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Summary 

The academic finance literature offers broad support for the view that stock price movements 
are a random process in which prices respond to randomly arriving information. Recent 
developments in nonlinear dynamics open the possibility of reconciling this view with the 
“chartist” perspective that patterns of price fluctuations are, at least partly, deterministic. 
This reconciliation is possible if the price fluctuations are “chaotic”. 

We offer a detailed analysis of “correlation dimension “for long series of index data and find 
firm evidence for deterministic behaviour. We offer tentative evidence for a qualitative 
change in observed dynamics in the 1980’s. Finally we discuss alternative methods of 
analysis that may offer further insight on the problem of distinguishing chaos from noise. 

Résumé 

Determinisme et Chaos dans des Séries Chronologiques Financières 
Longues 

La documentation financière académique soutient l'idée que les mouvements des prix des 
actions sont un processus aléatoire dans lequel lea prix réagissent à des informations 
survenant de manière aléatoire. Des progrès récents dans la dynamique non linéaire ouvrent 
la possibilité de réconcilier ce point de vue avec la perspective "graphique” (chartist) selon 
laquelle les schémas de fluctuation des prix sont au moins en partie, déterministes. Cette 
réconciliation est possible si les fluctuations de prix sont “chaotiques”. 

Nous offrons une analyse détaillée de “dimension de corrélation” pour de longues séries de 
données indexées et nous trouvons des preuves solides de comportement déterministe. Nous 
offrons des preuves non définitives d’un changement qualitatif dans la dynamique observée 
dans les années 80. Enfin, nous discutons d’autres méthodes d’analyses qui peuvent offrir 
une meilleure compréhension du problème qui consiste à distinguer le chaos du bruit. 
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I. INTRODUCTION 

Since Kendall’s (1953) seminal paper on the movement of stock market prices, 

researchers in finance have attempted to identify exploitable patterns in stock return 

series (see e.g.Fama (1970) and references therein). The balance of evidence from 

studies using standard autoregression techniques supports market efficiency, although 

anomalies such as the weekend and year-end effects (French (1980)) have been 

identified, and recent papers by Jegadeesh (1990), Fama and French (1988)and Lo 

and MacKinley (1988) have succeeded in identifying statistically significant serial 

correlations in stock returns. The status of these recent studies is still open to debate; 

for example the apparent anomalous returns of Jegadeesh rely on a risk adjustment 

based on a specific, and possibly inappropriate, asset pricing model. Within the 

academic finance literature there remains broad support for weak form market 

efficiency, and the apparent random nature of stock price changes is rationalised as a 

process whereby share prices immediately and unbiasedly impound randomly 

arriving information. 

In spite of this broad consensus in the academic literature, there is a substantial 

market for “chartist services” within the financial services industry. Chartists search 

for, and claim to find, patterns of price fluctuations which repeat themselves, and can 

therefore be used to forecast price changes and make abnormal returns. Until now the 

two points of view, represented by the chartists on the one hand and the academic 

financial economists on the other, were irreconcilable but recent developments in 

non-linear dynamics, in particular those topics related to “deterministic chaos” 

provide a possible way of accommodating both points of view within a single theory. 

The insight from this work is that the fluctuations in any variable may be described 

by simple deterministic rules and yet over all but the shortest time scales appear 

random and aperiodic.Appreciation of this has led to considerable effort being 

devoted to the statistical problem of distinguishing chaos from random noise. 

In its most general form this problem is probably insoluble - for example the pseudo- 

random number generators in computers are generated by deterministic rules, yet are 

designed to produce sequences of numbers effectively indistinguishable from a “true” 

random sequence. For practical purposes it is appropriate to tackle the more 

restrictive problem of distinguishing random noise from “low dimensional chaos” 
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(defined rigorously below, but loosely characterised as chaos in a system whose 

deterministic dynamics only involve a small number of variables). Linear, 

autoregressive models, such as those used by Jegadeesh (1990) cannot of themselves 

generate chaotic fluctuations, and tests for chaos attempt to identify relevant features 

induced by nonlinearities. Previous workers have used three types of test: 

1. Calculations of “correlation dimension”. 

2. Calculations of “Lyapunov exponents” - numbers which characterise any 

tendency of trajectories starting from similar values to diverge rapidly. 

