

System (9.4.9) is in the form of (9.2.4), where

A =
⎛

⎜
⎝

−5

6
− 1

12
−1

2
−1

4

⎞

⎟
⎠ , f (y, k) =

⎛

⎜⎜
⎝

−0.01y3 − 3

10
√

2
y2

−0.01y3 − 3

10
√

2
y2

⎞

⎟⎟
⎠ .

The eigenvalues of the matrixA are
−13 + √

73

24
and

−13 − √
73

24
.One can confirm

that eAt = PeDtP−1, where

P =

⎛

⎜⎜
⎝

7 − √
73

12
1

1
−7 + √

73

2

⎞

⎟⎟
⎠ , D =

⎛

⎜⎜
⎝

−13 + √
73

24
0

0
−13 − √

73

24

⎞

⎟⎟
⎠ .

Thus,
∥∥eAt

∥∥ ≤ Ne−ωt for t ≥ 0, where N = ‖P ‖ ∥∥P−1
∥∥ ≈ 1.83005 and ω =

13 − √
73

24
.

It can be numerically verified that the solutions of (9.4.9) which are bounded on
the entire real axis lie inside the compact region

U =
{
(y, k) ∈ R

2 : 0.008 ≤ y ≤ 0.016, −0.022 ≤ k ≤ −0.028
}
.
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Therefore, it is reasonable to consider the conditions (C1) and (C2) for the function
f (y, k) on the region U so that (C2) is valid with Lf = 0.0097. On the other hand,
(C3) holds with Lg = 0.0157.

Since the inequality |g(z1)− g(z2)| ≥ 0.012 |z1 − z2| , z1, z2 ∈ [0, 1], is also
valid in addition to (C1)–(C3), system (9.4.9) (and hence (9.4.7)) admits the
chaos through period-doubling cascade according to the results of [9]. In order
to demonstrate the presence of chaos, let us consider the solution of (9.4.9) with
y(0) = 0.014, k(0) = −0.025, and d0 = 0.18. The trajectory of the solution is
depicted in Fig. 9.1, which reveals that (9.4.9) is chaotic.

Now, we will show the presence of homoclinic and heteroclinic motions in the
dynamics of (9.4.9). It was mentioned in the paper [22] that the orbit

c =
{
. . . , G3

2(c0),G
2
2(c0),G2(c0), c0, F (c0), F

2(c0), F
3(c0), . . .

}
,

where c0 = 1/3.8, is homoclinic to the fixed point d∗ = 2.8/3.8 of (9.4.8). Let
φc(t) and φd∗(t) be bounded on R solutions of (9.4.9) corresponding to c and
d∗, respectively. The solution φc(t) is homoclinic to φd∗(t) in accordance with
Theorem 9.1. Figure 9.2 shows the graphs of φc(t) and φd∗(t) in blue and red colors,
respectively. Both the y and k coordinates of the solutions are represented in the
figure. The simulation results confirm that ‖φc(t)− φd∗(t)‖ → 0 as t → ±∞, that
is, φc(t) is homoclinic to φd∗(t).

Next, we take into account the orbit

c =
{
. . . ,G3

1(c0),G
2
1(c0),G1(c0), c0, F (c0), F

2(c0), F
3(c0), . . .

}
,

where c0 = 1/3.8. According to [22], the orbit c is heteroclinic to the fixed points
d∗ = 2.8/3.8 and d∗∗ = 0 of (9.4.8). One can conclude by using Theorem 9.1
that φc(t) is heteroclinic to φd∗(t) and φd∗∗(t), where φc(t), φd∗(t), and φd∗∗(t) are,

Fig. 9.1 The trajectory of
system (9.4.7) corresponding
to the initial data
y(0) = 0.014 and
k(0) = −0.025. The solution
of (9.4.8) with d0 = 0.18 is
used in the simulation
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Fig. 9.2 The homoclinic solution of (9.4.9). The bounded solutions φc(t) and φd∗ (t) are depicted
in blue and red colors, respectively. It seen in the figure that φc(t) is homoclinic to φd∗ (t)
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Fig. 9.3 The heteroclinic solution of (9.4.9). The bounded solutions φc(t), φd∗ (t), and φd∗∗ (t)
are depicted in blue, red, and green colors, respectively. The simulation demonstrates that φc(t) is
heteroclinic to φd∗ (t), φd∗∗ (t)

respectively, bounded on R solutions of (9.4.9) corresponding to c, d∗, and d∗∗.
Figure 9.3 represents the y and k coordinates of φc(t), φd∗(t), and φd∗∗(t) in blue,
red, and green colors, respectively. The figure supports Theorem 9.1 such that φc(t)
is heteroclinic to φd∗(t), φd∗∗(t).
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9.5 Notes

Homoclinic and heteroclinic orbits are crucial in the theory of dynamical systems
since their presence is related to the existence of chaos. We provide a theoret-
ical approach for the generation of homoclinic and heteroclinic motions in the
continuous-time dynamics of economic models influenced by exogenous shocks.
The main novelty of this chapter is the formation of such motions exogenously.
The example concerning the Kaldor model of the aggregate economy presented in
Sect. 9.4 supports the theoretical results such that exogenous shocks in economic
models can lead to the occurrence of homoclinic and heteroclinic motions. The pre-
sented technique can be useful for the investigation of homoclinic and heteroclinic
bifurcations in economic systems influenced by exogenous shocks. The results of
this chapter are published in paper [17].
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Chapter 10
Global Weather and Climate in the Light
of El Niño-Southern Oscillation

In this chapter, we study the chaotic behavior of hydrosphere and its influence on
global weather and climate. We give mathematical arguments for the sea surface
temperature (SST) to be unpredictable over the global ocean. The impact of
SST variability on global climate is clear during global climate patterns, which
involve large-scale ocean-atmosphere fluctuations similar to the El Niño-Southern
Oscillation (ENSO). Sensitivity (unpredictability) is the core ingredient of chaos.
Several researches suggested that the ENSO might be chaotic. It was Vallis [65, 66]
who revealed unpredictability of ENSO by reducing his model to the Lorenz
equations. Interactions of ENSO and other global climate patterns may transmit
chaos. We discuss the unpredictability as a global phenomenon through extension
of chaos “horizontally” and “vertically” in coupled Vallis ENSO models, Lorenz
systems, and advection equations by using theoretical as well as numerical analyses.
To perform theoretical research, we apply the recent results on replication of chaos
[1, 3] and unpredictable solutions of differential equations [6, 7], while for numerical
analysis, we combine results on unpredictable solutions with numerical analysis
of chaos in the advection equation. The main results presented in this chapter are
published in [8].

10.1 Introduction and Preliminaries

The famous Lorenz equations give birth to the weather related observations. One
of them is the unpredictability of weather in long period of time, which is a
meteorological concept, and another one is that small changes of the climate and
even weather at present may cause catastrophes for the human life in future. Issuing
from this, we have taken into account the following three features of the Lorenz
system, to emphasize the actuality of this chapter. Firstly, it is a regional model.
Secondly, for some values of its parameters the equations are non-chaotic. Finally,
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the model is of the atmosphere, but not of the hydrosphere. Therefore, one has to
make additional investigations to reveal that the unpredictability of weather is a
global phenomenon, and climatic catastrophes can be caused by physical processes
at any point on the surface of the globe. The present chapter is concerned with all
of the three factors issuing from the ocean surface dynamics of El Niño-Southern
Oscillation type, and results of our former research.

10.1.1 Unpredictability of Weather and Deterministic Chaos

Global climate change has gained the attention of scientists and policymakers. The
reason for that lies in its remarkable impact on human life on the Earth [48]. Climate
change affects and controls many social, economic, and political human activities.
It was an essential motive of human migration throughout history.

Weather is defined by the condition of the atmosphere at a specific place
and time measured in terms of temperature, humidity, air pressure, wind, and
precipitation, whereas climate can be viewed as the average of weather of a large
area over a long period of time [42]. Some definitions of climate expand to include
the conditions of not only the atmosphere, but also the rest components of the
climate system: hydrosphere, cryosphere, lithosphere, biosphere, and, according to
Vernadsky, noösphere [22].

During the last few decades, big efforts have been made to develop weather
and climate change forecasting models. Due to the chaotic nature of weather, the
forecasting range of weather prediction models is limited to only a few days.
Climate models are more complicated than ordinary weather forecasting models,
since they need to include additional factors of climate system that are not important
in the weather forecast [52]. Understanding the concepts of chaos is an important
step toward better comprehension of the natural variability of the climate system
on different time scales. This involves the determination of the reasons and sources
standing behind the presence of chaos in weather and climate models. Any progress
made in this path will be helpful to adjust the conception of climate change and find
solutions for climate control.

Chaos can be defined as aperiodic long-term behavior in a deterministic system
that exhibits sensitive dependence on initial conditions [29, 62]. Predictability
consists of constructing a relationship between cause and effect by which we can
predict and estimate the future behavior of a physical property. Unpredictability
means the failure of such empirical or theoretical relationships to predict due to the
presence of noise term(s) and intrinsic irregularity of the physical property itself.
Mathematically unpredictability is considered as a result of the sensitive dependence
on initial conditions, which is an essential feature of Devaney chaos [20]. Recently,
it is theoretically proved that a special kind of Poisson stable trajectory, called an
unpredictable trajectory, gives rise to the existence of Poincaré chaos [4–6].



10.1 Introduction and Preliminaries 141

Unpredictability in the dynamics of weather forecast models was firstly observed
by E. N. Lorenz. He developed a heat convection model consisting of twelve
equations describing the relationship between weather variables such as temperature
and pressure. Lorenz surprisingly found that his system was extremely sensitive to
initial conditions. Later, in his famous paper [34], he simplified another heat con-
vection model to a three-equation model that has the same sensitivity property [45].
This model is defined by the following nonlinear system of ordinary differential
equations:

dx

dt
= −σ x + σy,

dy

dt
= r x − xz− y,

dz

dt
= xy − b z,

(10.1.1)

where the variable x represents the velocity of the convection motion, the variable y
is proportional to the temperature difference between the ascending and descending
currents, and the variable z is proportional to the deviation of the vertical temper-
ature profile from linearity, whereas the constants σ , r , and b are positive physical
parameters. Model (10.1.1) describes the thermal convection of a fluid heated from
below between two layers. With certain values of these parameters, Lorenz system
possesses intrinsic chaos and produces the so-called Lorenz butterfly attractor.

The dynamical nature of weather and climate requires a deeper understanding of
the interaction and feedback mechanisms between the climate system components
as well as the individual one between different regions of a certain component. To
study the behavior of one component of the climate system at a specific region, a
single model defined on particular spatial and temporal scales is acceptable and
the accuracy of the outputs mainly depends on the number of climate variables
and parameters included in the model. Due to the inevitable simplifications usually
adopted for the construction of such models, the outputs include potential errors
even for limited time scale. Super-modeling is a recently proposed technique that
has been applied to reduce model error and improve prediction. The strategy
is based on interconnection of different climate models that synchronize on a
common solution, referred to as the supermodel solution [31, 55, 57]. Here, the
synchronization in connected models plays an important role for compensating
errors in order to achieve an optimal prediction. In this chapter, different models
represent the dynamics of neighbor regions in the same component and different
components of the climate system are coupled to investigate the global role of chaos
in weather and climate through the inter-ocean and ocean–atmosphere interactions.
The paper [2] was concerned with the extension of chaos through Lorenz systems. It
was demonstrated in [2] that Lorenz systems can be unidirectionally coupled such
that the drive system influences the response system, which is non-chaotic in the
absence of driving, in such a way that the latter also possesses chaos. Additionally,
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it was showed that the synchronization does not take place in the dynamics of these
types of coupled system. A possible connection of these results to the global weather
dynamics was also provided in that study.

10.1.2 Ocean–Atmosphere Interaction and Its Effects on
Global Weather

Coupled ocean-atmosphere models are the most fundamental tool for understanding
the natural processes that affect climate. These models have been widely applied to
interpret and predict global climate phenomena such as ENSO [58]. In meteorology
and climate science, SST is considered as a very important factor in ocean–
atmosphere interaction, where it plays a basic role in determining the magnitude
and direction of the current velocity, as well as the ocean surface wind speed. It is
difficult to give a precise definition of SST due to the complexity of the heat transfer
operations in the mixed layer of upper ocean. In general, however, it can be defined
as the bulk temperature of the oceanic mixed layer with a depth varies from 1 m
to 20 m depending on the measurement method used [10]. The importance of SST
stems from the fact that the world’s oceans cover over 70% of the whole surface
of the globe. This large contact area gives way to an active ocean–atmosphere
interaction and sometimes becomes a fertile place for complex feedbacks between
the ocean and atmosphere that drive an irregular climate change.

The most important example of the interactions and feedbacks between the
ocean and the atmosphere is ENSO which is defined as a global coupled ocean-
atmosphere phenomenon occurs irregularly in the Pacific Ocean about every 2 to
7 years [63]. This phenomenon is accompanied by undesirable changes in weather
across the tropical Pacific and losses in agricultural and fishing industries especially
in South America. The El Niño mechanism can be briefly summarized as follows:
During normal conditions in the equatorial Pacific, trade winds blow from east to
west driving the warm surface current in the same direction. As a consequence of
this, warm water accumulates in the Western Pacific around Southeast Asia and
Northern Australia. On the opposite side of the ocean around Central and South
America, the warm water, pushed to the west, is replaced by upwelling cold deep
water. During El Niño conditions, the trade winds are much weaker than normal.
Because of this and due to SST difference, warm water flows back towards the
Western Pacific. This situation involves large changes in air pressure and rainfall
patterns in the tropical Pacific. The cool phase of this phenomenon is called La Nina,
which is an intensification of the normal situation. The term “Southern Oscillation”
is usually used to refer to the difference of the sea-level pressure (SLP) between
Tahiti and Darwin, Australia. Bjerknes [13] conclude that El Niño and the Southern
Oscillation are merely two different results of the same phenomenon. These phases
of the phenomenon are scientifically called El Niño-Southern Oscillation or shortly
ENSO. From the above mechanism we can note that the ENSO dynamics is a perfect
example of self-excited oscillating systems.
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The ramifications of El Niño are not restricted to the Pacific basin alone, but have
widespread effects which severely disrupt global weather patterns. In the last few
decades scientists developed theories about the climatic engine which produced El
Niño, and they are trying to explain how that engine interacts with the great machine
of global climate. Although remarkable progress has been made in monitoring and
forecasting the onset of El Niño, it is still challenging to predict its intensity and
the impact of the event on global weather. Study of ENSO is considered as a key
to understanding climate change, it is a significant stride toward the meteorology’s
ultimate goal, “accurate prediction and control of world weather.”

Besides the ENSO, there are several other atmospheric patterns that occur
in different regions of the Earth. These phenomena are interacting in very
complicated ways. Many researchers paid attention to the mutual influence of
these phenomena and investigated if there is any co-occurrence relationship or
interaction between them.

The most similar atmosphere-ocean coupled phenomenon to ENSO is the Indian
Ocean Dipole (IOD), which occur in the tropical Indian Ocean, and it is sometimes
called the Indian Niño. IOD has normal (neutral), negative, and positive phases.
During neutral phase, Pacific warm water, driven by the Pacific trade winds, crosses
between South Asia and Australia and flows toward the Indian Ocean. Because of
the westerly wind, the warm water accumulates in the eastern basin of Indian Ocean.
In the negative IOD phase with the coincidence of strength of the westerly wind,
warmer water concentrates near Indonesia and Australia, and causes a heavy rainfall
weather in these regions and cooler SST and droughts in the opposite side of the
Indian Ocean basin around the eastern coast of Africa. The positive phase is the
reversal mode of the negative phase, i.e., what happened in the east side will happen
in west side and vice versa.

From the above we can see that there is a symmetry between the IOD and ENSO
mechanisms. Indeed, SST data shows that the Indian Ocean warming appears as a
near mirror image of ENSO in the Pacific [17]. In addition, the IOD is likely to have
a link with ENSO events, where a positive (negative) IOD often occurs during El
Niño (La Nina) [21, 69]. Luo et al. [37] investigated the ENSO-IOD interactions,
and they suggest that IOD may significantly enhance ENSO and its onset forecast,
and vice versa. Several other researchers like [12, 47] studied the relationship and
interaction between ENSO and IOD. It should be noted here that (as in all these stud-
ies) the SST considered as the major variable, indicator and index for these events.

Other important atmosphere-ocean coupled phenomena like Pacific Decadal
Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), Southern Annular
Mode (SAM), Tropical Atlantic Variability (TAV), North Atlantic Oscillation
(NAO), Arctic Oscillation/Northern Annular Mode (AO/NAM), Madden–Julian
Oscillation (MJO), Pacific/North American pattern (PNA), Quasi-Biennial Oscil-
lation (QBO), and Western Pacific pattern (WP) have significant influences on
weather and climate variability throughout the world. Similar to the relationship
between ENSO and IOD, various studies show expected relationships between
these phenomena and mutual effects on their predictability. Figure 10.1 shows the
places of occurrence of the major atmospheric patterns and Table 10.1 gives brief
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Fig. 10.1 The major global
climate patterns
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Table 10.1 The major climate variability systems

Term Descriptions Main Index Timescale

ENSO An irregularly periodical variation in sea surface
temperatures over the tropical eastern Pacific Ocean

SST 3–7 years

QBO An oscillation of the equatorial zonal wind in the
tropical stratosphere

SLP 26–30
months

PDO A low-frequency pattern similar to ENSO occurs
primarily in the Northeast Pacific near North America

SST 20–30
years

PNA An atmospheric pressure pattern driven by the rela-
tionship between the warm ocean water near Hawaii
and the cool one near the Aleutian Islands of Alaska

SLP 7–8 days

AO/NAM Defined by westerly winds changes driven by temper-
ature contrasts between the tropics and northern polar
areas

SLP 1–9
months

NAO Large scale of pressure varies in opposite directions
in the North Atlantic near Iceland in the north and the
Azores in the south

SLP 9–10 days

TAV Like ENSO, but it exhibits a north-south low fre-
quency oscillation of the SST gradient across the
equatorial Atlantic Ocean

SST 10–15
years

AMO A mode of natural variability occurring in the North
Atlantic Ocean and affects the SST on different
modes on multidecadal timescales

SST 55–80
years

SAM Defined by westerly winds changes driven by temper-
ature contrasts between the tropics and southern polar
areas

SLP 30–70
days

IOD An irregular oscillation of sea surface temperatures in
equatorial areas of the Indian Ocean

SST 2–5 years

WP A low-frequency variability characterized by north-
south dipolar anomalies in pressure over the far East
and western North Pacific

SLP 7–8 days

MJO An equatorial traveling pattern of anomalous rainfall
located in the tropical Pacific and Indian Oceans

SLP 40–50
days
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descriptions of them [32, 46, 67]. These pattern modes have different degrees of
effect on SST. In Table 10.1, we see that the patterns that remarkably influence the
ocean temperature are indexed by SST, whereas those that are most correlated with
air pressure, the main indexes of them are based on SLP.

