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Abstract

This paper presents a set of tools, which allow gathering information about the frequency
components of a time-series. We focus on the concepts rather than giving too much weight
to mathematical technicalities.
In a �rst step, we discuss spectral analysis and �ltering methods. Spectral analysis can be

used to identify and to quantify the di¤erent frequency components of a data series. Filters
permit to capture speci�c components (e.g. trends, cycles, seasonalities) of the original time-
series. Both spectral analysis and standard �ltering methods have two main drawbacks: (i)
they impose strong restrictions regarding the possible processes underlying the dynamics of
the series (e.g. stationarity), and, (ii) they lead to a pure frequency-domain representation
of the data, i.e. all information from the time-domain representation is lost in the operation.
In a second step, we introduce wavelets, which are relatively new tools in economics

and �nance. They take their roots from �ltering methods and Fourier analysis. But they
overcome most of the limitations of these two methods. Indeed their principal advantages are
the following: (1) they combine information from both time-domain and frequency-domain
and, (2) they are also very �exible and do not make strong assumptions concerning the data
generating process for the series under investigation.
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1 Introduction

The purpose of this paper is to present a set of methods and tools belonging to so-called frequency
domain analysis and to explain why and how they can be used to enhance the more conventional
time domain analysis. In essence, time domain analysis studies the evolution of an economic
variable with respect to time, whereas frequency domain analysis shows at which frequencies the
variable is active. We focus on concepts rather than technicalities and illustrate each method
with �ctitious examples and applications using real datasets.

The usual time-domain approach aims at studying the temporal properties of a �nancial or
economic variable, whose realizations are recorded at a predetermined frequency. This approach
does not convey any information regarding the frequency components of a variable. Thus it
makes the implicit assumption that the relevant frequency to study the behavior of the variable
matches with its sampling frequency. An issue arises, however, if the variable realizations depend
(in a possibly complicate manner) on several frequency components rather than just one. In
such a case, the time-domain approach will not be able to e¢ ciently process the information
contained into the original data series.

In this paper, we start by discussing methods belonging to the frequency-domain analysis. These
tools are very appealing to study economic variables that exhibit a cyclical behavior and/or are
a¤ected by seasonal e¤ects (e.g., GDP, unemployment). Spectral analysis and Fourier transforms
can be used to quantify the importance of the various frequency components of the variable
under investigation. In particular, they permit to infer information about the length of a cycle
(e.g. business cycle) or a phase (e.g. expansion or recession). Presence of such patterns also
imposes the use of appropriate methods when it comes to model the dynamics of the variable.
Filtering methods have proven useful in this context. Notably, �lters may serve to remove
speci�c frequency components from the original data series.

In a second step, we introduce wavelets. During the last two decades, wavelets have become
increasingly popular in scienti�c applications such as signal processing and functional analysis.
More recently, these methods have also begun to be applied to �nancial datasets. They are
indeed very attractive as they possess the unique ability to provide a complete representation
of a data series from both the time and frequency perspectives simultaneously. Hence, they
permit to break down the activity on the market into di¤erent frequency components and to
study the dynamics of each of these components separately. They do not su¤er from some of the
limitations of standard frequency-domain methods (see section 3) and can be employed to study
a �nancial variable, whose evolution through time is dictated by the interaction of a variety of
di¤erent frequency components. These components may also behave according to non-trivial
(non-cyclical) dynamics - e.g., regime shifts, jumps, long-term trends.

For instance, the presence of heterogeneous agents with di¤erent trading horizons may generate
very complex patterns in the time-series of stock prices (see, e.g., Muller et al. (1995) and
Lynch/Zumbach (2003)). This heterogeneity may in particular induce long-memory in stock
returns volatility. In such a case, studying the properties of a time-series and trying to model
it from the perspective of a single frequency can be misleading. Much information will be
lost because of the naive and implicit aggregation of the di¤erent frequency components into
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a single component. Furthermore, as these components may interact in a complicated manner
and may be time-varying or even non-stationary, standard methods like Fourier analysis are not
appropriate. Therefore, one has to resort to more �exible �ltering methods like wavelets.

The remaining of this paper is structured as follows. In section 2, we discuss spectral analysis
(see section 2.1) and �ltering methods (see section 2.2). Section 3 is devoted to the presentation
of wavelets: section 3.1 explains the relevant theoretical background, section 3.2 discusses the
implementation of these methods and section 3.3 presents a complete case study.

2 Frequency-domain analysis

2.1 Spectral analysis: some basics and an example

Studying the properties of an economic variable in the time-domain is done using so-called
time-series analysis. Similarly, the purpose of spectral analysis is to study the properties of
an economic variable over the frequency spectrum, i.e. in the frequency-domain. In particular,
the estimation of the population spectrum or the so-called power spectrum (also known as the
energy-density spectrum) aims at describing how the variance of the variable under investigation
can be split into a variety of frequency components. Many economics and econometrics books
and articles have been published on the subject during the last 40 years (see Iacobucci (2003)
for a short literature review). Our discussion is based primarily on Hamilton (1994) and Gençay
et al. (2002).