3. Tests related to nonlinear forecasting. 

Of these, the first has proved by far the most popular to workers in finance, with one 

particular algorithm - that of Grassberger and Proccacia (1983a, 1983b, 1983c) - 

established as the trade standard. In this paper we join this particular bandwagon for a 

study of four indices. We have work in progress using the other two approaches. 

These will be reported in a subsequent paper. 

The Grassberger-Proccacia algorithm was originally used on computer-generated data 

from iterated mappings and on laboratory experiments; in both cases tens of 

thousands of data points were typically available and noise contamination was small. 

However, in financial time series the raw data is rarely of sufficient quality or 

quantity to enable the direct computation of correlation dimension, due to the low 

effective signal to noise ratio. To combat this, the data is usually manipulated to 

remove several extrinsic effects, e.g. the Monday, Wednesday, Friday, and January 

effects (French (1980), Ariel (1987)). This approach requires that one distinguish 

between effects driven by forces outside the system, which should be removed, and 

effects which are intrinsic, and therefore contain information about the underlying 

dynamics. 

Previous applications of this method to financial index data have produced 

interestingly low values for the dimension of the underlying attractor, the most 

notable being the analysis of CRSP data by Scheinkman and LeBaron (1989) which 

produced evidence for a six dimensional attractor (see also Brock (1988)). This result 

contrasts with analysis of German blue chip stocks by Booth et al (1990) which, 
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although showing some nonlinear behaviour, apparently exhibit no low dimensional 

attractor. Frank and Stengos (1986) also give a value of around six for gold and silver 

returns, while T-bill returns (Brock (1988)) and Barnett’s Divisia index (Barnett and 

Chen (1988)) produce much lower values of around two and three. The possible 

effect of extrinsic noise on such results has been investigated by Lines (1989), who 

concludes that the addition of noise to a system of given dimension will increase the 

value of its observed correlation dimension.(see also Mayer-Kress (1984)) 

In this paper we attempt a detailed analysis of correlation dimension for four long 

series of index data. The work is distinctive in two ways. First, by a variety of 

transformations of the data we are able to tease out some regularities that have been 

missed in previous studies. Second, our choice of indices for analysis permits 

international comparisons: similar results for all four indices would suggest that any 

observed determinism is related to the (unknown) economic variables for which the 

indices are surrogates, while major differences would point to effects of local features 

(e.g. trading rules). 
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II. DATA AND METHODOLOGY 

The analysis described below was carried out on four major financial indices. The 

data was sampled on a weekly basis using Wednesday closing values in order to 

remove effect of the weekend trading gap and so enable the time series to be pseudo- 

continuous. This however greatly reduced the amount of data available. The indices 

used were :- 

Financial Times All Share Index - 1965-1989 

Dow Jones Index - 1969-1986 

Standard and Poor Composite Index - 1965-1986 

Nikkei Index - 1966-1989 

Implicit in the idea of dimensionality is the notion that index movements may be 

represented by the motion of a representative point in some “state space” 1 . Random 

noise has, by definition an infinite number of degrees of freedom, that is, it will 

normally fill some region of the state space completely, irrespective of the dimension 

of that state space. This contrasts with motion in accordance with some non-linear 

system of equations with a finite number of degrees of freedom, for which at some 

value of state space dimension, the motion of the representative point will fail to fill 

any hypervolume of state space irrespective of how long we wait. For systems which 

have attractors, i.e. where the long term evolution of the system is bound to a hyper- 

surface in state space, then obviously when the dimension of the state space is greater 

than the dimension of the attractor, increasing it further will not change the 

distribution of points in the space. 

In order to measure the distribution of points in state space we calculate the 

correlation dimension, using the algorithm of Grassberger and Procaccia. We first 

select a state space by the procedure of footnote 1; its dimension is known as the 

embedding dimension, E. For a given embedding dimension, the correlation 

dimension, d(E), is defined via the number, C(r), of hyper-spheres of radius r needed 

to cover the surface of the attractor as the size of these spheres tends to zero. 