10.1.3 El Niño Chaotic Dynamics

The SST behavior associated with ENSO indicates irregular fluctuations. The ENSO
indicator NINO3.4 index, for example, is one of the most commonly used indices,
where the SST anomaly averaged over the region bounded by 5◦N–5◦S, 170◦–
120◦W [16]. Figure 10.2 shows the oscillatory behavior of SST in the NINO3.4
region. Data from the Hadley Centre Sea-Ice and SST dataset HadISST1 [44] is
used to generate the figure. This behavior encourages many scientists to answer the
question: “Is ENSO a self-sustained chaotic oscillation or a damped one, requiring
external stochastic forcing to be excited?” [56]. There are different hypotheses for
the source of chaos in ENSO. According to Neelin and Latif [39], deterministic
chaos within the nonlinear dynamics of coupled system, uncoupled atmospheric
weather noise, and secular variation in the climatic state are the possible source
of ENSO irregularity. Tiperman et al. [64] concluded that the chaotic behavior of
ENSO is caused by the irregular jumping of the ocean-atmosphere system among
different nonlinear resonances. Several studies like [11, 41] support this assumption
and attributed the irregularity and the unpredictability of ENSO to influence of
stochastic forcing generated by weather noise. Other studies like [38, 71] infer
that ENSO is intrinsically chaotic, which means that the irregularity and the loss
of predictability are independent of the chaotic nature of weather.

Practically, investigating chaos in ENSO needs long time series of data, which
make the task quite difficult experimentally. Vallis [65, 66] developed a conceptual
model of ENSO and suggested that the ENSO oscillation exhibits a chaotic behavior.
Vallis used finite difference formulation to reduce two-dimensional versions of
advection and continuity equations to a set of ordinary differential equations. In
addition, he assumed that the zonal current is driven by the surface wind, which is
in turn proportional to the temperature difference across the ocean. The model is
described by the set of equations
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Fig. 10.2 Sea surface temperature anomalies of NINO3.4 region. The data utilized in the figure is
from the Hadley Centre Sea-Ice and SST dataset HadISST1
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du

dt
= β (Te − Tw)− λ (u− u∗),

dTw

dt
= u

2Δx
(T̄ − Te)− α (Tw − T ∗),

dTe

dt
= u

2Δx
(Tw − T̄ )− α (Te − T ∗),

(10.1.2)

where u represents the zonal velocity, Tw and Te are the SST in the eastern and
western ocean, respectively, T̄ is the deep ocean temperature, T ∗ is the steady state
temperature of ocean, u∗ represents the effect of the mean trade winds, Δx is the
width of the ocean basin, and α, β, and λ are constants.

By nondimensionalizing Eqs. (10.1.2) and forming the sum and difference of the
two temperature equations, one can see that these equations have the same structure
as the Lorenz system (10.1.1). Vallis utilized the fact that the Lorenz system, with
specific parameters, is intrinsically chaotic, and showed that a chaotic behavior of
the sum and difference of the west and east SST can be obtained.

ENSO, as mentioned above, occurs as a result of the interaction of the ocean
and atmosphere. Therefore, modeling of ENSO would be a good instrument to
research unpredictability not only in the atmosphere but also in the hydrosphere.
Nevertheless, ENSO provides the arguments that unpredictability is also proper
for seawater parameters which possibly can be reduced to a single one, the SST,
if one excludes flow characteristics. Vallis saved in the model only hydrosphere
variables ignoring the variation of atmosphere parameters when he considers chaos
problem. In our opinion, however, the model is appreciated as a pioneer one, and
furthermore, it implies chaos presence in the Pacific Ocean water. Hopefully, in the
future, ENSO with both atmosphere and hydrosphere characteristics being variable
will be modeled, but this time we focus on chaotic effects of ENSO by utilizing the
Vallis model.

10.1.4 Sea Surface Temperature Advection Equation

The temporal and spatial evolution of the SST is governed by a first order quasilinear
partial differential equation, the advection equation. If we denote the SST by T , the
temperature advection equation of mixed layer of fixed depth can be written in the
form [35, 68]

∂T

∂t
+ u∂T

∂x
+ v ∂T

∂y
+ w∂T

∂z
= f (t, x, y, z, T ), (10.1.3)

where u, v,w are the zonal, meridional, and vertical components of current velocity,
respectively. These velocities theoretically must satisfy the continuity equation
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∂

∂x
(ρu)+ ∂

∂y
(ρv)+ ∂

∂z
(ρw) = −∂ρ

∂t
, (10.1.4)

where ρ is the seawater density.
The inhomogeneous (forcing) term f on the right-hand side of Eq. (10.1.3)

consists of the shortwave flux, the evaporative heat flux, the combined long-wave
back-radiation and sensible heat flux and heat flux due to vertical mixing [30]. This
term can be described by [26, 28, 60]

f ≈ 1

hρ Cp

∂q

∂z
+D, (10.1.5)

where h is the mixed layer depth, Cp is the heat capacity of seawater, q is radiative
and diffusive heat flux, and D is the thermal damping (the numerical diffusion
operator).

The spatial and temporal domain of Eq. (10.1.3) depends on the region and the
nature of the phenomenon under study. For studying ENSO or IOD, for instance,
there are various regions for monitoring SST. NINO3.4 is one of the most commonly
used indices for ENSO. Dipole mode index (DMI) is usually used for IOD, and it
depends on the difference in average SST anomalies between the western 50◦E–
70◦E, 10◦N–10◦S and the eastern 90◦E–110◦E, 0◦–10◦S boxes [49]. The mixed
layer depth h varies with season and depends on the vertical heat flux through the
upper layers of the ocean. The average of mixed layer depth is about 30 m [36].
Different studies of ocean-atmosphere coupled models considered different regions
of various sizes. Zebiak and Cane [71], for example, developed a model of ENSO.
They considered a rectangular model extending from 124◦E to 80◦W and 29◦N to
29◦S, with constant mixed layer depth of 50 m and 90 years simulation.

From the above we find that the domain of Eq. (10.1.3) depends on the purpose
of the study. To study ENSO, for instance, we would cover a big region of Pacific
Ocean basin, and if we choose the origin of coordinates to be at 160◦E on the
equator, we can write the domain of (10.1.3) as follows:

t ≥ 0, 0 ≤ x ≤ 9000 km, −3000 km ≤ y ≤ 3000 km, −100 m ≤ z ≤ 0.

The inhomogeneous term in Eq. (10.1.3), which includes mixing processes of
heat transfer, plays the main role for chaotic dynamics. In addition to this term, a
chaotic behavior in ocean current velocity terms may also produce an unpredictable
behavior in SST. These causes of unpredictability are proved analytically and
numerically by perturbing these terms by unpredictable functions. In this chapter,
we treat Eq. (10.1.3) mathematically without paying attention to the dimensions of
the physical quantities. The important thing to us is the possibility of presence of
chaos in this advection equation endogenously or be acquired from other equation
or system. The advection equation, in addition to the Vallis model and the Lorenz
system, will be used to demonstrate the extension of unpredictability “horizontally”
through the global ocean and “vertically” between ocean and atmosphere.
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10.1.5 Unpredictability and Poincaré Chaos

There are different types and definitions of chaos. Devaney [20] and Li–Yorke [33]
chaos are the most frequently used types, which are characterized by transitivity,
sensitivity, frequent separation, and proximality. Another common type is the
period-doubling cascade, which is a sort of route to chaos through local bifurcation
[23, 50, 53]. In the papers [4, 6], Poincaré chaos was developed by introducing the
theory of unpredictable point and unpredictable function, which are built on the
concepts of Poisson stable point and function. We define unpredictable point as
follows. Let (X, d) be a metric space and π : T × X → X be a flow on X, where
T refer to either the set of real numbers or the set of integers. We assume that the
triple (π,X, d) defines a dynamical system.

Definition 10.1.1 ([4]) A point p ∈ X and the trajectory through it are unpre-
dictable if there exist a positive number ε (the unpredictability constant) and
sequences {tn}, {τn} both of which diverge to infinity such that lim

n→∞π(tn, p) = p

and d[π(tn + τn, p), π(τn, p)] ≥ ε for each n ∈ N.

Definition 10.1.1 describes unpredictability as individual sensitivity for a motion,
i.e., it is formulated for a single trajectory. The Poincaré chaos is distinguished by
Poisson stable motions instead of periodic ones. Existence of infinitely many unpre-
dictable Poisson stable trajectories that lie in a compact set meet all requirements of
chaos. Based on this, chaos can be appeared in the dynamics on the quasi-minimal
set which is the closure of a Poisson stable trajectory. Therefore, the Poincaré chaos
is referred to as the dynamics on the quasi-minimal set of trajectory initiated from
unpredictable point.

The definition of an unpredictable function is as follows.

Definition 10.1.2 ([7]) A uniformly continuous and bounded function ϕ : R → R
m

is unpredictable if there exist positive numbers ε, δ and sequences {tn}, {τn} both of
which diverge to infinity such that ‖ϕ(t + tn) − ϕ(t)‖ → 0 as n → ∞ uniformly
on compact subsets of R, and ‖ϕ(t + tn)− ϕ(t)‖ ≥ ε for each t ∈ [τn − δ, τn + δ]
and n ∈ N.

To determine unpredictable functions, we apply the uniform convergence topology
on compact subsets of the real axis. This topology allows us to construct Bebutov
dynamical system on the set of the bounded functions [5, 54]. Consequently, the
unpredictable functions imply presence of the Poincaré chaos.

10.1.6 The Role of Chaos in Global Weather and Climate

The topic of weather and climate is one of the most profoundly important issues con-
cerning the international community. It becomes very actual since the catastrophic
phenomena such as global warming, hurricanes, droughts, and floods. This is why
weather and climate are agenda of researches in physics, geography, meteorology,
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oceanography, hydrodynamics, aerodynamics, and other fields. The problem is
global, that is a comprehensive model would include the interactions of all major
climate system components, howsoever, for a specific aspect of the problem, an
appropriate model combination can be considered [61]. In the second half of the
last century, it was learned [34] that the weather dynamics is irregular and sensitive
to initial conditions. Thus the chaos was considered as a characteristic of weather
which cannot be ignored. Moreover, chaos can be controlled [40, 43]. These all
make us optimistic that the researches of weather and climate considering chaos
effect may be useful not only for the deep comprehension of their processes but also
for control of them. In the research [1], it has shown how a local control of chaos
can be expanded globally.

It is not wrong to say that in meteorological studies, chaos is considered as a
severe limiting factor in the ability to predict weather events accurately [51]. Beside
this one can say that chaos is also a responsible factor for climate change if it is
considered as a weather consequence. This is true, firstly, because of the weather
unpredictability, since predictability can be considered as a useful feature of climate
with respect to living conditions, and secondly, as the small weather change may
cause a global climate change in time. Accordingly, it is possible to say that the
control of weather, even a limited artificial one, bring us to a change of climate.

The chaotic behavior has also been observed in several models of ENSO [39].
Presence of chaos in the dynamic of this climate event provides other evidence
of the unpredictable nature of the global weather. Besides the Lorenz chaos of
atmosphere, “Vallis chaos” takes place in the hydrosphere. Without exaggerating,
we can say that chaos seems to be inherent at the essence of any deterministic
climate model. Therefore, unpredictability can be globally widespread phenomenon
through constructive interactions between the components of the climate system.

To give a sketch how chaos is related globally to weather and climate, we will
use information on dynamics of ENSO which will mainly utilize the Vallis model
as well as the SST advection equation and the Lorenz equations. They will be
properly coupled to have the global effect. It is apparent that, in the next research,
the models will possibly be replaced by more developed ones, but our main idea
is to demonstrate a feasible approach to the problem by constructing a special
net of differential equations system. Obviously, one can consider the net as an
instrument which can be subdued to an improvement by arranging new perturbation
connections.

Proceeding from aforementioned remarks and as a part of the scientific work, we
focus on one possible aspect of global weather and climate dynamics based on El
Niño phenomenon. To address this aim, we first review the Vallis model research
for El Niño in Sect. 10.1.3, then, in Sect. 10.2 we analyze the presence of chaos
in isolated models for the SST advection equation. In Sect. 10.3, the extension of
chaos in hydrosphere is discussed through coupling of advection equation, the Vallis
model, and also mixing advection equation with the Vallis model. In paper [2] chaos
as a global phenomenon in atmosphere was considered, but it is clear that, to say
about the weather of the globe one should take into account the hydrosphere as
well as the interaction processes between the atmosphere and seas. For this reason
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Sect. 10.4 is written where chaos extension from ocean to air and vice versa is
discussed on the base of the Lorenz and Vallis models. So, finalizing the introduction
we can conclude that the present chapter is considered as an attempt to give a
sketch of the global effects of chaos on weather and climate. These results are
supposed to be useful for geographers, oceanographers, climate researchers, and
those mathematician who are looking for chaotic models and theoretical aspects of
chaos researching.

10.2 Unpredictable Solution of the Advection Equation

In this section we study the presence of Poincaré chaos in the dynamics of
Eq. (10.1.3). We expect that the behavior of the solutions of (10.1.3) depends on
the function f and the current velocity components u, v,w, which are used in the
equation. From Eq. (10.1.5), we see that the forcing term f depends mainly on the
heat fluxes between the sea surface and atmosphere which is governed by SST, air
temperature, and wind speed, as well as between layers of sea which is caused by
sea temperature gradient and vertical (entrainment) velocity. Therefore, this forcing
term can be a natural source of noise and irregularity. Ocean currents are mainly
driven by wind forces, as well as temperature and salinity differences [19]. Thence
again we can deduce that the irregular fluctuations of wind may be reflected in the
behavior of SST.

To demonstrate the role of the function f in the dynamics of Eq. (10.1.3), let us
take into account the equation

∂T

∂t
+ u∂T

∂x
+ v ∂T

∂y
+ w∂T

∂z
= −0.7 T + 0.3w1 T + 5 sin(xt), (10.2.6)

where the current velocity components are defined by u = sin( x2 ) + sin(t) + 3,
v = −0.02, and w = − 1

2 cos( x2 )z.
Figure 10.3 represents the solution of (10.2.6) corresponding to the initial data

T (0, 0, 0, 0) = 0.5. It is seen in Fig. 10.3 that the solution of Eq. (10.2.6) has an
irregular oscillating behavior, whereas in the absence of the term 5 sin(xt) in the
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Fig. 10.3 The solution of Eq. (10.2.6) with the initial condition T (0, 0, 0, 0) = 0.5. The figure
shows that the forcing term f has a significant role in the dynamics of (10.1.3)
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function f , the solution approaches the steady state. Even though the behavior of
this numerical solution depends on the step size of the numerical scheme used, this
situation leads us to consider that the forcing term f has a dominant role in the
behavior of SST.

To investigate the existence of an unpredictable solution in the dynamics of
Eq. (10.1.3) theoretically, let us apply the method of characteristics. If we param-
eterize the characteristics by the variable t and suppose that the initial condition is
given by T (t0, x, y, z) = Φ(x, y, z), where t0 is the initial time, then we obtain the
system

dx

dt
= u(t, x, y, z, T ),

dy

dt
= v(t, x, y, z, T ),

dz

dt
= w(t, x, y, z, T ),

dT

dt
= f (t, x, y, z, T ),

(10.2.7)

with the initial conditions

x(t0) = x0, y(t0) = y0, z(t0) = z0, T (t0, x0, y0, z0) = Φ(x0, y0, z0).

In system (10.2.7), we assume that u, v,w, and f are functions of x, y, z, t , and T ,
and they have the forms

u = a1 x + a2 y + a3 z+ a4 T + U(x, y, z, T ),
v = b1 x + b2 y + b3 z+ b4 T + V (x, y, z, T ),
w = c1 x + c2 y + c3 z+ c4 T +W(x, y, z, T ),
f = d1 x + d2 y + d3 z+ d4 T + F(x, y, z, T ),

(10.2.8)

where ai , bi , ci , di , i = 1, 2, 3, 4, are real constants and the functions U,V,W,F
are continuous in all their arguments. System (10.2.7) can be expressed in the form

X′(t) = AX(t)+Q(t), (10.2.9)

in which

X(t) =

⎡

⎢⎢
⎣

x

y

z

T

⎤

⎥⎥
⎦ , A =

⎡

⎢⎢
⎣

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

⎤

⎥⎥
⎦ , Q =

⎡

⎢⎢
⎣

U

V

W

F

⎤

⎥⎥
⎦ . (10.2.10)
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The following theorem is needed to verify the existence of Poincaré chaos in the
dynamics of Eq. (10.1.3).

Theorem 10.1 ([6]) Consider the system of ordinary differential equations

X′(t) = AX(t)+G(X(t))+H(t), (10.2.11)

where the n × n constant matrix A has eigenvalues all with negative real parts,
the function G : R

n → R
n is Lipschitzian with a sufficiently small Lipschitz

constant, and H : R → R
n is a uniformly continuous and bounded function. If the

function H(t) is unpredictable, then system (10.2.11) possesses a unique uniformly
exponentially stable unpredictable solution, which is uniformly continuous and
bounded on the real axis.

In the remaining parts of the present section, we will discuss the unpredictability
when SST is chaotified by external irregularity. For that purpose let us consider the
logistic map

ηj+1 = 3.91 ηj (1 − ηj ), j ∈ Z. (10.2.12)

According to Theorem 4.1 in [6], the map (10.2.12) is Poincaré chaotic such that it
possesses an unpredictable trajectory.