Fourier transform

The basic idea of spectral analysis is to reexpress the original time-series1 x(t) as a new sequence
X(f), which determines the importance of each frequency component f in the dynamics of the
original series. This is achieved using the discrete version of the Fourier transform,2

X(f) =

1X
t=�1

x(t)e�i2�ft; (1)

where f denotes the frequency at which X(f) is evaluated. In order to get more insight into this
decomposition, one may think about the De Moivre�s (Euler�s) theorem, which allows to write
e�i2�ft as

e�i2�ft = cos(2�ft)� i sin(2�ft):

Hence application of formula (1) tantamounts to project the original signal x(t) onto a set of
sinusoidal functions, each corresponding to a particular frequency component. Furthermore, one

1 In the following, we use the terms "time-series" and "signal" interchangeably.
2 The discrete version of the Fourier transform is used because the time-series is recorded at discrete time
intervals.
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can use the inverse Fourier transform to recover the original signal x(t) from X(f):

x(t) =
1

2�

�Z
��

X(f)e�i2�ftdf: (2)

Formula (2) shows that X(f) determines how much of each frequency component is needed to
synthetize the original signal x(t).

Population spectrum and sample periodogram

Following Hamilton (1994), we de�ne the population spectrum of a covariance-stationary process
y(t) as

sy(!) =
1

2�

1X
j=�1


je
�i!j ; (3)

where 
j is the j th autocovariance of y(t),
3 ! = 2�f is a real scalar, which is related to the

frequency f = 1=� at which the spectrum is evaluated and � is the period length of one cycle
at frequency f .4 One may notice that the right part of equation (3) is indeed the discrete-time
Fourier transform of the autocovariance series. There is also a close link between this expression
and the autocovariance generating function, which is de�ned by

gY (z) =
1X

j=�1

jz

j ;

where z denotes a complex scalar. This implies that one can easily recover the autocovariance
generating function from the spectrum. In the same spirit, an application of the inverse discrete-
time Fourier transform allows a direct estimation of the autocovariances from the population
spectrum.

In practice, there are essentially two approaches that can be used to estimate the sample pe-
riodogram bsy(!). The �rst is non-parametric because it infers the spectrum from a sample of
realizations of the variable y, without trying to assign an explicit structure to the data generating
process underlying its evolution. The estimation of the sample periodogram is straightforward
as it is directly related to the squared magnitude of the discrete-time Fourier transform jY (f)j
of the time-series y(t), bsy(!) = 1

2�

1

T
jY (f)j2 ; (4)

where T is the length of the time-series y(t). jY (f)j2 is also known as the power spectrum
of y(t). This approach is usually called the "periodogram" method. As noted in Hamilton

3 The j th autocovariance of y(t) is given by 
j = E[(y(t)��)(y(t� j)��)], where � denotes the expected value
of y(t).

4 As an example, let�s consider an economic variable, whose evolution is fully determined by the state of the
economy. A complete business cycle lasts on average 30 months and therefore f = 1=30 months.
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(1994), its accuracy seems questionable as the con�dence interval for the estimated spectrum is
typically very broad. Furthermore, the variance of the periodogram does not tend to zero as the
length of the data series tends to in�nity. This means that the periodogram is not a consistent
estimator of the population spectrum. Therefore, modi�ed versions of the periodogram have
been put forward. For instance, smoothed periodogram estimates have been suggested as a way
to reduce the noise of the original estimator and to improve its accuracy. The idea underlying this
approach is that sy(!) will be close to sy(�) when ! is close to �. This suggests that sy(!) might
be estimated with a weighted average of the values of sy(�) for values of � in a neighbourhood
around !, where the weights depend on the distance between ! and � (Hamilton (1994)). The
weights are typically determined by a kernel weighting function. Welch�s method (Welch (1967)
and Childers (1978)) is another alternative, which is based on a rather simple idea: instead
of estimating a single periodogram for the complete sample, one divides the original sample
into subsambles, estimates the periodogram for each subsample, and computes the average
periodogram over all subsamples.

The second approach is based on some parameterization of the data generating process of y(t).
Methods belonging to this category are close in spirit to the population spectrum, i.e. to a direct
application of equation (3). Typically some speci�cation based on an autoregressive (ARMA)
representation is chosen to represent the temporal dynamics of the variable. The model is
then calibrated, i.e. the ARMA coe¢ cients are estimated from the realizations of the process
y(t). These estimated coe¢ cients are employed to calculate the spectrum. As long as the
autocovariances are reasonably well estimated, the results would also be reasonably close to
the true values. A detailed discussion of the various parametric methods (e.g., the covariance,
Yull-Walker and Burg methods) is beyond the scope of this introduction but it is interesting to
note that parametric methods are particularly e¤ective when the length of the observed sample
is short. This is because of their ability to distinguish the noise from the information contained
in the data.