Formally 

1. Plotting in state space is analogous to plotting functions using x,y,z coordinates, but replacing the 
axes with physical states of the system. For example - plotting profit vs. cash vs. assets. Here we plot 
x t vs. xt+ 1  vs. xt+ 2 , where xt is the value of the index at time t. See Takens (1981) 
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There are practical problems in evaluating this limit. One well-tried approach is to 

identify an approximately linear region in the graph of log C(r) versus log r. To do 

this objectively, we first computed numerical derivatives to locate a roughly linear 

region, then performed a linear regression within that region. If this proved 

impossible, an estimate of the maximum correlation dimension was sought. 

The above procedure can be repeated for different choices of embedding dimension, 

and it is the form of dependence of d(E) on E that we use to distinguish deterministic 

from random motion. For random data where the ‘attractor’ is in effect embedded 

within itself, the correlation dimension will obviously just reflect the embedding 

dimension used. Therefore, as we can never embed random data in a sufficiently high 

state space, the value of d(E) will rise to infinity with increasing E. For an attractor, 

however, once the embedding dimension is substantially 2 greater than the dimension 

of the attractor the value of d should remain constant, by the above arguments. Figure 

1 shows three graphs which illustrate the different possibilities. 

Correlation Dimension Graph 

Embedding Dimension 

Figure 1 Variation of the correlation dimension with embedding dimension for 3 systems: (A) 
White noise (Noise). (B) An attractor system (Attr). (C) A random system with 
power-law spectra (Pink). 

2. For a system of dimension D, the minimum state space dimension required for a complete 
representation of the system is 2D+1 (Takens, 1981). 
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There remains the (likely) possibility that our time series is a superposition of some 

exogenous noise on to a finite attractor; in this case the calculated limiting correlation 

dimension will exceed that of the underlying attractor (Lines (1989)). 

All the above analysis is compounded by slow, aperiodic secular trends which can 

dominate analysis of the data so that the fine structure of the deep dynamics is lost. 

The traditional way round this problem is to transform the data (e.g. by taking logs 

and differencing). To aid our choice of a suitable differencing scheme, we made use 

of a non-linear forecasting method due to Sugihara and May (1990). This is the 

subject of the next section. 
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III. TRANSFORMING THE DATA 

Blythe and Stokes (1988) have shown that secular trends in data can seriously bias 

correlation dimension estimates. Our ability to find evidence of a deterministic 

attractor can thus be improved by taking logarithms and differencing, thereby 

removing any exponential trend. In this context a suitable choice of difference can 

increase the apparent determinism 1 . The difference selected must be large enough to 

increase the effective signal, yet small enough so that it does not remove small scale 

structure from the signal. The optimum value was found using a non-linear 

forecasting method recently popularised by Sugihara and May (1990), and was found 

to be the 8th difference. This method looks at how similar circumstances in the past 

evolved, and takes the average of these evolved futures to be an approximation to the 

future of the present system. In practice, the time series is divided into 2 parts, one 

library of past points and one of predictee points. If the data is embedded in E 

dimensional state space, then for each predictee point, the E+1 nearest neighbour 

points from the library of past behaviour are found. These points form a simple shape 

around the predictee point called a simplex. Each point forms a vertex of the simplex 

and these vertices are moved forward in time - by replacing the nearest neighbour 

point with the next point along in the original time series. 

Thus the simplex evolves along the trajectories of its vertices to form a new simplex 

shape. The centroid of this new simplex is taken to be an approximation to the next 

point along from the original predictee point. This procedure is repeated for a number 

of predictee points and a number of different evolution times. The resulting 

approximations are then compared to the actual next in line points and the linear 

correlation coefficient of the two data sets is calculated. 

The graph of correlation coefficient versus prediction time allows distinction between 

3 classes of system. Random data will naturally give a zero correlation for any value 

of prediction time, while an integrable system should produce a coefficient close to 

one for all values of time. Chaotic systems, on the other hand, are characterised by 

their exponential divergence of nearby trajectories in state space so, for small enough 

prediction time, they should be predictable. As the trajectories diverge the observed 

1.By 8th differences, we mean a time series of points of which the first is (log(8th point)-log(1st
point)), the second is (log(9th point)-log(2nd point)) etc. 
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predictability should therefore drop, the rate at which it drops being proportional to 

the rate of divergence of the trajectories. 