Next, we define a function φ(t) by

φ(t) =
∫ t

−∞
e−2(t−s)γ ∗(s) ds, (10.2.13)

where

γ ∗(t) =
{

1.5, ζ ∗
2j < t ≤ ζ ∗

2j+1, j ∈ Z,

0.3, ζ ∗
2j−1 < t ≤ ζ ∗

2j , j ∈ Z,
(10.2.14)

is a relay function. In (10.2.14), the sequence {ζ ∗
j } of switching moments is

generated through the equation ζ ∗
j = j +η∗

j , j ∈ Z, where {η∗
j } is an unpredictable

trajectory of the logistic map (10.2.12).
One can confirm that φ(t) is bounded such that sup

t∈R
|φ(t)| ≤ 3/4. It was shown

in paper [6] that the function φ(t) is the unique uniformly exponentially stable
unpredictable solution of the differential equation

ϑ ′(t) = −2ϑ(t)+ γ ∗(t). (10.2.15)

It is not an easy task to visualize the unpredictable function φ(t). Therefore,
in order to illustrate the chaotic dynamics, we take into account the differential
equation

ϑ ′(t) = −2ϑ(t)+ γ (t), (10.2.16)
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Fig. 10.4 The solution of Eq. (10.2.16) with ϑ(0) = 0.3. The figure supports that the function
φ(t) is unpredictable

where

γ (t) =
{

1.5, ζ2j < t ≤ ζ2j+1, j ∈ Z,

0.3, ζ2j−1 < t ≤ ζ2j , j ∈ Z,
(10.2.17)

and the sequence {ζj } satisfies the equation ζj = j + ηj , j ∈ Z, in which {ηj } is
a solution of (10.2.12) with η0 = 0.4. The coefficient 3.91 used in the logistic map
(10.2.12) and the initial data η0 = 0.4 were considered for shadowing analysis in
the paper [27].

We depict in Fig. 10.4 the solution of Eq. (10.2.16) with ϑ(0) = 0.3. It is seen
in Fig. 10.4 that the behavior of the solution is irregular, and this support that the
function φ(t) is unpredictable.

10.2.1 Unpredictability Due to the Forcing Source Term

Let us perturb Eq. (10.1.3) with the unpredictable function φ(t) defined by (10.2.13)
and set up the equation

∂T

∂t
+ u∂T

∂x
+ v ∂T

∂y
+ w∂T

∂z
= f (t, x, y, z, T )+ ψ(φ(t)), (10.2.18)

where u, v,w, and f are in the form of (10.2.8) and ψ : [−3/4, 3/4] → R is a
continuous function.

Using the method of characteristics, one can reduce Eq. (10.2.18) to system
(10.2.7) that can be expressed in the form of (10.2.11) with

G(X(t)) =

⎡

⎢⎢
⎣

U

V

W

F

⎤

⎥⎥
⎦ , H(t) =

⎡

⎢⎢
⎣

0
0
0

ψ(φ(t))

⎤

⎥⎥
⎦ .
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According to the result of Theorem 5.2 in [6], if there exist positive constants L1
and L2 such that

L1 |s1 − s2| ≤ |ψ(s1)− ψ(s2)| ≤ L2 |s1 − s2| (10.2.19)

for all s1, s2 ∈ [−3/4, 3/4], then the function H(t) is also unpredictable.
Now, in Eq. (10.2.18), let us take u = −0.03x+0.1 sin( x80 )+0.4, v = −0.01y−

0.05 sin(y), w = −0.02z + (0.05 cos(y) − 0.00125 cos( x80 ))z, ψ(s) = 6s, and
f (t, x, y, z, T ) = −1.5T +0.1w2T . Since the conditions of Theorem 10.1 are valid
and inequality (10.2.19) holds for these choices of ψ , f , u, v, and w, Eq. (10.2.18)
exhibits Poincaré chaos.

In order to simulate the chaotic behavior, we consider the equation

∂T

∂t
+ u∂T

∂x
+ v ∂T

∂y
+ w∂T

∂z
= f (t, x, y, z, T )+ ψ(ϑ(t)), (10.2.20)

where ϑ(t) is the function depicted in Fig. 10.4, and u, v,w, f,ψ are the same as
above. Figure 10.5 shows the solution T (t, x, y, z) of (10.2.20) corresponding to
the initial condition T (0, 0, 0, 0) = 0.5. It is seen in Fig. 10.5 that the behavior
of the solution is chaotic, and this supports the result of Theorem 10.1 such that
Eq. (10.2.18) admits an unpredictable solution.

Next, we will visualize the chaotic dynamics in the integral surface of SST. For
that purpose, we omit the term of the meridional advection v ∂T

∂y
in (10.2.18), which

has less effect on SST compared with the zonal and vertical advections [14], and set
up the equation

∂T

∂t
+ u∂T

∂x
+ w∂T

∂z
= −1.5 T + w T + 6ϑ(t), (10.2.21)

where u = 1.2 + 0.1 sin( x80 ) + 0.05 sin(3t) and w = 0.1 − 0.00125 cos( x80 )z. In
(10.2.21), ϑ(t) is again the function shown in Fig. 10.4.

We apply a finite difference scheme to solve Eq. (10.2.21) directly. In such a
scheme, we need to specify boundary conditions along with an initial condition.
Using the initial condition T (0, x, z) = 5 and the boundary conditions T (t, 0, z) =
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Fig. 10.5 The solution of Eq. (10.2.20) with the initial condition T (0, 0, 0, 0) = 0.5. The figure
reveals the presence of an unpredictable solution in the dynamics of (10.2.18)
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Fig. 10.6 The integral surface of (10.2.21). The chaotic behavior in the SST is observable in the
figure

T (t, x, 0) = 0.5, we represent in Fig. 10.6 the integral surface of (10.2.21) with
respect to t, x, and the fixed value z = 0 for 5 ≤ x ≤ 20 and 0 ≤ t ≤ 100.
Figure 10.6 supports the result of Theorem 10.1 one more time such that Poincaré
chaos is present in the dynamics.

10.2.2 Unpredictability Due to the Current Velocity

This subsection is devoted to the investigation of SST when the current velocity
behaves chaotically. Here, we will make use of the unpredictable function φ(t)
defined by (10.2.13) to apply perturbations to the zonal and vertical components
of current velocity in Eq. (10.1.3).

We begin with considering the equation

∂T

∂t
+ [u+ ψ(φ(t))]∂T

∂x
+ v ∂T

∂y
+ w∂T

∂z
= f (t, x, y, z, T ), (10.2.22)

where, in a similar way to (10.2.18), u, v,w, and f are in the form of (10.2.8), and
ψ : [−3/4, 3/4] → R is a continuous function.

One can confirm that Theorem 10.1 can be used to verify the existence of
Poincaré chaos in the dynamics of (10.2.22) since it can be reduced by means of
the method of characteristics to a system of the form (10.2.11) with

H(t) =

⎡

⎢⎢
⎣

ψ(φ(t))

0
0
0

⎤

⎥⎥
⎦ ,

which is an unpredictable function provided that ψ satisfies the condition (10.2.19).
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In order to demonstrate the chaotic dynamics of (10.2.22), we take u =
−0.003 x + 0.2 sin( x3 ) + 0.4, v = −0.001 y, w = −0.002 z − 0.2

3 cos( x3 ) z,
ψ(s) = 3s, f = −1.5 T − 3 sin(3x)+ 0.2, and consider the equation

∂T

∂t
+ [u+ ψ(ϑ(t))]∂T

∂x
+ v ∂T

∂y
+ w∂T

∂z
= f (t, x, y, z, T ), (10.2.23)

where ϑ(t) is the function shown in Fig. 10.4.
The time series of the solution of (10.2.23) with T (0, 0, 0, 0) = 0.5 is depicted

in Fig. 10.7. One can observe in the figure that the time series is chaotic, and this
confirms the result of Theorem 10.1 such that Eq. (10.2.22) possesses an unpre-
dictable solution. More precisely, the perturbation of the zonal velocity component
in Eq. (10.1.3) by the unpredictable function ψ(φ(t)) affects the dynamics in such
a way that the perturbed equation (10.2.22) is Poincaré chaotic.

Next, we will examine the case when the vertical velocity component in
Eq. (10.1.3) is perturbed by the unpredictable function φ(t). For this aim we set
up the equation

∂T

∂t
+ u∂T

∂x
+ v ∂T

∂y
+ [w + ψ(φ(t))]∂T

∂z
= f (t, x, y, z, T ), (10.2.24)

where the function ψ : [−3/4, 3/4] → R is continuous. If we take u = −0.001 x+
0.2 sin( x3 ) + 0.4, v = −0.001 y, w = −0.03z − 0.2

3 cos( x3 )z, ψ(s) = 3s, and
f = −1.7 T + 0.5 z + 1.6, then Eq. (10.2.24) admits an unpredictable solution in
accordance with Theorem 10.1.

We represent in Fig. 10.8 the solution of the equation

∂T

∂t
+ u∂T

∂x
+ v ∂T

∂y
+ [w + ψ(ϑ(t))]∂T

∂z
= f (t, x, y, z, T ), (10.2.25)

corresponding to the initial data T (0, 0, 0, 0) = 0.5. Here, we use the same u, v,
w, ψ , and f as in (10.2.24), and ϑ(t) is again the function whose time series is
depicted in Fig. 10.4. The irregular fluctuations seen in the figure uphold the result
of Theorem 10.1.

We end up this subsection by illustrating the influence of the chaotic current
velocity on the integral surface of SST. Figure 10.9a shows the integral surface of
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Fig. 10.7 The solution of (10.2.22) with T (0, 0, 0, 0) = 0.5. The chaotic behavior of the solution
is apparent in the figure
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Fig. 10.8 Chaotic behavior of SST due to the perturbation of the vertical component of current
velocity. The figure shows the solution of (10.2.25) with T (0, 0, 0, 0) = 0.5

Fig. 10.9 Chaotic behavior of SST due to the current velocity with initial condition
T (0, x, y, z) = sin(xz) + 1, and boundary conditions T (t, 0, y, z) = T (t, x, y, 0) = 0.5. Both
pictures in (a) and (b) reveal that chaotic behavior in the current velocity leads to the presence of
chaos in SST. (a) The integral surface of (10.2.22) at z = 0. (b) The integral surface of (10.2.24)
at z = 1.5

(10.2.22) with u = 1.5 + 0.5 sin x, v = 0, w = 1 − 0.5 cos x, ψ(s) = 2s, and
f = −1.2 T − 3 sin(3x) at z = 0. The initial condition T (0, x, y, z) = sin(xz)+ 1
and the boundary conditions T (t, 0, y, z) = T (t, x, y, 0) = 0.5 are utilized in the
simulation. One can see in Fig. 10.9a that the SST has chaotic behavior in keeping
with the result of Theorem 10.1. On the other hand, using the same initial and
boundary conditions, we represent in Fig. 10.9b the integral surface of (10.2.24)
with u = 1, v = 0, w = 1, ψ(s) = 2s, and f = −1.2 T + 3 sin(3z) at z = 1.5.
Figure 10.9b also manifests that the applied perturbation on the vertical component
of current velocity make the Eq. (10.2.24) behave chaotically even if it is initially
non-chaotic in the absence of the perturbations.

10.3 Chaotic Dynamics of the Global Ocean Parameters

Chaotic behavior may transmit from one model to another [1]. This transmission
interprets, for instance, why the unpredictability in one stock market or in the
weather of one area is affected by another. Chaos in SST may be gained from
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another endogenous chaotic system like air temperature or wind speed. We can deal
with the global ocean as a finite union of subregions. Each of these subregions may
be controlled by different models depending on the position and circumstances. An
assumption of the existence of chaotic and non-chaotic subregions for SST behavior
is very probable. However, it seems quite unreasonable to imagine a predictable SST
for one region, whereas its neighbor region is characterized by an unpredictable SST.
The mutual effect in SST between neighbor regions can be seen by coupling their
controlling models.

10.3.1 Extension of Chaos in Coupled Advection Equations

In this part of the chapter we deal with the extension of chaos in coupled advection
equations. For that purpose, we consider a Poincaré chaotic advection equation of
the form (10.2.18) as the drive, and we take into account the equation

∂T̃

∂t
+ ũ ∂T̃

∂x
+ ṽ ∂T̃

∂y
+ w̃ ∂T̃

∂z
= f̃ (t, x, y, z, T̃ )+ g(T ) (10.3.26)

as the response, in which g is a continuous function and T is a solution of the
drive equation (10.2.18). We assume that the response does not possess chaos in the
absence of the perturbation, i.e., we suppose that the advection equation

∂T̃

∂t
+ ũ ∂T̃

∂x
+ ṽ ∂T̃

∂y
+ w̃ ∂T̃

∂z
= f̃ (t, x, y, z, T̃ ) (10.3.27)

is non-chaotic.
Figure 10.10 shows the extension of unpredictability between neighbor regions

schematically. We assume that the dynamics of the chaotic region is governed by
the drive equation (10.2.18), which has an unpredictable solution, and the dynamics
of the non-chaotic region is governed by Eq. (10.3.27). The coupling between these
two equations leads to the transmission of unpredictability such that the response
system (10.3.26) possesses chaos.

To demonstrate the extension of chaos numerically, let us consider the response
equation (10.3.26) with u = 1.2, v = 0, w = 0.3, f = −1.5T̃ + 0.2, and
g(T ) = T . Using the solution T of Eq. (10.2.21) satisfying T (0, 0, 0, 0) = 0.5
as the perturbation in Eq. (10.3.26), we depict in Fig. 10.11 the solution T̃ of

Fig. 10.10 Chaos extension
between neighbor regions Chaotic Region Non-chaotic Region
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Fig. 10.11 The solution of the response Eq. (10.3.26) with initial condition T (0, 0, 0, 0) = 0.5.
The figure manifests the extension of chaos in the coupled system (10.2.18)–(10.3.26)

(10.3.26) corresponding to the initial data T̃ (0, 0, 0, 0) = 0.5. Figure 10.11 reveals
the extension of chaos in the coupled system (10.2.18)–(10.3.26).

10.3.2 Coupling of the Advection Equation with Vallis Model

The Lorenz-like form of the Vallis model is given by [66]

du

dt
= B Td − C u,

dTd

dt
= u Ts − Td,

dTs

dt
= −u Td − Ts + 1,

(10.3.28)

where u represents the zonal velocity, Td = (Te − Tw)/2, Ts = (Te + Tw)/2,
Te and Tw are the SST in the eastern and western ocean, respectively, and B and
C are constants. System (10.3.28) is comparable to the Lorenz system and it was
shown by Vallis [65, 66] that (10.3.28) with the parameters B = 102 and C = 3
is chaotic. In paper [25] the authors studied the system (10.3.28) with the same
parameters and by using the computer-assisted proofs that follow the standard
Mischaikow–Mrozek–Zgliczynski approach they located, in the dynamics of the
system, topological horseshoes in iterates of Poincaré return maps such that chaos
was detected. They considered the chaos with the standard Li–Yorke conditions and
said that the dynamics is complicated at least as the dynamics of the full shift on the
space of two symbols. The existence of chaos in the dynamics of the Vallis system
was also investigated in other studies such as [9, 15].

Next, we take into account the equations

∂T1

∂t
+ 1.2

∂T1

∂x
+ 0.3

∂T1

∂z
= −1.2 T1 − 1 + 2 sin x, (10.3.29)
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∂T2

∂t
+ 1.2

∂T2

∂x
+ 0.3

∂T2

∂z
= −2 T2 + 4 sin x, (10.3.30)

∂T3

∂t
+ 0.6

∂T3

∂x
+ 0.5

∂T3

∂z
= −2 T3 − 1 + 3 sin x, (10.3.31)

and

∂T4

∂t
+ 1.2

∂T4

∂x
+ 0.3

∂T4

∂z
= −1.5 T4. (10.3.32)

One can verify that the Eqs. (10.3.29), (10.3.30), (10.3.31), and (10.3.32) are all non-
chaotic such that they admit asymptotically stable regular solutions. By applying
perturbations to these equations, we set up the following ones:

∂T1

∂t
+ 1.2

∂T1

∂x
+ 0.3

∂T1

∂z
= −1.2 T1 − 1 + 2 sin x + 4.6 Ts, (10.3.33)

∂T2

∂t
+ (1.2 + 0.8u)

∂T2

∂x
+ 0.3

∂T2

∂z
= −2 T2 + 4 sin x, (10.3.34)

∂T3

∂t
+ (0.6 + u)∂T3

∂x
+ 0.5

∂T3

∂z
= −2 T3 − 1 + 3 sin x + 4 Ts, (10.3.35)

∂T4

∂t
+ 1.2

∂T4

∂x
+ 0.3

∂T4

∂z
= −1.5 T4 + 2.7 T2, (10.3.36)

where (u, Td, Ts) is the solution of the chaotic Vallis model (10.3.28) with B = 102,
C = 3 and the initial conditions u(0) = 2, Td(0) = 0.2, and Ts(0) = 0.4.

In Eq. (10.3.33) the forcing term is perturbed by the SST average, Ts , whereas
in Eq. (10.3.34) the zonal velocity of Vallis model, u, is used as perturbation.
On the other hand, in Eq. (10.3.35) both the forcing term and the zonal velocity
components are perturbed with the solution of (10.3.28). Moreover, the solution
T2 of (10.3.34) is used as a perturbation in the forcing term of Eq. (10.3.36). The
appearance of the zonal velocity u of the model (10.3.28) in the coefficients of
Eqs. (10.3.34) and (10.3.35) looks reasonable if one remembers that the parts of the
ocean surface under consideration are adjoining to each other, and consequently,
the zonal velocity u perturbs its counterpart in the neighbor region from 1.2 to
1.2 + 0.8u in Eq. (10.3.34) and from 0.6 to 0.6 + u in Eq. (10.3.35). Furthermore,
the perturbations with Ts in Eqs. (10.3.33) and (10.3.35) can be attributed to the
heat transfer between the neighbor regions because of the structure of the original
Eq. (10.1.3). A schematic representation of these coupled systems is given in
Fig. 10.12.

Figure 10.13a and b, respectively, shows the solutions T2, T3 of Eqs. (10.3.34)
and (10.3.35), respectively. The initial data T2(0, 0, 0, 0) = 0.5 and T3(0, 0, 0, 0) =
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Fig. 10.12 Chaos extension through coupled systems
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Fig. 10.13 The extension of the chaotic behavior by Eqs. 10.3.34 and 10.3.35. (a) The time series
of the solution of Eq. 10.3.34. (b) The time series of the solution of Eq. 10.3.35. The initial data
T2(0, 0, 0, 0) = 0.5 and T3(0, 0, 0, 0) = 0.5 are used

0.5 are used in the simulation. Figure 10.13 reveals that the chaos of the model
(10.3.28) is extended by Eqs. (10.3.34) and (10.3.35).