Example

We now turn to the discussion of a simple example. We consider a time-series, which has the
following dynamic

xt = a � cos(2�t
5
) + b � sin(2�t

21
) + "t;

where "t is random term that follows a normal distribution with mean zero and unit variance.
One may observe that the process is driven by two cyclical components, which repeat themselves
respectively each 5 and 21 units of time. The full line in �gure 1 shows the �rst 100 (simulated)
realizations of xt; the dotted lines are for the cos and sin functions. At �rst glance, it seems
di¢ cult to distinguish the realizations of xt from a purely random process. Figure 2 reports the
autocorrelations (left panel) and partial autocorrelations (right panel) of xt (upper panel) and
of the cos and sin components (bottom panel). Again, it remains di¢ cult, when looking at this
�gure, to gather conclusive evidence concerning the appropriate model speci�cation for xt.

On the other hand, results from the Fourier analysis, reported in �gure 3, clearly show that
there are two cyclical components which drive the evolution of xt and which repeat themselves
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Figure 1: Sample path of xt.
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Figure 2: Autocorrelations and partial autocorrelations. The upper panel reports the
autocorrelations (left panel) and partial autocorrelations (right panel) of xt. The lower panel
shows similar statistics for the cosinus and sinus functions.
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Figure 3: Spectral analysis. The periodogram has been estimated directly from the re-
alizations of xt. The population spectrum has been estimated on the basis of the theoretical
autocovariances of xt.

around each 5 and 21 units of time. This demonstrates the e¤ectiveness of Fourier methods for
the study of processes featuring cyclical components.

Illustration: Home prices in New-York City

We now illustrate how spectral methods can be applied to real economic data series. We consider
the Case-Shiller home price index for the city of New-York. The dataset covers the period
January 1987 to May 2008 and the index is reported on a monthly basis. The upper panel
of �gure 4 shows the evolution of the index level over this time period, while the lower panel
reports the time-series of index returns. Results from the Dickey-Fuller test cannot reject the null
hypothesis that the index levels series is non-stationary. Application of the Fourier transform
requires the series under study to be stationary. We therefore study the spectral properties of
the index using the time-series of returns rather than the levels themselves.

We also estimate the autocorrelations and partial autocorrelations of the index returns up to
48 lags (i.e. 4 years of observations). These are reported in �gure 5. The structure of both
the autocorrelations and the partial aurtocorrelations indicates that the index returns are sig-
ni�cantly autocorrelated and it also suggests a cyclical (or seasonal) behavior of the returns
series. This observation is in line with previous results from the literature (see, e.g., Kuo (1996)
and Gu (2002)). In order to gain more insight into the presence of such patterns, we compute
the power spectrum of the series using parametric and non-parametric methods, see �gure 6.
The estimated power spectra returned by the two non-parametric methods (periodogram and
Welch) are much noisier than the spectra obtained from the parametric methods (Yule-Walker
and Burg). The Welch method also seems to result in an oversmoothed estimate of the power
spectrum as compared to the other estimates (e.g. periodogram estimates). On the other hand,
the di¤erence between the Yule-Walker and the Burg methods is minimal. Nevertheless, the
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Figure 4: Case-Shiller home price index for the city of New-York. Price levels and
returns are reported in the upper and lower panel respectively.
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Figure 5: Autocorrelations and partial autocorrelation of the returns on the New-
York home price index.
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Figure 6: Spectral analysis of the return series. Comparison between parametric (Burg
and Yule-Walker) and non-parametric (Periodogram and Welch) methods.

key message remains remarkably similar: strong seasonalities a¤ect home prices and they have
a frequency of recurrence of 12 months.

2.2 Filtering methods

A �lter is a mathematical operator that serves to convert an original time-series xt into another
time-series yt. The �lter is applied by convolution of the original series xt with a coe¢ cient
vector w,

yt = (w � x)(t) =
1X

k=�1
wkxt�k: (5)

The purpose of this operation is to identify explicitly and to extract certain components from
xt. In the present context, one may want to remove from the original time-series some particular
features (e.g. trends, business cycle, seasonalities and noise) that are associated with speci�c
frequency components.