FTAS Data Predictability Graph 

Figure 2 shows the graph of correlation coefficient versus difference used for varying 

values of prediction time, for the F.T.A.S. data. For low-order differences (first or 

second), the predictions are very poor, implying that the forecasts are little better than 

random. The performance then improves rapidly until around the 8th-10th difference, 

after which there is a slow approach to a plateau. This in itself is not indicative of 

determinism, as differencing a random walk produces a moving average process with 

significant serial correlation. Recognising this, later results obtained from differenced 

financial indices were contrasted with those of differenced random walks. 

As our prime interest is in returns, we would prefer to work with the lowest practical 

difference. However, Fig. 2 points to substantially enhanced determinism with the 

higher differences. As a crude compromise, we decided to concentrate our analysis 

on 8th differences - close to the “knee” of the curves in Fig. 2. The region 

incorporating the 52nd difference is also of interest, The large effective sampling rate 

used seems to miss regions of fine structure which the 8th difference detects, and 

could well coincide with some periodic behaviour of the attractor. This region proved 

harder to analyse numerically so only tentative speculations were possible. 

Difference Used 

Figure 2 Predictability (linear correlation coefficient) versus differencing used for different 
values of prediction time. The values of prediction time use are  from 1 to 5
weekly time steps. 
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IV. CORRELATION DIMENSION ESTIMATES 

The correlation dimension was calculated for the 8th difference of the log- 

transformed data, as previously detailed. To confirm that the dimension estimates 

obtained were not due to a distributive property of the data set, the same analysis was 

performed on 'mixed' data. That is, the same data was reordered randomly. If the 

correlation dimensions obtained in the first tests were to have been produced by an 

attractor, then the mixed data should exhibit markedly higher dimensions and be 

close to the values produced by random data (Ramsay et al (1990)). 

The range of embedding dimensions used was generally from 4 to 18, and for each 

embedding dimension the correlation dimension was calculated. Figure 3 shows the 

resulting graphs for all four indices. The asymptotic values are very well defined, the 

graphs rising quickly and remaining constant for very large values of embedding 

dimension, emphasising that these values are not temporary plateaus. The results for 

all the indices, and their randomised counterparts, are given in Table 1. 

Data  Set Correlation Dim. Mixed Data  Cor. Dim. 

F.T.A.S. 5.9 ± 0.3 > 14 

Nikkei 6.9 ± 0.4 > 13 

Dow Jones 7.0 ± 0.5 > 11 

S&P Comp. 6.2 ± 0.3 > 12 

Table 1: Correlation dimension results. 
Asymptotic correlation dimensions are given for each index. The values given for 
the mixed data are not asymptotic values, but are the last values observed at the 
maximum embedding dimension. 

These results are remarkably similar, especially considering the differing lengths of 

time series used. They suggest that all four indices were produced by attractors of 

dimension around 6 or 7, consistent with the possibility that they all reflect the same 

underlying attractor. The dimension of 6 or 7 is the same result as obtained for CRSP 

data (Scheinkman and LeBaron (1989)), again consistent with the possibility that we 

are seeing some manifestation of macroeconomic dynamics. 
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NIKKEI 8th difference FTAS 8th difference 

   S&P  8th   difference

Figure 3 Graphs of correlation dimension versus embedding dimension for 
the 8th difference of the logarithms of all four indices, illustrating 
the asymptotic approach to the final values. 
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V. TEMPORAL INHOMOGENEITY 

Having found apparently strong evidence for an attractor, we performed some further 

analyses in which we varied the number of data points used for a given index and a 

given embedding dimension. We did this for two reasons. The first was essentially 

defensive: a check that our results were not some artefact associated with a short 

series. The second was as an exploratory study related to future work which will use 

nonlinear forecasting methods: we wanted to see if the apparent structure was 

associated with any one part of the time history. 

The 8th difference data was used as it has the most sparse distribution of points and 

hence is potentially the most susceptible to differing data lengths. It thus provides an 

upper bound for the minimum number of points required to produce stable results. 

The data set sizes started at 400 points, as this was the minimum number required 

when analysing simple systems of lower dimension such as the Henon attractor 

(Cvitanovíc (1984)). 