On the other hand, we depict in Fig. 10.14a and b the 3-dimensional integral
surfaces corresponding to Equations (10.3.33) and (10.3.36), respectively. Here, we
make use of the boundary conditions T1(0, x, z) = T1(t, 0, z) = T1(t, x, 0) = 0.5
and T4(0, x, z) = T4(t, 0, z) = T4(t, x, 0) = 0.5. The figure confirms one more
time that the chaos of system (10.3.28) is extended.

10.3.3 Coupling of Vallis Models

Our purpose in this subsection is to demonstrate numerically our suggestion that
chaos can be extended between the regions of some global climate variabilities. We
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Fig. 10.14 Extension of chaos by Eqs. 10.3.33 and 10.3.36. (a) The integral surface of Eq. 10.3.33.
(b) The integral surface of Eq. 10.3.36

IOD ENSO AMO

SAM

Fig. 10.15 Diagram of possible chaos extensions through global climate patterns regions

assume that there are intermediate subregions located between these main regions
and chaos can transmit from one region to another in a sequential way.

We also suggest that the IOD can be described by a Vallis model in the form
of (10.3.28) with parameters appropriate to the Indian Ocean. Evaluation of these
parameters is rather difficult. However, for simplicity we can choose these values
such that system (10.3.28) does not exhibit chaotic behavior. Similar arguments can
also be supposed for the AMO and SAM.

A diagram of possible chaos extensions between the regions of IOD, AMO, and
SAM is shown in Fig. 10.15. In this diagram, the Vallis model representing ENSO
is assumed to be the main source of the chaotic behavior, while the Vallis models
representing the behaviors of the regions of IOD, AMO, and SAM are all assumed
to be initially non-chaotic when interactions do not occur between the regions.

To demonstrate the extension of chaos, let us consider the perturbed Vallis system

dũ

dt
= B̃ T̃d − C̃ ũ+ 1.5u,

dT̃d

dt
= ũ T̃s − T̃d + 0.3 Td,

dT̃s

dt
= −ũ T̃d − T̃s + 1 + 0.2 Ts,

(10.3.37)
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where (u, Td, Ts) is the solution of the chaotic Vallis system (10.3.28) with B = 102
and C = 3 corresponding to the initial conditions u(0) = 2, Td(0) = 0.2, and
Ts(0) = 0.4. We use the parameters B̃ = 20 and C̃ = 7 in (10.3.37) and assume
that the unperturbed Vallis model

dũ

dt
= B̃ T̃d − C̃ ũ,

dT̃d

dt
= ũ T̃s − T̃d ,

dT̃s

dt
= −ũ T̃d − T̃s + 1,

(10.3.38)

represents the SST and zonal velocity variabilities associated with the dynamics of
IOD. With these parameter values one can verify that the system (10.3.38) has an
asymptotically stable equilibrium point at (1.363, 0.477, 0.350), and therefore, it
is non-chaotic. Figure 10.16 shows the trajectory of (10.3.38) corresponding to the
initial conditions ũ(0) = 2, T̃d (0) = 0.2, T̃s(0) = 0.4, and it confirms the presence
of the asymptotically stable equilibrium point. It is rigorously proven in paper [1]
that the Li–Yorke chaos can be transmitted from a chaotic generator to a non-chaotic
replicator with asymptotically stable equilibrium, and since the chaos exhibited by
(10.3.28) satisfies the Li–Yorke conditions, system (10.3.37) will inherit the same
chaotic behavior as (10.3.28). In Fig. 10.17, we represent the time series of ũ, T̃d ,
and T̃s coordinates of the solution of system (10.3.37). One can see in Fig. 10.17
that system (10.3.37) possesses chaotic behavior.

Fig. 10.16 The
asymptotically stable
equilibrium of
system (10.3.38)
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Fig. 10.17 The solution of system (10.3.37). The figure reveals chaos extension between the pair
of Vallis systems (10.3.28) and (10.3.37)

10.4 Ocean-Atmosphere Unpredictability Interaction

In this section, we discuss the possibility of the “vertical” extension of unpre-
dictability, i.e., the transmission of chaotic dynamics from ocean to atmosphere
and vice versa. To demonstrate this interaction we apply the Lorenz system for the
atmosphere and the Vallis model for the ocean. Vallis model is constructed for the
domain length of 7500 km, however, depending on the method of construction, the
model can be applied for more localized region to be compatible with the Lorenz
model. There are two interacted regions shown in Fig. 10.18, the atmosphere box
L and the ocean box V , whose dynamics are governed the Lorenz system (10.1.1)
and the Vallis system (10.3.28), respectively.

Heat and momentum exchanges are two important ways of interaction between
ocean and atmosphere. The heat exchange is mainly controlled by the air-sea
temperature gradient, and, on the other hand, the momentum transfer is determined
by the sea-surface stress caused by wind and currents [24]. These characteristics
are represented in both Lorenz system (10.1.1) and Vallis model (10.3.28). Two
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Fig. 10.18 Schematic
representation of
ocean–atmosphere
interactions

Hydrosphere

Atmosphere

coordinates in the Lorenz system represent temperature, whereas the third one is
related to velocity, and the same could be said for the Vallis system. Therefore, the
interaction between ocean and atmosphere can be modeled by coupling the Lorenz
and Vallis models.

Let us consider the coupled Lorenz–Vallis systems

dx

dt
= σ(y − x)+ f1(u, Td, Ts),

dy

dt
= x(r − z)− y + f2(u, Td, Ts),

dz

dt
= xy − b z+ f3(u, Td, Ts),

(10.4.39)

and

du

dt
= B Td − C u+ g1(x, y, z),

dTd

dt
= u Ts − Td + g2(x, y, z),

dTs

dt
= −u Td − Ts + 1 + g3(x, y, z),

(10.4.40)

where fi , gi , i = 1, 2, 3, are continuous functions. The coupled model (10.4.39)–
(10.4.40) is in a sufficiently general form of interaction between the L and V
regions shown in Fig. 10.18, where the functions fi, gi, i = 1, 2, 3 are given in
most general form.

To demonstrate the transmission of chaos between the atmosphere and ocean, we
consider specific forms of the coupled model (10.4.39)–(10.4.40). This technique
relies on the theoretical investigations of replication of chaos introduced in [1].

In the case of upward transmission of chaos from the ocean to the atmosphere,
we consider (10.4.39) with specific choices of the perturbation functions f1, f2, and
f3 to set up the following system:
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Fig. 10.19 The chaotic solution of the perturbed Lorenz system (10.4.41)

dx

dt
= σ(y − x)+ 3 sin u,

dy

dt
= x(r − z)− y + 6 Td,

dz

dt
= xy − b z+ 0.5 T 2

s ,

(10.4.41)

where (u, Td, Ts) is the solution of the chaotic Vallis system (10.3.28) with B =
102, C = 3, and the initial data u(0) = 2, Td(0) = 0.2, Ts(0) = 0.4. We use
the parameter values σ = 10, r = 0.35, and b = 8/3 in (10.4.41) such that the
corresponding unperturbed Lorenz system (10.1.1) does not possess chaos [59].

Figure 10.19 shows the time series of the x, y, and z components of the solution
of system (10.4.41). The initial data x(0) = 0, y(0) = 0.5, z(0) = 0.3 are used
in the figure. The irregular behavior in each component reveals that the chaotic
behavior of the atmosphere can be gained from the chaoticity of the hydrosphere
characteristics.

For the downward chaos transmission from the atmosphere to the ocean, we
consider the perturbed Vallis system
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du

dt
= B Td − C u+ 0.7x,

dTd

dt
= u Ts − Td + 0.3 cos y + 0.4y,

dTs

dt
= −u Td − Ts + 1 + 0.5z,

(10.4.42)

where (x, y, z) is the solution of the Lorenz system (10.1.1) with the parameters
σ = 10, r = 28, and b = 8/3 and the initial data x(0) = 0, y(0) = 1, z(0) = 0.
System (10.1.1) possesses a chaotic attractor with these choices of the parameter
values [34, 59].

Let us take B = 20 and C = 7 in system (10.4.42). One can verify in this
case that the corresponding unperturbed system (10.3.28) is non-chaotic such that
it possesses an asymptotically stable equilibrium. Figure 10.20 depicts the solution
of (10.4.42) with u(0) = 2, Td(0) = 0.2, and Ts(0) = 0.4. It is seen in Fig. 10.20
that the chaotic behavior of the Lorenz system (10.1.1) is transmitted to (10.4.42).
In other words, system (10.4.42) admits chaos even if it is initially non-chaotic in
the absence of the perturbation.
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Fig. 10.20 Chaotic behavior of system (10.4.42)
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10.5 Notes

In this chapter we discuss the possible unpredictable behavior of climate variables
on a global scale. Some ENSO-like climate variabilities have a significant influence
on global weather and climate. ENSO variability is suggested to be chaotic by
many studies. The well-known Vallis ENSO chaotic model is one among several
ENSO models that exhibit irregular behavior. The presence of chaos in ENSO can
be indicated by the behavior of SST as well as ocean current velocity. We describe
the dynamics of SST by the advection equation. The forcing term, based on ocean–
atmosphere interaction, and the current velocity in this equation can be a source
of unpredictability in SST. We prove the presence of chaos in SST dynamics by
utilizing the concept of unpredictable function. The relationship and interaction
between the climate variabilities, like the ones between ENSO and IOD, have
attracted attention in recent literature. Constructing and understanding the dynamic
models driving these phenomena are the main steps to investigate the mutual
influences between these global events. The SST anomalies are closely linked to
some climate variabilities teleconnections in different parts of the global ocean.
We suggest that the hydrosphere characteristics can behave chaotically through
the possibility of transmission of chaos between ocean neighbor subregions. We
verified this transmission by different “toy” couples of advection equations and
Vallis models. The simulations of these couples show that unpredictability can be
transmitted from a local region controlled by a chaotic model into its neighbor which
is described by a non-chaotic model.

The mechanism of unpredictability extension can be interpreted in terms of
physical operations. The simplicity of the models under consideration, namely the
Vallis model and the advection equation, allows to make the physics much clearer.
The onset of ENSO is accompanied with zonal SST gradient over the equatorial
Pacific Ocean. The same situation applies to IOD in Indian Ocean and other similar
climate patterns. This distribution of SST leads to heat transport by convection in
the mixed layer and ocean circulation through its effect on surface wind and ocean
atmospheric circulation. These physical processes, which include heat, mass, and
momentum transfer, can be accompanied with “chaos transfer.” We believe that this
thought still needs a consistent theoretical framework to understand all features of
such operation, principally the intrinsicness of chaos for these physical quantities.
Nevertheless, the presented mechanism of unpredictability extension could be seen
as a step towards this goal. Further steps can be performed by including different
models for more climate components.

We proposed to apply the same technique for the “vertical” unpredictability
exchange between atmosphere and hydrosphere. In this case, the Lorenz system
and the Vallis model are assigned for the atmosphere and ocean, respectively.
Physically, this exchange may be done in the midst of interaction between ocean
and atmosphere associated with, for example, heat exchange. By this procedure, the
global unpredictability of oceanic oscillation can be viewed as accompaniment to
weather unpredictability.
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Our approach provides a basic frame for mathematical interpretation to the
irregular behavior of some global climate characteristics. It gives a way to link
the local unpredictability in a component of climate system to more global scope.
Further investigation can be done by including different models for more climate
components. Another important and interesting problem is controlling weather.
Even though the weather is too complicated to modify, a vital step can be taken
toward this goal by modifying the ENSO oscillation through control of chaos in its
models and study the “extension of the control” between ENSO-like models and
weather models. Chaos control in Lorenz system is still not effectively developed
in the literature, where the most proposed methods are mainly depend on forcing
the system into a single stable periodic behavior [18, 70], and this is not adequate
for real life applications. It is known that the chaos control can be achieved by
using small perturbation to some parameters or variables of the system. This idea
may be practically applied by making a small local artificial effect in atmosphere
or hydrosphere. If we consider the positive tenor of the Lorenz’s famous question,
“Does the flap of a butterfly’s wing in Brazil set off a tornado in Texas?” we can
say that the small artificial climate change may prevent the occurrence or at least
decrease the intensity of some extreme weather events such as cyclones, hurricanes,
droughts, and floods.
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Chapter 11
Fractals: Dynamics in the Geometry

In this chapter, dynamics are constructed for fractals utilizing the motion associated
with differential equations. Firstly, we introduce an algorithm to map fractals by
developing a mapping iteration on the basis of Fatou–Julia iteration. Because of
the close link between mappings, differential equations, and dynamical systems,
one can introduce dynamics for a fractal through differential equations such that
it becomes points of the solution trajectory. In the present chapter, Julia set,
Mandelbrot set, and Sierpinski fractals are considered as initial points for the
trajectories of the dynamics. The characterization of fractals as trajectory points
of the dynamics can help to enhance and widen the scope of their applications in
physics and engineering. The results of this chapter are published in [2–4].

11.1 Introduction

French mathematicians Pierre Fatou and Gaston Julia in 1917–1918 invented a spe-
cial iteration in the complex plane [17, 24] such that new geometrical objects with
unusual properties can be built. The iteration is called Fatou–Julia iteration (FJI)
[32] or sometimes “Escape Time Algorithm (ETA)” [8]. One of the famous fractals
constructed by the iteration is the Julia set. Besides the iteration of rational maps,
there are various ways to construct fractal shapes. The well-known self-similar
fractals like Sierpinski gasket, Sierpinski carpet, and Koch curve are constructed by
means of a simple recursive process which consists in iteratively removing shrinking
symmetrical parts from an initial shape. These types of geometrical fractals can
also be produced by an Iterated Function System (IFS) [9, 22], which is defined as
collections of affine transformations.

There are two sides of the fractal research related to the present chapter. The first
one is FJI and the second one is the proposal by Mandelbrot to consider dimension
as a criterion for fractals. In our approach, both factors are crucial as we apply the
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FJI for the construction of the sets and the dimension factor to confirm that the
built sets are fractals. In previous studies the iteration and the dimension factors
were somehow separated, since self-similarity provided by the iteration has been
self-sufficient to recognize fractals, but in our research the similarity is not true in
general. We have to emphasize that there is a third player on the scene, the modern
state of computers’ power. Their roles are important for the realization of our idea
exceptionally for continuous dynamics. One can say that the instrument is at least
of the same importance for application of our idea to fractals as for realization of
FJI in Mandelbrot and Julia sets. Nevertheless, we expect that the present chapter
will significantly increase the usage of computers for fractal analysis. Moreover,
beside differential equations, our suggestions will affect the software development
for fractals investigation and applications [15, 42].

Studying the problem, we have found that fractal-like appearances can be
observed in ancient natural philosophy. Let us consider the Achilles and tortoise
in the Zeno’s Paradox [45], (see Fig. 11.1a).

Fig. 11.1 The dynamics of the Zeno’s Paradox. (a) Achilles and the tortoise dynamics. (b) The
state, S0, of the dynamics. (c) Pseudo-fractal trajectory
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In the paradox, Achilles is observed at the initial moment t0 = 0 with the distance
d0 from the tortoise. Suppose that Achilles runs at a constant speed, two times
faster than the tortoise, then he would reach the previous position of the tortoise
at moments t1, t2 = 3t1/2, t3 = 7t1/4, ... with distances d1 = d0/2, d2 =
d0/4, d3 = d0/8, ... from the tortoise, respectively. Now contemplate Fig. 11.1b,
where the heights of the red lines are proportional to the distance of Achilles
from the tortoise at the fixed moments, and denote the diagram by S0. The set S0
demonstrates the entire dynamics for t ≥ t0. Fix i ≥ 0, and let Si be the similar
diagram which consists of all the lines for the moments which are not smaller than ti .

Let us consider the collection of the states {Si}, i ≥ 0. One can assume that there
exists a map B such that the equations

Si+1 = B Si, i = 0, 1, 2, . . . ,

which symbolize a dynamics, are valid. It is easily seen that S0 is self-similar to each
of its parts Si , i > 0. Nevertheless, the Hausdorff dimension of the set S0 is equal
to one. For this reason, we call Si , i ≥ 0, pseudo-fractals, due to the similarity. The
trajectory {Si}, i ≥ 0, is also a pseudo-fractal. The sketch of the trajectory is seen
in Fig. 11.1c.

The present chapter is an extension of the ancient paradigm, since we will
investigate dynamics having all points of a trajectory as well as the trajectory itself
fractals.

11.2 Fatou–Julia Iteration

Involvement of the dynamics of iterative maps in fractal construction was a critical
step made by Fatou and Julia [17, 24]. They described what we call today FJI. The
iteration is defined over a domain D ⊆ C by

zn+1 = F(zn), (11.2.1)

where F : D → D is a given function for the construction of the fractal set F .
The points z0 ∈ D are included in the set F depending on the boundedness of the
sequence {zn}, n = 0, 1, 2, ..., and we say that the set F is constructed by FJI.

In practice one cannot verify the boundedness for infinitely long iterations. This
is why in simulation we fix an integer k and a bounded subset M ⊂ C, and denote
by Fk the collection of all points z0 ∈ D such that the points zn where the index n
is between 1 and k, n = 1, 2, ..., k, belong toM . In what follows we call the set Fk

the kth approximation of the set F .
The most popular fractals, Julia and Mandelbrot sets, are generated using the

iteration of the quadratic map F(zn) = z2
n + c, where c is a complex number. The

so-called filled-in Julia set, Kc, is constructed by including only the points z0 ∈ C

such that the sequence zn is bounded [1]. Moreover, in the simulation, those points
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z0 ∈ C where {zn} is divergent are colored in a different way, correspondingly to
the rate of divergence. The term Julia set Jc, usually denotes the boundary of the
filled Julia set, i.e., Jc = ∂Kc.

In the case of the Mandelbrot set, M , we include in M the points c ∈ C such
that {zn(c)}, z0(c) = 0, is bounded. Here again, the points c ∈ C corresponding
to divergent sequences zn are plotted in various colors depending on the rate of the
divergence.