Frequency response function

Filters in the time-domain can be characterized on the basis of their impulse response function,
which traces the impact of a one-time unit impulse in xt on subsequent values of yt. Similarly,
in the frequency domain, the analysis of the frequency response function (or transfer function)
of a �lter tells us which frequency components the �lter captures from the original series. The
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frequency response function is de�ned as the Fourier transform of the �lter coe¢ cients:5

H(f) =
1X

k=�1
wke

�i2�fk: (6)

The frequency response, H(f), can be further split into two parts,

H(f) = G(f)ei�(f); (7)

where G(f) is the gain function, ei�(f) is the phase function and � is called the phase angle
(or equivalently the argument of H(f)). The gain function is the magnitude of the frequency
response, i.e. G(f) = jH(f)j. If the application of the �lter on xt results in a phase shift, i.e.
if the peaks and lows of xt and yt have a di¤erent timing, the phase angle � will be di¤erent
from zero. The use of uncentered moving average �lters leads to this (often) undesirable feature
because turning points will be recorded earlier in the original series than in the �ltered series.
On the other hand, centred (symmetric) moving averages have �(f) = 0; hence there is no phase
shift for this class of �lters. For instance, the frequency response of a two-period uncentered
moving average �lter with coe¢ cients wk = 1

2 for k = 0; 1 is
6

H(f) =
1X
k=0

0:5e�i2�fk

= 0:5 + 0:5e�i2�f

= 0:5(ei�f + e�i�f )e�i�f

= cos(�f)e�i�f :

This result shows that there is indeed a phase shift as the phase angle is �(f) = ��f .7 Hence
the turning points from the original series will be shifted to the right in the �ltered series.

Based on their gain functions, �lters can be categorized as follows:

� High-pass �lters should be able to capture the high-frequency components of a signal; i.e.
the value of their gain function G(f) should equal one for frequencies f close or equal to
1=2.

� Low-pass �lters should be able to capture the low-frequency components of a signal; i.e.
G(f) = 1 for f close or equal to 0.

� Band-pass �lters should be able to capture a range of frequency components of a signal;
i.e. G(f) = 1 for flo < f < fhi.

5 More generally, the transfer function is obtained as the ratio of the Laplace transform of the �ltered signal
yt to the Laplace transform of the original signal xt. The Fourier transform is indeed a special case of the
bilateral Laplace transform.

6 See also Gençay et al. (2002).
7 In full generality, the phase angle can be computed as �(f) = arctan(Im[H(f)]=Re[H(f)]), where Im[H(f)]
and Re[H(f)] are respectively the imaginary part and the real part of H(f).
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� All-pass �lters capture all the frequency components of a signal; i.e. G(f) = 1 for 8f .
Such �lters leave the frequency components of the original signal unaltered.

Filters are commonly used in economics. The Hodrick/Prescott (1997) �lter is probably the
most well-known. It has a structure and a gain function which enable it to capture business
cycle components.

Example

A basic example of a high-pass �lter is a �lter that simply takes the di¤erence between two
adjacent values from the original series; its coe¢ cients are whi = [0:5;�0:5]. Similarly, the
most simple low-pass �lter is a 2-period moving-average; in this case wlo = [0:5; 0:5]. The gain
functions for these two �lters are reported in �gure 7. In wavelet theory, whi=

p
2 and wlo=

p
2

form the Haar wavelet family. In this case, the low-pass �lter wlo is basically an averaging �lter,
while the high-pass �lter whi is a di¤erencing �lter. We will come back to this point in section
3. The gain functions for these two �lters are reported in �gure 7.
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Figure 7: Gain function of the high-pass (di¤erencing) and low-pass (averaging)
Haar �lters.

Illustration

The full line in the left panels of �gure 8 shows the (unadjusted) year-to-year changes in the
US consumer price index (CPI) from January 2004 to December 2007. We add to the top panel
the output series resulting from the application of both a centred and an uncentered (causal)
3-period moving average on the original data. The three �lters coe¢ cients have a value of 1=3.
This implies that the output series of the centred moving average at time t is basically the
average change in CPI from months t� 1 to t+1. Similarly, the uncentered moving returns the
average change in CPI from t�2 to t. It is apparent from the �gure that the uncentered moving
average leads to a phase shift of 1 month. The bottom panel show the outputs of a 7-period
moving average. The �lter coe¢ cients are equal to 1=7. Again, we consider both centred and
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Figure 8: Two moving averagew and their frequency responses. Left panels show the
outputs from a 3�period (upper panel) and a 7�period (lower panel) moving average �lters
applied on the change in US CPI. Right panels report the corresponding gain functions.

uncentered �lters. The use of an uncentered moving average leads to a phase shift of 3 months
as compared to the centred moving average.

The right part of the �gure reports the gain functions for the 3-period and the 7-period moving
averages. The gain function is similar for both the uncentered and the centred moving average.
The only element that distinguishes these two �lters is indeed their phase function. One may
notice that (i) both �lters are low-pass �lters, and (ii) the longer �lter captures more e¢ ciently
the low frequency components of the original signal than the short �lter.