4A : FTAS 18th Dif FORWARD 4B : 18th Dif REVERSE 

Figure 4 Correlation dimension graphs for increasing numbers of points. Fig. 4A is of 
increasing points from the start of the time series, while 4B increases from the end of 
the time series. 

The results, as shown in Figure 4A for the FTAS data, show a marked increase at

around 1000 points and thereafter simply fluctuate about the final value. Similar 

patterns were seen in the other indices, but the position of the increase varied with 
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each. To test whether these observations were statistical in nature or were in fact 

properties of the data sets involved, we repeated the tests with the data ordering 

reversed. Instead of taking the first 400 then 500 etc., we first took the last 400, 500 

etc., but without changing the chronological order of the time series. 

Figure 4B shows the difference found, the dimension estimate shows no large 

increase as before, and is markedly higher and closer to the final value much earlier. 

From these results we conclude that the points which exhibit higher dimensional 

behaviour are grouped towards the end to the time series. Relating the position of this 

change to the temporal span of the time series reveals that the change happened at 

roughly the same time for all the indices, in the early eighties. 

As for some indices this change was hard to pin-point, dimension estimates for 400 

points were made throughout the time series. Although these yield values typically 

30% smaller than final values, they are more affected by sudden changes in the data 

as the difference is bigger relative to the overall sample size. We find, therefore, that 

this increase, typically of 1 to 2 dimensions, occurred in the region of 1980 ± 2 years 

for all the indices. 

As stated previously, the 52nd difference time series is difficult to analyse 

numerically, however where analysis was possible, the correlation dimension is 

markedly lower than for the 8th difference, being typically around 4. This result also 

held for the pre-1980 data, where the 8th difference had the abrupt change. So for 

pre-1980 both the 8th and 52nd differenced data give a dimension of 4, and for the 

entire time series the 8th difference gives a value of around 6, and the 52nd gives a 

value still approximately 4. Examination of the two sets of differenced data using 

recurrence plots (Eckmann et al (1988)), which indicate the distribution of a set in a 

state space of given dimension, reveals a marked difference between the two. The 8th 

difference is homogenously distributed through the space, while the 52nd difference 

has homogenous regions interspersed with areas where certain points appear to be 

clustered together. A possible explanation of all these differences is that the 52nd 

difference is commeasurate with some periodicity of the attractor. Thus, by sampling 

data on or near this period, the finer structure of the attractor would be missed. 
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VI. CONCLUDING REMARKS 

The primary conclusion from this work is that there is evidence of the existence of an 

attractor for all four indices. The dimension of this attractor is around six, consistent 

with previous analyses of the CRSP data (Brock (1988); Scheinkmann and Le Baron 

(1989)). The similarity of values for attractor dimension in the four indices is 

consistent with the possibility that all are reflecting some common economic 

variables, and that the attractor is not related to local trading conditions. 

The only work on index data of which we are aware that points to a different 

conclusion is that of Booth et al. (1990) who were unable to find any asymptotic 

attractor dimension in a study of German Blue Chip stocks. We believe this failure 

may be for technical reasons - in particular their use of first differences. A similar 

analysis on our four indices also fails to tease out the attractor dimension. 

We cannot rigorously exclude the possibility that our various data transformations 

have introduced spurrious correlations, as there is little statistical theory underpinning 

the methods used (Brock and Dechert (1987)). We are therefore investigating more 

thoroughly the results obtained when our methods are applied to a variety of standard 

linear and non-linear models. 

Our second conclusion is that there is tentative evidence of a substantial qualitative 

change in observed dynamics in the early 1980s. The methods used in this work are 

inappropriate for a more detailed investigation of this point. We have started an 

investigation that uses local methods based on nonlinear forecasting. These will be 

reported in a later publication. 

Finally, we emphasise that our identification of an attractor does not imply that the 

fluctuations in index value are of necessity chaotic. To establish this requires 

demonstration that in some region of the state space, trajectories starting from nearby 

initial values should diverge. The appropriate statistic here is the largest Lyapunov 

exponent (Eckmann and Ruelle (1985)), which must be positive for chaos. The 

calculations are, however, very delicate, and great care is required in their 

interpretation. These will also be reported in a later publication. 
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