11.3 How to Map Fractals

To describe our way for mapping of fractals, let us consider a fractal set F ⊆ A ⊂
C, constructed by the following FJI,

zn+1 = F(zn), (11.3.2)

where F : A → A is not necessarily a rational map. We suggest that the original
fractal F can be transformed “recursively” into a new fractal set. For that purpose,
we modify the FJI, and consider iterations to be of the form

f−1(zn+1) = F (f−1(zn)
)
, (11.3.3)

or explicitly,

zn+1 = f
(
F
(
f−1(zn)

))
, (11.3.4)

where f is a one-to-one map on A. Next, we examine the convergence of the
sequence {zn} for each z0 ∈ f (A). Denote by Ff the set which contains only
the points z0 corresponding to the bounded sequences. Moreover, other points can
be plotted in different colors depending on the rate of the divergence of {zn}. To
distinct the iterations (11.3.4) from the Fatou–Julia iterations let us call the first
ones Fractals Mapping Iterations (FMI) [2–4]. It is clear that FJI is a particular FMI,
when the function is the identity map. The mapping of fractals is a difficult problem
which depends on infinitely long iteration processes, and has to be accompanied
with sufficient conditions to ensure that the image is again fractal.

The next theorem is the main instrument for the detection of fractal mappings.
Accordingly, we call it Fractal Mapping Theorem (FMT).

Theorem 11.1 ([2–4]) If f is a bi-Lipschitz function, i.e., there exist numbers
l1, l2 > 0 such that

l1|u− v| ≤ |f (u)− f (v)| ≤ l2|u− v| (11.3.5)

for all u, v ∈ A, then Ff = f (F ).
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Proof Fix an arbitrary w ∈ Ff . There exists a bounded sequence {wk} such that
w0 = w and f−1(wk+1) = F(f−1(wk). Let us denote zk = f−1(wk). Our purpose
is to show that {zk} is a bounded sequence. Indeed

|zk − z0| = |f−1(wk)− f−1(w0)| ≤ 1

l1
|wk − w0|.

Hence, the boundedness of {wk} implies the same property for {zk}, and therefore,
we have z0 = f−1(w) ∈ F .

Now, assume that w ∈ f (F ). There is z ∈ F such that f (z) = w and a
bounded sequence {zk} such that z0 = z and zk+1 = F(zk). Consider, w0 = w and
wk = f (zk), k ≥ 0. It is clear that the sequence {wk} satisfies the iteration (11.3.3)
and moreover

|wk − w0| = |f (zk)− f (z0)| ≤ l2|zk − z0|.

Consequently, {wk} is bounded, and w ∈ Ff . �	
The following two simple propositions are required.

Lemma 11.3.1 ([16]) If f is a bi-Lipschitz function, then

dimH f (A) = dimH A,

where dimH denotes the Hausdorff dimension.

Lemma 11.3.2 ([3]) If f : A→ C is a homeomorphism, then it maps the boundary
of A onto the boundary of f (A).

It is clear that a bi-Lipschitz function is a homeomorphism.
Shishikura [44] proved that the Hausdorff dimension of the boundary of the

Mandelbrot set is 2. Moreover, he showed that the Hausdorff dimension of the Julia
set corresponding to c ∈ ∂M is also 2.

It implies from the above discussions that if f is a bi-Lipschitz function and F
is either a Julia set or the boundary of the Mandelbrot set, then their images Ff are
fractals. In what follows, we will mainly use functions, which are bi-Lipschitzian
except possibly in neighborhoods of single points.

To emphasize the novelty concerning the FMI algorithm (change of coordinates),
we suggest the Table 11.1 below, which illustrates the differences between a routine
map and the newly constructed fractal mapping.

Let us give comments on the content of Table 11.1 and explain why the mapping
of fractals is different than those which can be accepted as routine maps. Consider
the two-dimensional case for a set F . In the routine map, the preimage F is simply
given by equation (i) in the table, while for the fractal-preimage description we
need the procedure (a) which theoretically consists of an infinite number of steps.
The most important difference is manifested in the image description. In the routine
mapping, the image can be defined by formula (iii). However, to describe the fractal-
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Table 11.1 The differences between a routine mapping and the fractal mapping

Routine mapping Fractal mapping

(i) The preimage description
F = {(x, y) : g(x, y) = 0}

(a) The fractal-preimage description
F = {(x, y) : (xn, yn), where (x0, y0) =
(x, y) and (xn+1, yn+1) = g(xn, yn), is bounded

}

(ii) The map definition
f : (u, v) = f (x, y)

(b) The map definition f : (u, v) = f (x, y)

(iii) The image description
Ff = {(u, v) : g(f−1(u, v)

) =
0
}

(c) The fractal-image description
Ff = {(u, v) : f−1(un, vn), where (u0, v0) =
(u, v) and f−1(un+1, vn+1) =
g
(
f−1(un, vn)

)
, is bounded

}

Fig. 11.2 Julia and Mandelbrot sets with their images

image, one should involve the infinite process of the preimage construction (a). The
novelty of our approach is exactly in finding how the infinite process can be involved
to define the fractal mapping algorithm (c).

Now, we apply FMI to a Julia set J , and the iteration will be in the form

f−1(zn+1) = [f−1(zn)
]2 + c, (11.3.6)

with various functions f and values of c. The resulting fractals Jf = f (J ) are
depicted in Fig. 11.2b and d. They are mapped by f (z) = cos−1

( 1
z

− 1
)
, c =

−0.7589 + 0.0735i, and f (z) = (
sin−1 z

) 1
5 , c = −0.175 − 0.655i from the Julia

sets in Fig. 11.2a and c, respectively.
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For mapping of the Mandelbrot set, we propose the FMI

zn+1 = z2
n + f−1(c). (11.3.7)

Along the lines of the proof of Theorem 11.1, one can show that if the map f is
bi-Lipschitzian, then the iteration (11.3.7) defines the relation f (M ) = Mf , where

Mf is a new fractal. Figure 11.2f shows a fractal mapped by f (c) = ( 1
c
−1
) 1

2 from
the Mandelbrot set in Fig. 11.2e.

11.4 Dynamics for Julia Sets

11.4.1 Discrete Dynamics

Discrete fractal dynamics means simply iterations of mappings introduced in the last
section. Let us consider a discrete dynamics with a bi-Lipschitz iteration function f
and a Julia set J0 = J as an initial fractal for the dynamics. The trajectory

J0,J1,J2,J3, . . . ,

is obtained by the FMI

zn+1 = f k
(
[f−k(zn)]2 + c

)
(11.4.8)

such that Jk+1 = f (Jk), k = 0, 1, 2, 3, . . .. The last equation is a fractal
propagation algorithm.

The computational procedure of the numerical simulation for the discrete fractal
trajectory of Eq. (11.4.8) is summarized in Algorithm 1. Figure 11.3, which is
obtained by using Algorithm 1, shows the trajectory and its points at k = 1 and
k = 5 for the function f (z) = z2 + ac + b with a = 0.6, b = 0.02 − 0.02i and
c = −0.175 − 0.655i.

11.4.2 Continuous Dynamics

To demonstrate a continuous dynamics At with real parameter t and fractals, we use
the differential equation

dz

dt
= g(z), (11.4.9)
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Algorithm 1: Discrete dynamics simulation

1 Define the map f (t) and its inverse f−1(t)

2 Specify the initial Julia set J0 by setting the parameter c
3 Set the upper bound b
4 Set the number of maximum iterations jm
5 Create a mesh with Np = N ×M elements on the domain of J0
6 Set the number of the map iterations K
7 for k = 1 to K do
8 Initiate the image matrix Z = zeros(M,N)
9 for n = 1 to Np do

10 Pick a point (x, y) from the domain
11 Let z = x + iy
12 Set j = 0
13 while (j < jm) and (x2 + y2 < b2) do
14 Let j = j + 1

15 Find the image z = f k
((
f−k(z)

)2 + c
)

16 Compute x = Re(z) and y = Im(z)
17 end
18 Assign the image matrix elements, Z(n) = j
19 end
20 Display the image Z on the x, y, k coordinates
21 end

such that Atz = φ(t, z), where φ(t, z) denotes the solution of (11.4.9) with
φ(0, z) = z. Thus, we will construct dynamics of sets AtF , where a fractal F
is the initial value. To be in the course of the previous sections, we define a map
f (z) = Atz and the equation

A−t (zn+1) = [A−t (zn)]2 + c.

Thus the FMI (11.3.4) in this case will be in the form

zn+1 = At
(
[A−t (zn)]2 + c

)
. (11.4.10)

In what follows, we assume that the map At is bi-Lipschitzian. This is true, for
instance, if the function g in (11.4.9) is Lipschitzian. Then the set AtF for each
fixed t is a fractal determined by the FMI, and we can say about continuous fractal
dynamics. Algorithm 2, which is provided in the Appendix, gives the general outline
of the computational steps of the numerical simulation for trajectories generated
by the FMI (11.4.10). The Algorithm is used to produce the trajectories shown in
Figs. 11.4 and 11.5.

As an example we consider the differential equation dz/dt = −z, 0 ≤ t ≤ 1,
with the flow Atz = ze−t . It represents a contraction mapping when it is applied
to the iteration (11.4.10), whereas the unstable dynamical system Atz = zet
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Fig. 11.3 The discrete trajectory. (a) Discrete fractal trajectory. (b) k = 1. (c) k = 5

corresponding to the differential equation dz/dt = z represents an expansion
mapping.

Figures 11.4 and 11.5a contain fractal trajectories of the dynamics with the initial
Julia set J , corresponding to c = −0.175−0.655i. The initial fractal and the point
of the expansion at t = 1 are seen in parts (b) and (c) of the Fig. 11.5, respectively.

Now, we will focus on the autonomous system of differential equations

dx

dt
= −y + x(4 − x2 − y2),

dy

dt
= x + y(4 − x2 − y2).

(11.4.11)
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Algorithm 2: Continuous dynamics simulation

1 Find the solution φ(t, z) of the used differential equation
2 Define the map as f (z) = Atz, where Atz = φ(t, z)
3 Define the inverse of the map as f−1(z) = A−t z
4 Specify the initial Julia set J0 by setting the parameter c
5 Set the upper bound b
6 Set the number of maximum iterations jm
7 Create a mesh with Np = N ×M elements on the domain of J0
8 Set the temporal domain t0 ≤ t ≤ T , with a step size Δt
9 Compute the number of image iteration Nt = T/Δt + 1

10 Set t = t0
11 for k = 1 to Nt do
12 Initiate the image matrix Z = zeros(M,N)
13 for n = 1 to Np do
14 Pick a point (x, y) from the domain
15 Let z = x + iy
16 Set j = 0
17 while (j < jm) and (x2 + y2 < b2) do
18 Let j = j + 1

19 Find the image z = At
((
A−k(z)

)2 + c
)

20 Compute x = Re(z) and y = Im(z)
21 end
22 Assign the image matrix elements, Z(n) = j
23 end
24 Display the image Z on the x, y, t coordinates
25 Let t = t +Δt
26 end

Fig. 11.4 Fractals of the
continuous dynamics J e−t

The solution of the last system in polar coordinates with initial conditions ρ(0) =
ρ0 and ϕ(0) = ϕ0 is given by
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Fig. 11.5 Fractals of the continuous dynamics J et . (b) t = 0. (c) t = 1

ρ(t) = 2e4t
( 4

ρ2
0

+ e8t − 1
)− 1

2
,

ϕ(t) = t + ϕ0.

Thus, the map can be constructed by

Atz = x(t)+ iy(t), (11.4.12)

where

x(t) = ρ(t) cos(ϕ(t)),

y(t) = ρ(t) sin(ϕ(t)),

z = ρ0 cos(ϕ0)+ iρ0 sin(ϕ0).
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Fig. 11.6 The fractal
trajectory for (11.4.11)
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Fig. 11.7 The points of the fractal trajectory for (11.4.11). (a) t = 0. (b) t = 0.1. (c) t = 0.2. (d)
t = 0.3. (e) t = 0.4. (f) t = 0.5

In Fig. 11.6, the fractal trajectory of system (11.4.11) is seen with the Julia set
as the initial fractal. The parts (a)–(f) of Fig. 11.7 represent various points of the
trajectory.

Next, let us consider the non-autonomous differential equation

dz

dt
= az+ (cos t + i sin t), (11.4.13)

and the map
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Atz = (z+ a + i
1 + a2 )e

at − a + i
1 + a2 (cos t + i sin t), (11.4.14)

which is determined by the solutions of Eq. (11.4.13).
The map is not of a dynamical system since there is no group property for non-

autonomous equations, in general. This is why, Eq. (11.4.10) cannot be used for
fractal mapping along the solutions of the differential equation (11.4.13). However,
for the moments of time 2πn, n = 1, 2, . . . , which are multiples of the period,
the group property is valid, and therefore iterations by Eq. (11.4.10) determine
a fractal dynamics at the discrete moments. In the future, finding conditions to
construct fractals by non-autonomous systems might be an interesting theoretical
and application problem. We have applied the map with a = 0.01 and the Julia
set corresponding to c = −0.175 − 0.655i as the initial fractal. The results of the
simulation are seen in Fig. 11.8. Since the moment t = π/2 is not a multiple of the
period, the section in part (a) of the Fig. 11.9 does not seem to be a fractal, but in
part (b) of the figure, the section is a Julia set.

Fig. 11.8 The parametric set
AtJ for (11.4.13)
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Fig. 11.9 The sections of the parametric set AtJ for (11.4.13). (a) t = π
2 . (b) t = 2π
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11.5 Dynamics Motivated by Sierpinski Fractals

Fatou–Julia iteration is an effective instrument to construct fractals. Famous Julia
and Mandelbrot sets are strong confirmations of this. In this section, we use the
paradigm of FJI to construct and map Sierpinski fractals. The process of the
construction of the Sierpinski gasket starts with dividing an initial solid triangle into
four identical triangles and removing the central one. In the next iterations, the same
procedure is repeated to each of the remaining triangles from the preceding iteration.
In an analogous way to the gasket, the construction of the Sierpinski carpet starts
with dividing an initial solid square into nine identical squares and removing the
central one. Similarly, each next iteration is a repetition of the same procedure to
each of the remaining squares from the preceding iteration. Figure 11.10 shows the
two Sierpinski fractals for finite iterations, which are constructed by the methods
introduced and discussed in this section.

11.5.1 Construction of the Fractals

The Sierpinski fractals are typically generated using IFS [9, 22], which is defined
as a collection of affine transformations. Another way of construction can be
accomplished by adopting the idea of FJI and developing some schemes for
constructing Sierpinski fractals. The technique of the FJI is based on detecting
the points of a fractal set through the boundedness of their iterations under a
specific map. Here, we shall extend the technique to include any possible criterion
for grouping points in a given domain. It is worthy to mention that FJI can be
constructed from IFS [8, 9].

(a) (b)

Fig. 11.10 Sierpinski Fractals. (a) Sierpinski gasket. (b) Sierpinski carpet
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11.5.1.1 Sierpinski Carpets

At first glance, the Sierpinski carpet seems to be a two-dimensional version of the
middle third Cantor set. To discuss this thought, let us consider the tent map T
defined on the interval I = [0, 1] such that

T (x) =
{

3 x, if x ≤ 1
2 ,

3(1 − x), if x > 1
2 .

(11.5.15)

The Julia set corresponding to the map (11.5.15) is the middle third Cantor set [32].
For planar fractals we consider the FJI defined by the two-dimensional tent map

(xn+1, yn+1) =
(

3

2
− 3
∣∣xn − 1

2

∣∣,
3

2
− 3
∣∣yn − 1

2

∣∣
)
, (11.5.16)

with the initial square D = [0, 1] × [0, 1]. If we exclude each point (x0, y0) whose
iterated values (xn, yn) escape from D , i.e., at least one coordinate escapes, xn > 1
or yn > 1 for some n ∈ N, we shall get a Cantor dust. This set is simply the Cartesian
product of the Cantor set with itself, and it is a fractal possessing both self-similarity
and fractional dimension. Figure 11.11a shows the 3rd approximation of the Cantor
dust generated by (11.5.16).

Let us now modify this procedure such that a point (x0, y0) is excluded from
D if both of its coordinates’ iterations (xn, yn) escape from the initial set, that is,
if xn > 1 and yn > 1 for some n ∈ N. This procedure for iteration (11.5.16)
will give a kind of two-dimensional Cantor set shown in Fig. 11.11b with the 3rd
approximation. More similar object to the Sierpinski carpet can be obtained by
considering simultaneous escape of both coordinates, viz., (x0, y0) is excluded
only if xn > 1 and yn > 1 at the same iteration n. Figure 11.11c shows the
5th approximations of the resulting set. This set is clearly not a fractal from the
dimension point of view. The self-similarity is also not satisfied over the whole
set. However, a special type of self-similarity can be observed where the corners
replicate the whole shape.

Fig. 11.11 Approximations of planar sets generated by (11.5.16) with different conditions of
grouping the points
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The construction of the Sierpinski carpet cannot possibly be performed through
any arrangement of two-dimensional Cantor set and, therefore, a different strategy
should be considered. To this end, we shall use maps that construct sets which are
similar to Cantor sets in the generation way but different in structure. A suitable set
for generating the Sierpinski carpet started with the initial set I = [0, 1]. The first
iteration involves subdividing I into three equal intervals and removing the middle
open interval ( 1

3 ,
2
3 ). In the second iteration the middle interval is restored and each

of the three intervals are again subdivided into three equal subintervals then we
remove the middle open intervals ( 1

9 ,
2
9 ), (

4
9 ,

5
9 ), and ( 7

9 ,
8
9 ). We continue in the

same manner for the succeeding iterations. Figure 11.12 illustrates the first three
stages of construction of the set. The purpose of such sets is to cut out successively
smaller parts (holes) in the Sierpinski fractals kind. This is why we call these types
of sets “perforation sets.”

To construct perforation sets, we use the modified tent map

F(x) =
{

3 [x(mod 1)], if x ≤ 1
2 or x > 1,

3(1 − x), if 1
2 < x ≤ 1.

The point x ∈ I is excluded from the kth approximation of the set if its kth iteration
Fk(x) does not belong to I . For the Sierpinski carpet we use a two-dimensional
version of the modified tent map defined on the domain D = [0, 1] × [0, 1]. We
consider the iteration

xn+1 =
{

3 [xn(mod 1)], if xn ≤ 1
2 or xn > 1,

3(1 − xn), if 1
2 < xn ≤ 1,

yn+1 =
{

3 [yn(mod 1)], if yn ≤ 1
2 or yn > 1,

3(1 − yn), if 1
2 < yn ≤ 1.

(11.5.17)

To generate the Sierpinski carpet we exclude any point (x0, y0) ∈ D if its
iteration (xn, yn) under (11.5.17) escapes from D such that xn > 1, yn > 1
for some natural number n. Figure 11.10b shows the 6th approximation of the
Sierpinski carpet generated by iteration (11.5.17). The iteration looks very similar
to the FJI but with different criterion for grouping the points. However, it can be
classified under FJI type.