3 Scale-by-scale decomposition with wavelets 13

3 Scale-by-scale decomposition with wavelets

To a large extent, wavelets can be seen as a natural extension to spectral and Fourier analysis.
This is for two reasons: (i) wavelets do not su¤er the weaknesses of Fourier analysis, and (ii)
wavelets provide a more complete decomposition of the original time-series than Fourier analysis
does.

There are some problems with spectral methods and Fourier transforms. Notably, these methods
require the data under investigation to be stationary. This is often not the case in economics and
�nance. In particular, volatility is known to exhibit complicated patterns like jumps, clustering
and long memory. Furthermore, the frequency decomposition delivered by Fourier analysis
only makes sense if the importance of the various frequency components remains stable over
the sample period. Ex-ante, there is good reason to expect this assumption not to hold for a
variety of economic and �nancial variables. For instance, volatility changes are likely to exhibit a
di¤erent frequency spectrum when trading activity is intense than when the market is quiet. The
short-time Fourier transform (which is also known as the Gabor or windowed Fourier transform)
has been suggested to overcome these di¢ culties. The idea is basically to split the sample into
subsamples and to compute the Fourier transform on these subsamples. Hence this extension
achieves a better tradeo¤between the time and the frequency representation of the original data.
Nevertheless, this provides at best a partial solution to the aforementioned issues because it still
makes strong restrictions regarding the possible data generating process over each subsample.

Wavelets do not make any of these assumptions. Furthermore, wavelets provide a complete
decomposition of the original series, which is located both in time and in frequency. From a
mathematical viewpoint, a wavelet is a function, which enables to split a given signal into several
components, each re�ecting the evolution trough time of the signal at a particular frequency.
Wavelet analysis has originally been used in signal processing (e.g. image processing and data
compression). Its applications to economics are relatively recent and are mainly due to econoph-
ysists. Nevertheless, the range of application of wavelets in �nance is potentially wide: denoising
and seasonality �ltering, decorrelation and estimation of fractionally integrated models, identi-
�cation of regime shift and jumps, robust estimation of the covariance and correlation between
two variables at di¤erent time scales, etc.

From a physicist perspective, but with application to time-series analysis, Percival/Walden
(2000) provide a mathematically rigorous and exhaustive introduction to wavelets. Struzik
(2001) is another sophisticated introduction to wavelets. Struzik (2001) particularly emphasizes
the unique ability of non-parametric methods (like wavelets) to let the data speak by them-
selves. Thus, such methods avoid making misleading interpretations of the coe¢ cients obtained
from the calibration of misspeci�ed models. Gençay et al. (2002) discuss the use of wavelets
for speci�c purposes in economics and �nance and adopt a more intuitive approach (with many
illustrations and examples). Ramsey (2002) surveys the most important properties of wavelets
and discusses their �elds of application in both economics and �nance. Crowley (2007) proposes
a genuine guide to wavelets for economists. His paper can be considered as a complete and
easily understandable toolkit as he explains precisely in which circumstances to use wavelets
and shows how to proceed. Schleicher (2002) is a complementary reference to those already
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named, Schleicher focuses on some mathematical concepts underlying the use of wavelets and
discuss them in detail using several examples.8

3.1 Theoretical background

What is a wavelet?

As its name suggests, a wavelet is a small wave. In the present context, the term "small"
essentially means that the wave grows and decays in a limited time frame. Figure 9 illustrates
this notion by contrasting the values taken by a simple wavelet function (the Morlet function)
and the values of the sin function, which can be considered as a sort of "big" wave. In order to
clarify the notion of small wave, we start by introducing a function, which is called the mother
wavelet and is denoted by  (t) (see the next paragraph for more details). This function is
de�ned on the real axis and must satisfy two conditions,Z 1

�1
 (t)dt = 0: (8)

Z 1

�1
j (t)j2 dt = 1: (9)

Taken together, these conditions imply (i) that at least some coe¢ cients of the wavelet function
must be di¤erent from zero, and (ii) that these departures from zero must cancel out. Clearly the
sin function does not meet these two requirements. A vast variety of functions meets conditions
8 and 9. Nevertheless, these conditions are very general and not su¢ cient for many pratical
purposes. Therefore one has to impose additional conditions if one wants to run a speci�c
analysis with wavelets. One of this condition is the so-called admissibility condition, which
states that a wavelet function is admissible if its Fourier transform,

	(f) =

Z 1

�1
 (t)e�i2�ftdt; (10)

is such that

C	 =

Z 1

0

j	(f)j2

f
df satis�es 0 < C	 <1: (11)

This conditions allows reconstructing a function from its continuous wavelet transform (see
Percival/Walden (2000) for more details).