Fig. 11.12 Perforation set
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Another scheme can be developed by using a map to generate a sequence for each
point in a given domain and then applying a suitable criterion to group the points.
For that purpose, let us introduce the map

ψn(x) = B sin(Anx), (11.5.18)

where An = πan−1, B = csc π
b

, and a, b are parameters. The recursive formula is
defined as follows:

ψ0(x0) := x0,

xn = ψn(x0), n = 1, 2, ... .

To construct the perforation set, we start with the interval I = [0, 1], and include
in the kth approximation of the set each point x0 ∈ I that satisfies |xk| ≤ 1. Thus,
for Sierpinski carpet, we use a two-dimensional version of the map (11.5.18) which
can be defined in the form

ψn(x, y) = (B sin(Anx), B sin(Any)
)
. (11.5.19)

The procedure here is to determine the image sequence (xn, yn) of each point
(x0, y0) ∈ D , i.e.,

(xn, yn) = ψn(x0, y0). (11.5.20)

If we choose D = [0, 1] × [0, 1], the point (x0, y0) is excluded from the set if the
condition

|xn| > 1, |yn| > 1 (11.5.21)

is satisfied for some n ∈ N.
For the values of the parameters a = 3 and b = 3, the scheme gives the classical

Sierpinski carpet (the simulation result for the 6th approximation is identical to
Fig. 11.10b). Figure 11.13 shows other carpets generated by (11.5.19) with different
values of the parameters a and b, and for limited stages. The colors that appear in
the parts (d) and (f) of the figure are related to the sequences generated by (11.5.20)
such that the color of each point in the carpets depends on the smallest number of
stages n that satisfies condition (11.5.21).

This scheme is quite different than the usual procedure of FJI since iterations are
not utilized and a different criterion is applied for grouping the points. However, we
shall see later that the idea of the FMI can be applied for this type which allows to
map and introduce dynamics for the constructed carpets.

A more similar iteration to that of Fatou and Julia can be constructed by finding
the inverse x = ψ−1

n (xn) in (11.5.18) and then substituting in xn+1 = ψn+1(x) to
get the autonomous iteration
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Fig. 11.13 Sierpinski carpets. (a) a = b = 4. (b) a = 6, b = 3. (c) a = 3, b = 4. (d) a = 3, b =
4. (e) a = 2, b = 3.5. (f) a = 2, b = 3.5

Fig. 11.14 Sierpinski carpets by the FJI (11.5.22). (a) a = 3, b = 3. (b) a = 4, b = 4

xn+1 = B sin
(
a sin−1 xn

B

)
. (11.5.22)

The carpets shown in Fig. 11.14 are simulated by using a two-dimensional form
of iteration (11.5.22), and they are irregular types of fractals. These fractals have
asymmetric similarities and they are not categorized under random fractals [18].
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11.5.1.2 Sierpinski Gasket

For constructing the Sierpinski gasket we again use the perforation sets, and in this
case we introduce a special coordinate system shown in Fig. 11.15a. The system
consists of three non-rectangular plane axes denoted by x′, x′′, and y, and the thick
red lines in the figure represent the perforation set constructed in Fig. 11.15b.

We start with the initial set D which is a unit equilateral triangle defined by

D = {(x, y) ∈ R
2 : −1√

3
y ≤ x ≤ 1√

3
y, 0 ≤ y ≤

√
3

2 }. For each point (x, y) ∈ D ,

we detect the triple (x′, x′′, y), where x′ and x′′ are the projections of (x, y) on the
x′ and x′′ axes, respectively. To examine whether the point (x, y) belongs to the
gasket, we set up the recursive formula

(x′
n, x

′′
n, yn) =

(
α
(
Anx

′), β
(
Anx

′′), γ
(
Any

))
, (11.5.23)

where α, β, and γ are functions, An = 2√
3
πan, and a is a parameter. The point

(x, y) is excluded from the resulting gasket if x′
n > 0, x′′

n > 0 and yn < 0 for some
n ∈ N.

For α(x) = β(x) = γ (x) = sin x and a = 2, the resulting gasket is the classical
Sierpinski gasket. Figure 11.10a shows the 8th approximation of the Sierpinski
gasket generated by iteration (11.5.23). Examples of other gaskets with different
choices of the functions α, β, γ and the parameter a are shown in Fig. 11.16.

11.5.2 Mappings

In this part of the research we give procedures for mapping the Sierpinski fractals
through the schemes introduced in the preceding section.

Fig. 11.15 Sierpinski gasket construction. (a) Coordinate system for Sierpinski gasket construc-
tion. (b) Perforation set
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(a)

(b)

(c)

(d)

Fig. 11.16 Sierpinski gaskets. (a) α(x) = β(x) = γ (x) = sin(x), a = 4. (b) α(x) = β(x) =
γ (x) = cos(x), a = 2. (c) α(x) = tan(x), β(x) = γ (x) = cos(x), a = 2. (d) α(x) =
tan−1(x), β(x) = γ (x) = cos(x), a = 7

11.5.2.1 Mapping of Carpets

To map the carpets generated by the scheme (11.5.19), we use the idea of FMI. Let
 : D → D ′ be an invertible function defined by

 (x, y) = (φ1, φ2)(x, y), (11.5.24)

with the inverse

 −1(ξ, η) = (φ3, φ4)(ξ, η). (11.5.25)

Then the fractal mapping scheme can be defined as

 −1(ξn, ηn) = ψn
(
 −1(ξ0, η0)

)
. (11.5.26)

This scheme transforms a carpet F into a new carpet F , and the following
theorem shows that the set F is merely the image of F under the map  .

Theorem 11.2 F =  (F ).
Proof First, we show that F ⊆  (F ). Let (ξ, η) ∈ F , which means that for
formula (11.5.26), if (ξ0, η0) = (ξ, η), then at least one of |un| and |vn| is less
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than or equal to 1 for all n ∈ N, where (un, vn) =  −1(ξn, ηn). This implies that
(u, v) = (u0, v0) ∈ F . Thus (ξ, η) ∈  (F ).

For the reverse inclusion, suppose that (ξ, η) ∈  (F ), i.e., there exists (x, y) ∈
F such that  (x, y) = (ξ, η) and (x0, y0) = (x, y) with formula (11.5.20) in
which at least one of |xn| and |yn| is less than or equal to 1 for all n ∈ N. This
directly implies that the sequence  −1(ξn, ηn) = (xn, yn) satisfies (11.5.26) and
(ξ, η) ∈ F . �	

The following question arises here: Is the mapped carpet a fractal? The answer
is “yes” if the map  satisfies a bi-Lipschitz condition. This result is stated in
Lemma 11.3.1.

For our next examples, we shall use bi-Lipschitz functions to ensure that the
mapped carpets are fractals. In order to obtain the mapped Sierpinski carpet F , we
restrict the domain of (11.5.26) only to the points (ξ, η) that belong to the mapped
domain D ′, thus Eq. (11.5.26) becomes

(ξn, ηn) =  (ψn(x0, y0)
)
, (x0, y0) ∈ D .

More precisely, by using Eqs. (11.5.19) and (11.5.25) in (11.5.26), we have

 −1(ξn, ηn) =
(

sin(an−1πφ3(ξ0, η0))

sin(π
b
)

,
sin(an−1πφ4(ξ0, η0))

sin(π
b
)

)
.

Now letting sin(an−1πφ3(ξ0,η0))

sin( π
b
)

= Xn and sin(an−1πφ4(ξ0,η0))

sin( π
b
)

= Yn and using

Eq. (11.5.24), we get

(ξn, ηn) =
(
φ1(Xn, Yn), φ2(Xn, Yn)

)
. (11.5.27)

The semi-iteration (11.5.27) is applied for each point (ξ0, η0) ∈ D ′, and the point
is excluded from the image set F if |φ3(ξn, ηn)| > 1, |φ4(ξn, ηn)| > 1 for some
n ∈ N. Figures 11.17 and 11.18 show different examples for mappings of carpets
by (x, y) = (x2 +y2, x−y) and (x, y) = (sin x+y, cos x), respectively. The
colors displayed in these figures are produced in a similar way to those in Fig. 11.13.

11.5.2.2 Mapping of Gaskets

Let us give examples of mappings of gaskets using formula (11.5.23). Figure 11.19a
shows the mapped Sierpinski gasket by the map  (x, y) = (x2 − y, x + y2),
whereas Fig. 11.19b represents the mapped gasket depicted in Fig. 11.16b by the

map  (x, y) = (x + y2, x − 2y
2
3 ).
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Fig. 11.17 The images of carpets with (a): a = b = 3, (b): a = 3, b = 4

Fig. 11.18 The images of carpet with (a): a = 2, b = 3.5, (b): a = 2, b = 1.5

(a) (b)

Fig. 11.19 Mappings of gaskets. (a) Image of Sierpinski gasket. (b) Image of gasket with α(x) =
β(x) = γ (x) = cos x, a = 2
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11.5.3 Dynamics

Based on the fractal mapping iteration, we introduce dynamics in fractals. As in
Sect. 11.4.1, discrete dynamics can be constructed for Sierpinski fractals by iterating
the mappings introduced in the previous section. In other words, if we start, for
example, with the Sierpinski carpet as an initial set, S0, and iterate the map  in
FMI, we shall have the image sets

Sm =  m(S0), m = 1, 2, 3, ... .

Thus the discrete dynamics will consist of these fractal sets, Sm, as points of a
trajectory.

For continuous dynamics, the idea is to use the motion of a dynamical system
with a fractal as an initial set. The motion of dynamical system is defined by Atx0 =
ϕ(t, x0), where ϕ is the solution of a two-dimensional system of ordinary differential
equations

x′ = g(t, x), (11.5.28)

with ϕ(0, x0) = x0.
In the case of the Sierpinski carpet, we iteratively apply a motion At to the

scheme (11.5.19) in the way

A−t (ξn, ηn) = ψn
(
A−t (ξ, η)

)
,

where At (x, y) = (Atx, Bty). Through this procedure, we construct dynamics of
sets AtF , where the Sierpinski carpet F is the initial value. Thus, the differential
equations are involved in fractals such that the latter become points of the solution
trajectory. If the map At is bi-Lipschitzian (this is true, for instance, if the function
g in (11.5.28) is Lipschitzian) then the set AtF for each fixed t is a fractal.

Let us now consider the Van der Pol equation

u′′ + μ(u2 − 1)u′ + u = 0, (11.5.29)

where μ is a real constant known as the damping parameter. Using the variables
x = u and y = u′, one can show that Eq. (11.5.29) is equivalent to the autonomous
system

x′ = y,
y′ = μ(1 − x2)y − x.

(11.5.30)

Let us denote by
(
x(t, x0), y(t, y0)

)
the solution of (11.5.30) with x(0, x0) =

x0, y(0, y0) = y0. System (11.5.30) can be numerically solved to construct a
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dynamical system with the motion At (x0, y0) = (Atx0, Bty0) where Atx0 =
x(t, x0) and Bty0 = y(t, y0). We apply this dynamics for an approximation of the
Sierpinski carpet as an initial set. The trajectory of the Van der Pol dynamics with
μ = 0.5 and 0 ≤ t ≤ 8 is shown in Fig. 11.20. Figure 11.21 exhibits the sections of
the trajectory at the moments t = 1, t = 3, t = 5, and t = 7.

Fig. 11.20 Van der Pol
dynamics of Sierpinski carpet

Fig. 11.21 Trajectory sections of the Van der Pol dynamics in Sierpinski carpet. (a) t = 1. (b)
t = 3. (c) t = 5. (d) t = 7
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Fig. 11.22 Trajectory sections of the Van der Pol dynamics with μ = 1.3. (a) t = 1. (b) t = 3

In Fig. 11.22 we again show two sections of the trajectory of the Van der
Pol dynamics for the approximation of the Sierpinski carpet but with μ = 1.3.
Comparing these sections with their time counterpart in Fig. 11.21, we can observe
the dissimilarity in the deformation rate in the structure of the Sierpinski carpet.
This is attributed to that the value of the damping parameter reflects the degree of
nonlinearity of the Van der Pol equation.

For dynamics in Sierpinski gasket, let us consider the Duffing equation

u′′ + δu′ + βu+ αu3 = γ cosωt,

where δ, β, α, γ , and ω are real parameters. The equation is equivalent to the non-
autonomous system

x′ = y,
y′ = −δy − βx − αx3 + γ cosωt.

In a similar way to the mapping of gasket, we apply the dynamical system
associated with the Duffing equation to an approximation of the Sierpinski gasket.
The fractal trajectory for 0 ≤ t ≤ 3 is shown in Fig. 11.23, whereas Fig. 11.24
displays the sections of the trajectory at the specific times t = 0.8, t = 1.4, t = 2.0,
and t = 2.6. The values δ = 0.08, β = 0, α = 1, γ = 0.2, and ω = 1 are used in
the simulation.

11.6 Notes

Despite the intensive research of fractals lasts more than 35 years [31], there are
still no results on mapping of the sets, and our research is the first one to consider
the problem. To say about mathematical challenges connected to our suggestions,
let us start with topological equivalence of fractals and consequently, normal forms.
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Fig. 11.23 Trajectory of the
Duffing dynamics in
Sierpinski gasket

Fig. 11.24 Sections of the trajectory. (a) t = 0.8. (b) t = 1.4. (c) t = 2.0. (d) t = 2.6

Differential and discrete equations will be analyzed with new methods of fractal
dynamics joined with dimension analysis. Next, the theory for dynamical systems
which is defined as iterated maps can be developed. Therefore, mapping of fractals
will be beneficial for new researches in hyperbolic dynamics, strange attractors,
and ergodic theory [21, 48]. The developed approach will enrich the methods for
the discovery and construction of fractals in the real world and industry such as
nano-fiber engineering, 3D printing, biology, cosmology, biotechnologies, genetics,
signal processing, civil engineering, etc. [12, 20, 29, 38, 47, 49].
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Let us outline how our results can be useful for applications combined with
already existing ones in the area. We start with the theory of scale relativity
developed in [39, 40]. In this theory, fractals are considered as a geometric
framework of atomic scale motions such that the quantum behavior can be viewed
as particles moving on fractal trajectories. One can suppose that by composing
the scale relativity theory with dynamics of fractals developed in our research, we
will be able to understand better the fractal nature of the world. The expression of
a scale-dependent physical quantity requires besides space-time variables, a scale
variable. Thus, it is regarded as a fractal function but differentiable when the scale
variable is nonzero, therefore, it can be a solution of differential equations involving
its derivatives with respect to space-time and scale variables. For a fixed value of
the scale variable the solution is a fractal. By varying the scale variable, one can
set up an ordinary differential equation to construct a dynamical system. Then, by
applying a mapping iteration whose initial set is a scale-dependent physical quantity
with fixed a scale variable, one may show that the resulting surface is also a fractal.
From another side, fractal dynamics determined by mapping iterations possibly can
be a good instrument to study quantum mechanical properties. An example of such
properties is the quantum interference of atoms and molecules. Fractal geometry has
been used to study the interference patterns of waves such as in electromyography,
diffraction grating, and color texture analysis [5, 11, 50]. In our case it would be
interesting if one could perform simulations analogous to Young’s experiment such
that the interference occurs between two fractal trajectories. A possible connection
between fractals mappings and quantum mechanics through the scale relativity
theory can provide important applications for the former in various fields such as
biology, cosmology, and fractal geodesics (see [40] and the relevant references listed
therein).

Further applications can be done with another class of fractal functions which
is defined as a family of real functions whose graphs are attractors for IFS [6–9,
35, 36]. This type is called fractal interpolation function where it is a continuous
fractal function interpolating a given set of points [30]. The IFS is defined by a
finite collection of affine mappings. The similarity between the IFS and FJI derives
from the fact that both of them consist of infinite long iterations. Moreover, the
graphs of some fractal functions constructed by IFS, likewise the Cantor set [36],
can also be generated by FJI [32]. Additionally, the graphs of such functions can
be mapped to graphs of new fractal functions by fractal mapping iterations and
introduce dynamics on these sets. Furthermore, we suppose that the idea of mapping
on the basis of FJI can be extended to IFS as they are iterative. Consequently, the
results of the present research can be applied to various applications associated with
fractal interpolation functions such as signal processing and modeling coastlines
and shapes [13, 33, 34, 37, 51].

Owing to the important roles of Sierpinski fractals in several applications like
weighted networks, trapping problems, antenna engineering, city planning, and
urban growth [14, 25, 27, 46, 52], we expect that the results will be helpful in
further fields of applications. One of the relevant applications involves optimization
theory. Fractal geometry is used to solve some classes of optimization problems
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such as supply chain management and hierarchical design [26, 28]. In paper [26],
for instance, the properties of a particular hierarchical structure are established.
The authors constructed the relationship between the Hausdorff dimension of the
optimal structure and loading for which the structure is optimized. The Hausdorff
dimension is calculated through considering the self-similarity of the structure at
different hierarchical levels. The self-similar fractals, like the Sierpinski gasket, are
considered as effective tools for studying the hierarchical structures [27, 43]. Thus,
finding a way to map this type of structures allows to create a new hierarchical
structure with the same Hausdorff dimension but different mechanical properties if
one considers bi-Lipschitz maps.

Finally, but not less important, another application field is partial differential
equations with fractal boundaries [10, 19, 23, 41]. These equations are significantly
useful for many fields such as electromagnetics, elasticity theory, and signal
processing. For instance, the paper [23] deals with a relevant Brownian motion
problem. The boundaries of the problem considered in the paper are of self-similar
type such as Koch’s snowflake curve. For partial differential equations, one can
either apply a fractal mapping iteration extended to continuous dynamics in our
research or develop the approach on the basis of IFS. Thus, in the future, one can
not only develop numerical solutions of such problems but also confirm that the
integral surfaces of the boundary value problems are fractals.
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Chapter 12
Abstract Similarity, Fractals, and Chaos

To prove presence of chaos for fractals, a new mathematical concept of abstract
similarity is introduced. As an example, the space of symbolic strings on a finite
number of symbols is proved to possess the property. Moreover, Sierpinski fractals,
Koch curve as well as Cantor set satisfy the definition. A natural similarity map is
introduced and the problem of chaos presence for the sets is solved by considering
the dynamics of the map. This is true for Poincaré, Li–Yorke, and Devaney chaos,
even in multi-dimensional cases. Original numerical simulations which illustrate the
results are delivered. The preliminary discussions in this chapter stem from [2].

12.1 Introduction

In this chapter, we concern with self-similarity. This concept is reflected in many
problems that arise in various fields such as wavelets, fractals, and graph systems
[16]. We define the abstract self-similar set as a collection of points in a metric
space, where it can be considered as a union of infinite shrinking sets with notation
that allows to introduce dynamics in the set and then prove chaos which is the most
important result of the present chapter. For that purpose, a specific map over the
invariant self-similar set is defined, and this map acts as the identity if the whole set
is taken as its argument. This feature is equivalent to the property of self-similarity
in the ordinary fractals, and this is the reason for calling this map the similarity map.
We expect that the concept of abstract self-similarity will create new frontiers for
chaos and fractals investigations, and we hope it will be a helpful tool in other fields
such as harmonic analysis, discrete mathematics, probability, and operator algebras
[16].

Our approach with respect to chaos is characterized by the priority of the domain
over the map of chaos [3]. More precisely, the usual construction of chaos starts
with description of a map with certain properties like unimodality, hyperbolicity,

© Springer Nature Switzerland AG 2020
M. Akhmet et al., Dynamics with Chaos and Fractals, Nonlinear Systems
and Complexity 29, https://doi.org/10.1007/978-3-030-35854-9_12

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35854-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-35854-9_12


204 12 Abstract Similarity, Fractals, and Chaos

period three, and topological conjugacy to a standard chaotic map. Next, chaotic
behavior is discovered, and finally, the structure of the chaotic attractor is analyzed.
For example, in Li–Yorke chaos, a map is firstly defined such that it has period
three property, and then, the domain (scrambled set) for the chaos is characterized
by specific properties. The same can be said for the chaos of unimodal maps, when
the domain of chaos is a Cantor set. In the Smale horseshoe case, we can conclude
that the map and the domain are simultaneously determined so that the construction
of the domain started with an initial set and it is developed step-by-step using a
particular map. Therefore, the structure of the domain and the nature of the map are
mutually dependent on each other. For the chaos in symbolic dynamics, the domain
is primarily described as infinite sequences of symbols then the map is introduced
as a shift on the space. However, the map still has priority since the properties of
the sequences are described with respect to the map. In the proposed approach, we
first construct a domain in a metric space with specific conditions to be a suitable
venue for manifestations of chaos. Thereafter, the similarity map is built on the
basis of the invariance and self-similarity properties of the domain to define an
abstract motion. This is why the map is appropriate for abstract self-similar set as
well as for any fractal constructed through self-similarity, and thence proving chaos
for these classes of fractals becomes possible. Moreover, we drop the continuity
requirement for the motion since the chaotic map need not be continuous [1, 18].
In paper [18], for instance, the authors ignore the continuity of some chaotic maps
during the discussion of chaos conditions on the product of semi-flows. We regard
the continuity of a chaotic map as an important property only from the analytical
side, that is to say, it is very useful for handling the map to prove presence of chaos
[12, 23], however, it is not rigorously correct to consider it as an intrinsic property
for chaos. Despite the discontinuity of the similarity map, opposite to our desire, one
can recognize that presence of sensitivity and the irregular behavior of simulations
make the discussion precious for theoretical investigations as well as for future
applications. As implementations we consider different types of chaos, namely
Devaney, Li–Yorke, and Poincaré, for self-similar fractals, Sierpinski fractals, Koch
curve as well as Cantor set.

The concept of the abstract self-similarity in different forms has been realized
for several problems in our papers [3, 4].

12.2 Abstract Self-Similarity

Let us consider the metric space (F , d), where F is a compact set and d is a
metric. We assume that F is divided into m disjoint nonempty subsets, Fi , i =
1, 2, . . . , m, such that F = ∪mi=1Fi . In their own turn, the sets Fi i = 1, 2, . . . , m,
are divided intom disjoint nonempty subsets Fij , j = 1, 2, . . . , m, such that Fi =
∪mj=1Fij . That is, in general we have Fi1i2...in = ∪mj=1Fi1i2...inj , for each natural
number n, where all sets Fi1i2...inj , j = 1, 2, . . . , m, are nonempty and disjoint.
We assume that for the sets Fi1i2...in , the diameter condition is valid. That is,
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max
ik=1,2,...,m

diam(Fi1i2...in )→ 0 as n→ ∞, (12.2.1)

where diam(A) = sup{d(x, y) : x, y ∈ A}, for a set A in F .
Let us construct a sequence, pn, of points in F such that p0 ∈ F , p1 ∈ Fi1 ,

p2 ∈ Fi1i2 , . . . , pn ∈ Fi1i2...in , n = 1, 2, . . . . It is clear that,

F ⊃Fi1 ⊃Fi1i2 ⊃ . . . ⊃Fi1i2...in⊃Fi1i2...inin+1 . . . , ik=1, 2, . . . , m, k=1, 2, . . . .

That is, the sets form a nested sequence. Therefore, due to the compactness of F
and the diameter condition, there exists a unique limit point for the sequence pn.
Denote the point as Fi1i2...in... ∈ F , accordingly to the indexes of the nested subsets.
Conversely, it is easy to verify that each point p ∈ F admits a corresponding pn
and it can be written as p = Fi1i2...in..., and this representation is a unique one due
to the diameter condition. Finally, we have that

F = {Fi1i2...in... : ik = 1, 2, . . . , m, k = 1, 2, . . .
}
, (12.2.2)

and

Fi1i2...in =
⋃

jk=1,2,...,m

Fi1i2...inj1j2..., (12.2.3)

for fixed indexes i1, i2, . . . , in.
The set F satisfies (12.2.2) and (12.2.3) is said to be the abstract self-similar set

as well as the triple (F , d, ϕ) the self-similar space.
Let us introduce the map ϕ : F → F such that

ϕ(Fi1i2...in...) = Fi2i3...in.... (12.2.4)

Considering iterations of the map, one can verify that

ϕn(Fi1i2...in ) = F , (12.2.5)

for arbitrary natural number n and ik = 1, 2, . . . , m, k = 1, 2, . . . . The relations
(12.2.4) and (12.2.5) give us a reason to call ϕ a similarity map and the number n
the order of similarity.

In the next example of our study and in the future studies, it is important to find
the structure of abstract self-similar space for a given mathematical object.

Example 12.1 ([2]) Let us consider the space of symbolic strings of 0 and 1 [13,
23], which is defined by

! = {s1s2s3 . . . : sk = 0 or 1}.

The distance in ! is defined by
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d(s, t) =
∞∑

k=1

|sk − tk|
2k−1

, (12.2.6)

where s = s1s2 . . . and t = t1t2 . . . be two elements in !.
Considering the pattern of the self-similar set, we denote the elements of the set

by !s1s2... = s1s2 . . ., and describe the nth order subsets of strings in ! by

!s1s2... sn = {s1s2 . . . snsn+1sn+2 . . . : sk = 0 or 1},

where s1, s2, . . . , sn are fixed symbols. One can show that d(s, t) ≤ 1
2n−1 for any

two elements s, t ∈ !s1s2...sn . Moreover, d(s1s2 . . . sn000 . . . , s1s2 . . . sn111 . . .) =
1

2n−1 . Therefore, diam(!s1s2...sn ) = 1
2n−1 . Consequently,

lim
n→∞ diam(!s1s2...sn ) = lim

n→∞
1

2n−1 = 0,

and the diameter condition holds.
The similarity map for the space is the Bernoulli shift, σ(s1s2s3 . . .) = s2s3s4 . . ..

That is,

ϕ(!s1s2s3...) = σ(s1s2s3 . . .).

On the basis of the above discussion, one can conclude that the triple (!, d, ϕ)
is a self-similar space. This is a purely illustrative example since it makes us
perceive how self-similarity can be defined for abstract objects which are not
necessarily geometrical ones. The space of symbolic strings on two symbols has
been considered, since it is the most basic example that frequently used to describe
the dynamics on symbolic spaces. However, more generally, the space onm symbols
can also be considered.

12.3 Similarity and Chaos

To prove chaos for the self-similar space, we assumed in this section the separation
condition. Define the distance between two nonempty bounded sets A and B in F
by d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}. The set F satisfies the separation
condition of degree n if there exist a positive number ε0 and a natural number n
such that for arbitrary i1i2 . . . in one can find j1j2 . . . jn so that

d
(
Fi1i2...in , Fj1j2...jn

) ≥ ε0. (12.3.7)

We call ε0 the separation constant.
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In the following theorem, we prove that the similarity map ϕ possesses the three
ingredients of Devaney chaos, namely density of periodic points, transitivity, and
sensitivity. A point Fi1i2i3... ∈ F is periodic with period n if its index consists of
endless repetitions of a block of n terms.

Theorem 12.1 ([2]) If the separation condition holds, then the similarity map is
chaotic in the sense of Devaney.

Proof Fix a member Fi1i2...in... of F and a positive number ε. Find a natu-
ral number k such that diam(Fi1i2...ik ) < ε and choose a k-periodic element
Fi1i2...ik i1i2...ik ... of Fi1i2...ik . It is clear that the periodic point is an ε-approximation
for the considered member. The density of periodic points is thus proved.

Next, utilizing the diameter condition, the transitivity will be proved if we show
the existence of an element Fi1i2...in... of F such that for any subset Fi1i2...ik there
exists a sufficiently large integer p so that ϕp(Fi1i2...in...) ∈ Fi1i2...ik . This is true
since we can construct the sequence i1i2 . . . in . . . such that it contains all sequences
of the type i1i2 . . . ik as blocks.

For sensitivity, fix a point Fi1i2... ∈ F and an arbitrary positive number ε. Due
to the diameter condition, there exist an integer k and element Fi1i2...ikjk+1jk+2... �=
Fi1i2...ik ik+1ik+2... such that d(Fi1i2...ik ik+1...,Fi1i2...ikjk+1jk+2...) < ε. We choose
jk+1, jk+2, . . . such that d(Fik+1ik+2...ik+n ,Fjk+1jk+2...jk+n) > ε0, by the separation
condition. This proves the sensitivity. �	

For Poincarè chaos, Poisson stable motion is utilized to distinguish the chaotic
behavior instead of the periodic motions in Devaney and Li–Yorke types. Existence
of infinitely many unpredictable Poisson stable trajectories that lie in a compact
set meet all requirements of chaos. Based on this, chaos can be appeared in
the dynamics on the quasi-minimal set which is the closure of a Poisson stable
trajectory. Therefore, the Poincarè chaos is referred to as the dynamics on the quasi-
minimal set of trajectory initiated from unpredictable point. For more details we
refer the reader to [7, 8].

Next theorem shows that the Poincarè chaos is valid for the similarity dynamics.

Theorem 12.2 ([2]) If the separation condition is valid, then the similarity map
possesses Poincarè chaos .

The proof of the last theorem is based on the verification of Lemma 3.1 in [8]
adopted to the similarity map.

In addition to the Devaney and Poincarè chaos, it can be shown that the Li–Yorke
chaos also takes place in the dynamics of the map ϕ. The proof of the following
theorem is similar to that of Theorem 6.35 in [12] for the shift map defined on the
space of symbolic sequences.

Theorem 12.3 ([2]) The similarity map is Li–Yorke chaotic if the separation
condition holds.

Example 12.2 ([2]) We have shown that the space of symbolic strings is a self-
similar set in Example 12.1. One can see that! = !0 ∪!1, where!0 = {0s2s3 . . .}
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and !1 = {1s2s3 . . .}, hence,

d(!0, !1) = inf{d(s, t) : s ∈ !0, t ∈ !1}
= d(000 . . . , 1000 . . .)

= d(0111 . . . , 111 . . .) = 1.

Therefore, the separation condition of degree 1 holds with the separation constant
ε0 equal to unity.

According to the results of this section, the Bernoulli shift is chaotic in the sense
of Poincarè, Li–Yorke, and Devaney. That is, we confirm one more time the presence
of chaos which have been proven for the dynamics in [6, 8, 13, 23].

12.4 Chaos in Fractals

As implementations of abstract self-similarity, we consider several examples of
fractals, namely Sierpinski carpet, Sierpinski gasket, Koch curve, and Cantor set.
This consists of two main tasks. The first one is to indicate abstract self-similarity
for the fractals, and the second one is to ascertain chaos according to the results of
the last section.

12.4.1 Chaos for Sierpinski Carpet

Let S be the Sierpinski carpet constructed in a unit square. In what follows, we
are going to find the structure of the abstract self-similar space for the Sierpinski
carpet. We shall denote the abstract set by the italic S. Let us start by dividing
the carpet into eight subsets and denote them as S1, S2, . . . S8 (see Fig. 12.1a). The
subsets will be determined such that any couple of adjacent subsets have common
horizontal or vertical boundary line. For this reason, we shall use the boundary
agreement such that: (i) The points of the common boundary of two horizontally
adjacent subsets belong to the left one. (ii) The points of the common boundary of
two vertically adjacent subsets belong to the lower one. Figure 12.1b illustrates the
boundary agreement, (i) and (ii), for the subsets, S5, S7 and S8. For clarification the
boundaries are shown by black lines and we see that the common boundary points
of S5 and S8 belong to S5 not to S8 and the common boundary points of S7 and S8
belong to S7 not to S8. In the second step, each subset Si, i = 1, 2, . . . , 8 is again
subdivided into eight smaller subsets denoted as Sij , j = 1, 2, . . . , 8.

Continuing in the same manner, the subsets of higher order can inductively be
determined such that at each nth step we have 8n subsets notated as Si1i2...in , ik =
1, 2, . . . , 8. Figure 12.2a and b show, for example, the subsets of S1 and subsets of
S11, respectively.
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Fig. 12.1 (a) The first step of abstract self-similar set construction. (b) The illustration of the
boundary agreement

Fig. 12.2 Examples of the 2nd and the 3rd order subsets of the Sierpinski carpet

To determine the distance between the points of S, we will apply the
corresponding Euclidean distance for the set S such that if x = (x1, x2) and
y = (y1, y2) are two points in S, then, d(x, y) = √

(x1 − y1)2 + (x2 − y2)2. The
diameter of a subset at an nth step is equal to, diam(Si1i2i3...in ) = √

2/3n, and
therefore, it diminishes to zero as n tends to infinity, and the diameter condition
holds. It is easy to check that each point in S has a unique presentation Si1i2...in....
Hence, the set S can be written as

S = {Si1i2...in... : ik = 1, 2, . . . 8, k ∈ N
}
.
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The separation condition of degree 1 is satisfied and the separation constant is

ε0 = {min{d(Si, Sj )} : Si, Sj are disjoint, i, j = 1, 2, . . . , 8
} = 1

3
.

Let us now define the similarity map by

ϕ(Si1i2i3...) = Si2i3....

Thus, we have shown that the triple (S, d, ϕ) is a self-similar space with the
separation condition. In view of Theorems 12.1, 12.2, and 12.3, the similarity map
S is chaotic in the sense of Poincaré, Li–Yorke, and Devaney.

12.4.2 A Chaotic Trajectory in the Sierpinski Carpet

In this section, we provide a geometric realization of the similarity map on the
Sierpinski carpet and see how the map can be useful for visualizing the trajectories
of the points of a self-similar set and indexing its subsets. A chaotic trajectory is
seen as expected in the last section. In the Chap. 11, we adopt the idea of Fatou–Julia
iteration and develop a scheme for constructing the Sierpinski carpet. The scheme
is based on the iterations of the modified planar tent map

T (x) =
{

3 [x(mod1)] x ≤ 1
2 or x > 1,

3(1 − x) 1
2 < x ≤ 1,

T (y) =
{

3 [y(mod1)] y ≤ 1
2 or y > 1,

3(1 − y) 1
2 < y ≤ 1.

Depending on this, one can construct a map T̄ = (T̄1, T̄2) : S → S such that the set
S is invariant,

T̄1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

3x 0 ≤ x ≤ 1
3 ,

3x − 1 1
3 < x ≤ 1

2 ,

2 − 3(1 − x) 1
2 < x <

2
3 ,

3(1 − x) 2
3 ≤ x ≤ 1,

T̄2(y) =

⎧
⎪⎪⎨

⎪⎪⎩

3y 0 ≤ y ≤ 1
3 ,

3y − 1 1
3 < y ≤ 1

2 ,

2 − 3(1 − y) 1
2 < y <

2
3 ,

3(1 − y) 2
3 ≤ y ≤ 1.

(12.4.8)
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Fig. 12.3 The trajectory of a
point under the similarity
map

This map is equivalent to the similarity map ϕ defined above, therefore, the
trajectory of a point x ∈ S can be visualized using the map (12.4.8). Figure 12.3
shows an example of the trajectory for the center point x of the subset

S27731137313277182431515822461784764852656358462545627125423317216244.

The points of the trajectory are considered as the centers of the subsets which are
determined by T̄ k(x), k = 0, 1, 2, . . . 68. The idea of indexing of the subsets is
illustrated in Example 12.3.

12.4.3 Sierpinski Gasket as Chaos Domain

To construct an abstract self-similar set on the basis of the Sierpinski gasket, let
us consider the Sierpinski gasket generated in a unit equilateral triangle. We firstly
divided the gasket into three smaller parts to be the first order subsets and denoted
them by G1, G2, and G3 as shown in Fig. 12.4a. By glancing at the figure, one can
see that every two subsets share only a single point as a common boundary. For
this reason we consider the following boundary agreement: The common boundary
point of every couple of adjacent subsets belongs either to the left one or to the
lower one. Applying the agreement, the subsets G1, G2, and G3, become disjoint
subsets of the desired abstract self-similar set G such that G = ∪3

i=1Gi . Secondly,
each subset, Gi, i = 1, 2, 3, is again subdivided into three subsets, and we notate
them as Gij , i, j = 1, 2, 3, (see Fig. 12.4b). Taking into account the boundary
agreement, we repeat the same procedure such that at each nth step, we denote the
resultant subsets by Gi1i2...in , ik = 1, 2, 3.

The subsets of the Sierpinski gasket described above have an inverse relationship
with the construction-step variable, n, diam(Si1i2i3...in ) = 1/2n, from which one can
verify the validity of the diameter condition.
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Fig. 12.4 The construction of abstract self-similar set corresponding to the Sierpinski gasket

Following the arguments of the abstract self-similarity, one can deduce that a
point in G can be uniquely represented by Gi1i2...in..., and the abstract self-similar
set G can be expressed as

G = {Gi1i2...in... : ik = 1, 2, 3, k ∈ N
}
.