8 This short literature review focuses only on textbook-style references. There are however quite a large amount
of economic and �nancial papers that have employed wavelets for empirical purposes. In addition to the
references cited in Ramsey (2002) and Crowley (2007), see, e.g., Gençay et al. (2003), Gençay et al. (2005),
Vuorenmaa (2005), Nielsen/Frederiksen (2005), Oswiecimka et al. (2006), Helder/Jin (2007), Fan et al. (2007),
Fernandez/Lucey (2007) and Subbotin (2008).
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Figure 9: The Morlet wavelet and the sin function.

The continuous wavelet transform (CWT)

As a starting point, we discuss the CWT. In essence, the CWT aims at quantifying the change
in a function at a particular frequency and at a particular point in time. In order to be able to
achieve this, the mother wavelet  (t) is dilated and translated,

 u;s(t) =
1p
s
 (
t� u
s
); (12)

where u and s are the location and scale parameters. The term 1p
s
ensures that the norm of

 u;s(t) is equal to one. The CWT, W (u; s), which is a function of the two parameters u and s,
is then obtained by projecting the original function x(t) onto the mother wavelet  u;s(t),

W (u; s) =

Z 1

�1
x(t) u;s(t)dt: (13)

If one wants to assess the variations of the function on a large scale (i.e. at a low-frequency),
one will choose a large value for s, and vice-versa. By applying the CWT for a continuum
of location and scale parameters to a function, one is able to decompose the function under
study into elementary components. This is particularly interesting for studying a function with
a complicated structure, because this procedure allows extracting a set of "basic" components
that have a simpler structure than the original function. By "synthesizing" W (u; s), it is also
possible to reconstruct the original function x(t) (see Gençay et al. (2002) for more details).

In empirical applications, there are several di¢ culties with the CWT. First, it is computationally
impossible to analyze a signal using all wavelet coe¢ cients. CWT is thus more suitable for
studying functions than signals or (economics) time-series. Second, as noted by Gençay et al.
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(2002), W (u; s) is a function of two parameters and as such it contains a high amount of
redundant information. We therefore turn to the discussion of the discrete wavelet transform
(DWT). The DWT is grounded on the same concepts as the CWT but is more parsimonious
(Gençay et al. (2003)).

The discrete wavelet transform (DWT)

The key di¤erence between the CWT and the DWT lies in the fact that the DWT uses only
a limited number of translated and dilated versions of the mother wavelet to decompose the
original signal. The idea is to select u and s so that the information contained in the signal can
be summarized in a minimum of wavelet coe¢ cients. This objective is achieved by setting

s = 2�j and u = k2�j ;

where j and k are integers representing the set of discrete translations and discrete dilatations.
Gençay et al. (2002) refer to this procedure as the critical sampling of the CWT. This implies
that the wavelet transform of the original function or signal is calculated only at dyadic scales, i.e.
at scales 2j . A further implication is that for a time-series with T observations, the largest num-
ber of scales for the DWT is equal to the integer J such that J = blog2(T )c = blog(T )= log(2)c.
It is not possible to directly apply the DWT if the length of the original series is not dyadic
(i.e. if J < log2(T ) < J + 1). In such case, one has either to remove some observations or to
"complete" the original series in order to have a series of dyadic length. There exist several
methods to deal with this kind of boundary problems (see section 3.2).

The DWT is based on two discrete wavelet �lters, which are called the mother wavelet hl =
(h0; :::; hL�1) and the father wavelet gl = (g0; :::; gL�1). The mother wavelet is characterized by
three basic properties,

L�1X
l=0

hl = 0,
L�1X
l=0

h2l = 1, and
L�1X
l=0

hlhl+2n = 0 for all integers n 6= 0: (14)

These three properties ensure that (i) the mother wavelet is associated with a di¤erence operator,
(ii) the wavelet transform preserve the variance of the original data, and (iii) a multiresolution
analysis can be performed on a �nite variance data series. The �rst property implies that the
mother wavelet (also called "di¤erencing function") is a high-pass �lter as it measures the devi-
ations from the smooth components. On the other hand, the father wavelet ("scaling function")
aims at capturing long scale (i.e. low frequency) components of the series and generates so-called
scaling coe¢ cients.9 The mother and father wavelets must respect the following conditions:

L�1X
l=0

hl = 0 (15)

9 The low-pass �lter can be directly obtained from the high-pass �lter using the quadrature mirror relationship,
see Percival and Walden (2000, p. 75).
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L�1X
l=0

gl = 1 (16)

The application of both the mother and the father wavelets allow separating the low-frequency
components of a time-series from its high-frequency components. Furthermore, a band-pass
�lter can be constructed by recursively applying a succession of low-pass and high-pass �lters.

Let�s assume that we have observed a sample of size T of some random variable x(t) :

fx(1); x(2); :::; x(T )g .