Contrary to the Sierpinski carpet case, the separation constant ε0 for the
Sierpinski gasket cannot be evaluated through the first order subsetsGi, i = 1, 2, 3.
This is why we considered the minimum of the distance between any two disjoint
subsets of the second order, that is,

ε0 = {min{d(Gi1i2 ,Gj1j2)} : Gi1i2,Gj1j2 are disjoint, in = 1, 2, 3} =
√

3

8
,

where d is the usual Euclidean distance. Thus, one can see that separation condition
is valid.

The similarity map acting on the Sierpinski gasket, G, can be defined by
ϕ(Gi1i2i3...) = Gi2i3.... Consequently, the triple (G, d, ϕ) is a self-similar space and
ϕ is chaotic in the sense of Poincaré, Li–Yorke, and Devaney.

The same idea can be extended to the fractals associated with Pascal’s triangles.
It is well known that Pascal’s triangle in mod 2 creates the classical Sierpinski
gasket. Different fractals associated with Pascal’s triangles in different moduli can
be considered as abstract similar sets and it can also be proved that the similarity
map defined on these sets possesses chaos.

12.4.4 Koch Curve and Chaos

Let us consider the Koch curve, K , constructed from an initial unit line segment.
To identify an abstract self-similar set corresponding to the Koch curve, we start
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Fig. 12.5 The construction of abstract self-similar set corresponding to the Koch curve

by dividing K into four equal parts (subsets) and denoting them as K1,K2,K3,
and K4 as shown in Fig. 12.5a. Since the Koch curve is a connected set, each two
adjacent subsets share a single point as a common boundary. Let us denote the end
points of each subset Ki, i = 2, 3 by ai and ai+1. Figure 12.5a illustrates these
points and for clarification the points are shown by black thick dots. It is seen in the
figure that K1 and K2 share the point a2, K2 and K3 share the point a3, and K3 and
K4 share the point a4. In the second step, each subset Ki, i = 1, 2, 3, 4 is again
subdivided into four subsets Kij , j = 1, 2, 3, 4. Figure 12.5b and c illustrate the
second step for the subsetsK1 andK2, respectively. Again here we see that each two
adjacent subsets share a single boundary point. We continue in the same way such
that at each step, n, every set Ki1i2...in−1 , ik = 1, 2, 3, 4 is divided into four subsets
Ki1i2...in−1in , in = 1, 2, 3, 4 and denote the end points of each Ki1i2...in , in = 2, 3,
by ai1i2...in and ai1i2...in+1.

As in the previous cases, to determine the abstract self-similar set, we
need to consider the following boundary agreement: For each adjacent subsets
Ki1i2...in−1j and Ki1i2...in−1j+1, the common boundary point ai1i2...in−1j+1 belongs to
Ki1i2...in−1j+1. This condition means that the common boundary point a2 shown in
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Fig. 12.5a, for instance, belongs to K2 not to K1 and the common boundary point
a23 shown in Fig. 12.5c belongs to K23 not to K22.

By applying the boundary agreement to all subsets at each step, we have fully
described the disjoint subsets of the proposed abstract self-similar set for the Koch
curve. From the construction of the Koch curve and by using the usual Euclidean
distance, one can deduce that the distance between the end points of each subset
Ki1i2...in is 1

3n which clearly represents the diameter of the subset. Therefore, the
diameter condition holds. A point in K can be represent by Ki1i2...in..., so that,

K = {Ki1i2...in... : ik = 1, 2, 3, 4, k ∈ N
}
.

The separation condition is also valid with degree 1, since for any Ki, i =
1, 2, 3, 4 one can find Kj, j = 1, 2, 3, 4, j �= i such that they are separated from
each other by a distance of not less than ε0. The separation constant, ε0, can be
defined by

ε0 = min{d(K1,K3), d(K1,K4), d(K2,K4)} =
√

7

9
.

The similarity map for the abstract fractals of Koch curve is given by
ϕ(Ki1i2i3...) = Ki2i3..., and thus, we have shown that the triple (K, d, ϕ) defines a
chaotic self-similar space.

12.4.5 Chaos for Cantor Set

A perfect example of chaos in fractals is the Cantor set. As we previously mentioned,
the chaoticity in the Cantor set is determined by finding a topological conjugacy
with the symbolic dynamics. To show that the Cantor set is not an exception to our
approach for chaos, we shall establish an abstract self-similar set corresponding to
the Cantor set. Let us consider the middle third Cantor set, C, initiated from a unit
line segment. The first step consists of dividing C into two subsets and denoted them
by C1 and C2 (see Fig. 12.6a). In the second step each of C1 and C2 is subdivided

Fig. 12.6 The 1st and the 2nd order subsets of the abstract self-similar set for the Cantor set
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into two subsets as shown in Fig. 12.6b. These subsets are denoted by C11, C12,
C21 and C22. In every next step, we repeat the same procedure for each subsets
resulting from the preceding step. We denote the resultant subsets at each nth step
by Ci1i2...in , ik = 1, 2.

In the Cantor set case, we do not need any boundary agreement since all subsets
are disjoint. Considering the usual Euclidean distance, the diameter of a subset,
Ci1i2...in , is 1/3n. Therefore, the diameter condition holds. The points in C are
represented by Ci1i2...in.... Hence the abstract self-similar set is defined by

C = {Ci1i2...in... : ik = 1, 2, k ∈ N
}
.

From the construction, the separation condition is clearly valid and the constant
ε0 is defined by the distance between the subsets C1 and C2, so that ε0 = 1/3.

The similarity map is defined by ϕ(Ci1i2i3...) = Ci2i3..., and the triple (C, d, ϕ)
defines a self-similar space. Theorems 12.1, 12.2 and 12.3 are also applicable for
this case.

In connection with the above examples of chaos, we remark that the Sierpinski
carpet and Koch curve indicate that a non-continuous map can have a domain which
is a connected set while for continuous maps, the domains of chaos are usually
disconnected. Examples of disconnected chaotic domains are the Cantor set for the
logistic map [13], the modified Sierpinski triangle with exceptions in [10], the set
associated with Smale horseshoe map [25], and the Poincaré section of the Lorenz
attractor [20].

12.5 Domain-Structured Chaos

In this section, we describe a dynamical determination of abstract self-similar set by
utilizing the roles of the domain and the map simultaneously. In other words, a map
is used to describe the structure of F and the relationships between its subsets. The
set constructed by this way, we call it Dynamical Abstract Similarity Set (DASS).
We start by considering the triple (X, d, ϕ), where X denotes the underlying set, d
is a metric, and ϕ : X → X is a map.

Fix subsets F and F0 of X such that F is compact, F0 is bounded and ϕ(F )∩F0
is a nonempty set. Let m be a fixed natural number. Denote by F (1) the preimage
of the set ϕ(F ) ∩ F0 under the function ϕ in F and assume that there exist disjoint
nonempty subsets Fi ⊂ F, i = 1, 2, . . . m, such that ∪mi=1Fi = F (1).

Denote by F (2) the preimage of the set ϕ(F ) ∩ F0 under ϕ2 in F (1) and assume
that there exist disjoint nonempty subsets Fij ⊂ Fi, j = 1, 2, . . . m, such that
∪mj=1Fij = F (2).

Once more, denote by F (3) the preimage of the set ϕ(F ) ∩ F0 under ϕ3 in F (2)

and assume that there exist disjoint nonempty subsets Fijk ⊂ Fij , k = 1, 2, . . . m,
such that ∪mk=1Fijk = F (3).
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In general, if the sets F (n−1) are determined, we denote by F (n) the preimage of
the set ϕ(F )∩F0 under ϕn in F (n−1) and assume that there exist disjoint nonempty
subsets Fi1i2...in ⊂ Fi1i2...in−1 , in = 1, 2, . . . m, such that ∪min=1Fi1i2...in = F (n).

We continue in this procedure, and assume that the following condition is
satisfied:

max
ik=1,2,...,m

diam(Fi1i2...in )→ 0 as n→ ∞. (12.5.9)

Let us construct a sequence, pn, of points in F such that p0 ∈ F , p1 ∈ Fi1 , p2 ∈
Fi1i2 , . . . , pn ∈ Fi1i2...in , n = 1, 2, . . . . It is clear that,

F ⊃Fi1 ⊃Fi1i2 ⊃ . . . ⊃Fi1i2...in ⊃Fi1i2...inin+1 . . . , ik = 1, 2, . . . , m, k = 1, 2, . . . .

That is, the sets form a nested sequence. Therefore, due to the compactness of F and
condition (12.5.9), there exists a unique limit point for the sequence pn. According
to the indexes of the nested subsets, we denote the point as Fi1i2...in... ∈ F .
Conversely, it can be verified that each point p = Fi1i2...in... admits a corresponding
pn. Based on this, one can justify that the representation of each such point is a
unique one. The collection of all such points constitutes the set F , i.e.,

F = {Fi1i2...in... : ik = 1, 2, . . . , m},

and for fixed indexes i1, i2, . . . , in the subsets of F can be represented by

Fi1i2...in =
⋃

jk=1,2,...,m

Fi1i2...inj1j2....

Since Fi1i2...in ⊂ Fi1i2...in , the condition (12.5.9) implies that the diameter condition
(12.2.1) is valid for the set F . Thus, the set F is a DASS. Moreover, from the above
construction, we see that the map ϕ satisfies the relations (12.2.4) and (12.2.5).
Therefore, ϕ is a similarity map and triple (F , d, ϕ) is a self-similar space.

Now, let us formulate the following condition: For arbitrary i1i2 . . . in one can
find j1j2 . . . jn and a positive number ε such that

d
(
Fi1i2...in , Fj1j2...jn

) ≥ ε. (12.5.10)

From the construction, it is clear that if the condition (12.5.10) holds for the
sets Fi1i2...in , then the separation condition (12.3.7) is valid for the set F with a
separation constant ε0 ≥ ε. If this is the case, then in view of Theorem 12.1, 12.2
and 12.3, the similarity map ϕ is chaotic in the sense of Poincaré, Li–Yorke, and
Devaney.

The approach described above is not only an alternative way of the abstract
similarity construction but it can be an essential part of the subject. For instance,
it gives us a method for indexing. That is, the similarity map can be simultaneously
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used to number the subsets of each order depending on the numeration of their
images. The following examples illustrate the idea of DASS, indexing, and chaos.

12.6 Examples

Example 12.3 ([4]) Let X = R
n and F0 = F = [0, 1]n is the n-dimensional unit

cube. Consider the n-dimensional logistic map ϕ = (ϕ1, ϕ2, . . . ϕn) : R
n → R

n

defined by

x1
k+1 = ϕ1(x

1
k ) = r1x1

k (1 − x1
k ),

x2
k+1 = ϕ2(x

2
k ) = r2x2

k (1 − x2
k ),

...

xnk+1 = ϕn(xnk ) = rnxnk (1 − xnk ),

(12.6.11)

where ri > 4, i = 1, 2, . . . , n are parameters. Proceeding upon the properties of
the logistic map, ETA is applied for the map (12.6.11). We iterate the points in F
under the map (12.6.11) such that in each iteration, we keep only the points whose
images do not escape the domain F0. The resulting points from the first iteration
belong to the subsets Fi, i = 1, 2, . . . , 2n. In the second iteration, the non-escaped
points belong to 22n subsets and each subset is indexed as Fij , j = 1, 2, . . . , 2n

such that Fij ⊂ Fi and ϕ(Fij ) = Fj . Similarly, a subset resulting at the kth iteration
is indexed as Fi1i2...ik such that Fi1i2...ik ⊂ Fi1i2...ik−1 and ϕ(Fi1i2...ik ) = Fi2i3...ik .

Based on the algorithm, it is clear that the condition (12.5.9) holds. Thus, we
describe the points Fi1i2i3... = limk→∞ Fi1i2...ik , and then the DASS, the self-similar
set F corresponding to the above algorithm, is defined as the collection of the points
Fi1i2i3....

For ri, i = 1, 2, . . . , n larger than 4, the separation condition is guaranteed to
be valid for the set F , and therefore, Theorem 12.1, 12.2 and 12.3 imply that the
similarity map ϕ is chaotic in the sense of Poincaré, Li–Yorke, and Devaney.

For numerical simulation, let us consider the 2-dimensional system

xn+1 = ϕ1(xn) = r1xn(1 − xn),
yn+1 = ϕ2(yn) = r2yn(1 − yn),

(12.6.12)

with r1 = 4.2 and r2 = 4.3. We fix F0 = F = [0, 1] × [0, 1] and apply ETA
for (12.6.12). The first iteration will generate the sets Fi, i = 1, 2, 3, 4. In the
second iteration, we get the sets Fij , j = 1, 2, 3, 4, and so on. Figure 12.7 shows
the subsets constructed in the first three iterations. The DASS corresponding to the
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Fig. 12.7 The construction of abstract self-similar set using the map (12.6.12)

system (12.6.12) is the set resulting from an infinite iteration of this procedure. The
set is a sort of Cantor dust which is the Cartesian product of two Cantor sets [17].

Example 12.4 Let F0 = F denote the initial set [0, 1] × [0, 1] and consider the
2-dimensional perturbed logistic map ϕ = (ϕ1, ϕ2) : R2 → R

2 defined by

xn+1 = ϕ1(xn, yn;μ1) = r1xn(1 − xn)+ μ1yn,

yn+1 = ϕ2(xn, yn;μ2) = r1yn(1 − yn)+ μ2xn,
(12.6.13)

where r1, r2, μ1, and μ2 are parameters. The last term in the left-hand side of
the both equations in system (12.6.13) can be considered as a perturbation of a
unimodal map. It is known that, if a unimodal map is regular [15, 25], then it
is structurally stable, and therefore, any small perturbation does not affect the
topological properties of the map [9]. Such an inference can be extended for
high-dimensional unimodal maps. Numerical simulations can provide an adequate
verification of the unimodal properties of the perturbed map.

Similar to Example 12.3, we apply ETA to the map (12.6.13). The points that
do not escape F0 in the first iteration belong to the subsets Fi, i = 1, 2, 3, 4. In
the second iteration, the resulting points belong to the subsets indexed by Fij , j =
1, 2, 3, 4 such that Fij ⊂ Fi and ϕ(Fij ) = Fj . Similarly, a subset resulting at the
nth iteration is indexed as Fi1i2...in such that Fi1i2...in ⊂ Fi1i2...in−1 and ϕ(Fi1i2...in ) =
Fi2i3...in . Figure 12.8 shows the subsets constructed in the first three iterations with
the parameters r1 = 4.2, r2 = 4.5, μ1 = 0.03, and μ2 = −0.05.

Depending on the choice of the coefficients ri and relying on the smallness of
the coefficients μi , we have that the diameter and separation conditions for abstract
similarity and chaos are fulfilled. Moreover, the simulation results confirm that both
conditions hold. Therefore, we could say that the similarity map (12.6.13) is chaotic
on the self-similar set F . Figure 12.9 depicts the trajectories of some points that
approximately belong to the set F . The irregular behavior of the trajectories reveals
the presence of chaos in (12.6.13).

Example 12.5 ([4]) Consider the space X = R
n and let F be a compact set in

X such that it contains an open neighborhood of the n-dimensional unit cube and
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Fig. 12.8 The first three iterations of DASS construction using the map (12.6.13)

Fig. 12.9 The two trajectories of the system (12.6.13). (a) The trajectory which starts at the
point (0.044608921784357, 0.287657531506301). (b) The trajectory which starts at the point
(0.910182036407281, 0.329865973194639)

the set F0 to be sufficiently near to the cube. Consider the n-dimensional perturbed
logistic map ϕ = (ϕ1, ϕ2, . . . ϕn) : Rn → R

n which is defined by

x1
k+1 = ϕ1(x

1
k , x

2
k , . . . , x

n
k ;μ1) = r1x1

k (1 − x1
k )+ μ1χ1(x

1
k , x

2
k , . . . , x

n
k ),

x2
k+1 = ϕ2(x

1
k , x

2
k , . . . , x

n
k ;μ2) = r2x2

k (1 − x2
k )+ μ2χ2(x

1
k , x

2
k , . . . , x

n
k ),

...

xnk+1 = ϕn(x1
k , x

2
k , . . . , x

n
k ;μn) = rnxnk (1 − xnk )+ μnχn(x1

k , x
2
k , . . . , x

n
k ),

(12.6.14)

where μi, i = 1, 2, . . . , n are parameters and χ = (χ1, χ2, . . . , χn;μi) is a
continuous function. Due to the continuity of χ , if ri > 4 for each i = 1, 2, . . . , n
and μi , i = 1, 2, . . . , n are sufficiently small in absolute value, then one can show
that a DASS can be constructed using (12.6.14), and thus, chaotic behavior in the
sense of Poincaré, Li–Yorke, and Devaney for the n-dimensional perturbed logistic
map (12.6.14) would be expected to appear.
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12.7 Notes

The abstraction of the self-similarity concept is now accomplished. Furthermore, we
have shown that the set of symbolic strings satisfies the definition of abstract self-
similarity. This example illustrates how the abstraction of a mathematical concept
can be significant not only to extract its essence but also to explore more fields
where it can be manifested. In addition to equipping the self-similar set with a
metric, the similarity map is introduced to define abstract self-similar space. The
map is proven to be chaotic in the sense of Poincaré, Li–Yorke, and Devaney. The
building of chaos usually begins with a map defined over its domain and then saying
about a chaotic attractor that appears as a part of the domain. In our research, we
start by describing a chaotic set, and only then introduce a similarity map which
admits chaotic dynamics. We utilize infinite sequences to index the points of the
domain. The action of the map is not just a shifting in the string space as much as a
transforming of the domain points.

Self-similarity is widely spread in nature, but it is usually associated with fractal
geometry [19, 21]. Proceeding from this point, we have shown that the Sierpinski
fractals, Koch curve, and Cantor set can be associated with abstract self-similarity,
and consequently possess chaos. This covers already known fractals constructed
through self-similarity and possibly other fractals that generated by FJI such as Julia
and Mandelbrot sets. The suggested abstract similarity definition can be elaborated
through fractal sets defined by fractal dimension, chaotic dynamics development,
topological spaces, physics, chemistry, and neural network theories development
[11, 14, 22, 24].

The examples of chaotic fractals [4], domain-structured chaos [3], and mul-
tidimensional chaotic cubes [5] demonstrate that the concept of the abstract
self-similarity can be useful to prove that chaos is a generic property for the world.
At least our results show that chaotic dynamics is more extended in the reality than
we can imagine.
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