The wavelet and scaling coe¢ cients at the �rst level of decomposition are obtained by convolu-
tion of the data series with the mother and the father wavelets,

w1(t) =
L�1X
l=0

hlx(t
0) and v1(t) =

L�1X
l=0

glx(t
0); (17)

where t = 0; 1; :::; T=2 � 1 and t0, the time subscript of x, is de�ned as t0 = 2t + 1 � lmodT .
The modulus operator is employed to deal with boundary conditions.10 It ensures that the time
subscript of x stays always positive. If, for some particular values of t and l, the expression
2t+1� l becomes negative, the application of the modulus operator returns t0 = 2t+1� l+ T .
Thus, we are implicitly assuming that x can be regarded as periodic. Alternative methods to
deal with boundary conditions are discussed thereafter. w1(t) and v1(t) are respectively the
wavelet and the scaling coe¢ cients at the �rst scale. Hence, w1(t) corresponds to the vector
containing the components of x recorded at the highest-frequency. One may notice that the
operation returns two series of coe¢ cients that have length T=2. To continue the frequency-
by-frequency decomposition of the original signal, one typically resorts to what is known as the
pyramid algorithm.

Pyramid algorithm

After having applied the mother and father wavelets on the original data series, one has a series
of high-frequency components and a series of lower-frequency components. The idea of the
pyramid algorithm is to further decompose the (low-frequency) scaling coe¢ cients v1(t) into
high and low frequency components:

w2(t) =
L�1X
l=0

hlv1(t
0) and v2(t) =

L�1X
l=0

glv1(t
0); (18)

where t = 0; 1; :::; T=4 � 1 and t0 = 2t + 1 � lmodT . After two steps, the decomposition looks
like w = [w1 w2 v2]. One can then apply the pyramid algorithm again and again up to scale
J = blog2(T )c to �nally obtain w = [w1 w2 ::: wJ vJ ]. Figure 10 summarizes these steps. One
may also apply the algorithm up to scale Jp < J only. This is known as the partial DWT.

10 For two integer a and b, a modulus b is basically the remainder after dividing a by b; i.e. amod b = a � c � b
with c = ba=bc.
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Figure 10: Flowchart of the pyramid algorithm

The maximal overlap discrete wavelet transform (MODWT)

The standard DWT su¤ers from three drawbacks. First, it requires a series with a dyadic length
(i.e. T = 2J). Second, DWT is not shift invariant, i.e. if one shifts the series one period to
the right, the multiresolution coe¢ cients will be di¤erent. Third, it may introduce phase shifts
in the wavelet coe¢ cients: peaks or troughs in the original series may not be correctly aligned
with similar events in the multiresolution analysis. To overcome these problems, the MODWT
has been proposed. This wavelet transform can handle any sample size, it has an increased
resolution at coarser scales (as compared to the DWT) and it is invariant to translation. It also
delivers a more asymptotically e¢ cient wavelet variance than the DWT.11

Actually, the main di¤erence between the DWT and the MODWT lies in the fact that the
MODWT considers all integer translations, i.e. u = k. This means that the MODWT keeps at
each frequency a complete resolution of the series. Whatever the scale considered, the length of
the wavelet and scaling coe¢ cients vectors will be equal to the length of the original series. The
wavelet and scaling coe¢ cients at the �rst level of decomposition are obtained as follows

ew1(t) = L�1X
l=0

hlx(t
0) and ev1(t) = L�1X

l=0

glx(t
0); (19)

where t = 0; 1; :::; T and t0 = t� lmodT . As for the DWT, the MODWT coe¢ cients for scales
j > 1 can be obtained using the pyramid algorithm. For instance, ewj and evj are calculated as

ewj(t) = L�1X
l=0

hlevj�1(t0) and evj(t) = L�1X
l=0

glevj�1(t0); (20)

where t0 = t � 2j�1lmodT . In section 3.2, we present an example of the implementation (in
MatLab) of the pyramid algorithm in the context of the MODWT.

Multiresolution analysis (MRA)

Multiresolution analysis can be used to reconstruct the original time-series x from the wavelet
and scaling coe¢ cients, ew and ev. In order to achieve this, one has to apply the inverse MODWT
on evJ and ewj , j = 1; :::; J .12 As for the MODWT, the implementation of the inverse MODWT
is done using a pyramid algorithm.

11 See Crowley (2005) for more details about the properties of MODWT.
12 Our presentation of the multiresolution analysis is restricted to the case of the MODWT. Nevertheless, a very
similar procedure exists for the DWT, see Percival/Walden (2000).
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In the �rst step, one applies the inverse MODWT to the scaling and wavelet coe¢ cients at scale
J in order to recover the scaling coe¢ cients at scale J � 1,

evJ�1(t) = L�1X
l=0

hl ewJ(t0) + L�1X
l=0

glevJ(t0); (21)

t = 0; 1; :::; N and t0 = t+ 2J�1lmodT . The right hand-side of equation (21) can be expressed
in matrix notation as evJ�1(t) = eBJ ewJ + eAJevJ :
We can extend this result to any scale j. For instance, at scale j = 1, we have

ev1(t) = eB2 ew2 + eA2ev2
= eB2 ew2 + eA2( eB3 ew3 + eA3ev3)
= :::

= eB2 ew2 + eA2 eB3 ew3 + eA2 eA3 eB4 ew4 + :::+ eA2::: eAJ�1 eBJ ewJ + eA2::: eAJ�1 eAJevJ :
We can combine this result with x = eB1 ew1 + eA1ev1 to �nally get

x = eB1 ew1 + eA1 eB2 ew2 + eA1 eA2 eB3 ew3 + :::+ eA1::: eAJ�1 eBJ ewJ + eA1::: eAJ�1 eAJevJ : (22)

Setting Dj(t) = eA1::: eAJ�1 eBJ ewJ and SJ = eA1::: eAJ�1 eAJevJ , we can reconstruct the original
time-series as

x = SJ +DJ + :::+D1: (23)

This "reconstruction" is known as multiresolution analysis (MRA). The elements of SJ are re-
lated to the scaling coe¢ cients at the maximal scale and therefore represent the smooth compo-
nents of x. The elements of Dj are the detail (or rough) coe¢ cients of x at scale j.

On the basis of formula (23), one may also think of a way to compute an approximation or
a smooth representation of the original data. This can be achieved by considering the scaling
coe¢ cients and the wavelet coe¢ cients from scale Js (1 < Js < J) to J only, i.e.

xs = SJ +DJ + :::+Ds: (24)

Formula (24) can be used, for instance, to �lter out noise or seasonalities from a time-series. In
image processing, formula (24) serves for data compression. Formula (22) has been speci�cally
derived for the MODWT but similar results are available for the DWT (see Percival/Walden
(2000)). Hence, formula (23) holds for both the DWT and the MODWT.

Analysis of variance

On the basis of the wavelet and scaling coe¢ cients, it is also possible to decompose the variance
into di¤erent frequency components. There are some slight di¤erences between the variance
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decomposition for the DWT and for the MODWT. We will therefore �rst present the main
results for the DWT and then discuss their extension to the MODWT.

Using the wavelet and scaling coe¢ cients of the discrete wavelet transform, it is possible to
decompose the energy of the original series on a scale-by-scale basis:

kxk2 =
T�1X
t=0

x(t)2 =
JX
j=1

T=2J�1X
t=0

wj(t)
2 + v2J ; (25)

where kxk2 denotes the energy of x. The wavelet coe¢ cients capture the deviations of x from
its long-run mean at the di¤erent frequency resolutions. Therefore, at scale j = J = log2(T ),
the last remaining scaling coe¢ cient is equal to the sample mean of x,

E(x) = vJ : (26)

On this basis, we can express the variance of x, V (x), as

V (x) = E(x2)� E(x)2 =
JX
j=1

E(w2j ) =
JX
j=1

V (wj); (27)

where V (wj) denotes the variance of the wavelet coe¢ cients at scale j, which is computed as

V (wj) =
1

T

T�1X
t=0

wj(t)
2: (28)

If we consider the wavelet and scaling coe¢ cients obtained from a partial DWT, the variance of
x can be expressed as

V (x) =

JpX
j=1

V (wj) + V (vJp): (29)

The variance of the scaling coe¢ cients has to be taken into account because vJp incorporates
deviations of x from its mean at scales Jp < j � J .13 V (vJp) is computed as

V (vJp) =
1

T

T�1X
t=0

v2J(t): (30)

An alternative way to decompose the energy of x is based on the smooth and detail coe¢ cients
of the MRA. As above, kxk2 can be computed as the sum of the energy of the smooth and detail
coe¢ cients. This approach is, however, valid only for the DWT (see Gençay et al. (2002)).

13 One may notice that the variance of the scaling coe¢ cient at scale J is 0 as vJ is a scalar (the sample mean
of x).
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It is important to note that some of the wavelet coe¢ cients involved in equation (27) are a¤ected
by boundary conditions. One should remove the corresponding wavelet coe¢ cients in order to
get an unbiased estimator of the wavelet variance,

bV (x) = JX
j=1

b�x(�j) = JX
j=1

24 1

2�j bTj
T=2j�1X
t=L0j

w2j (t)

35 ; (31)

where �j is the scale that is associated to the frequency interval [1=2j+1 1=2j ]. L0j =�
(L� 2)(1� 2�j)

�
is the number of DWT coe¢ cients computed using the boundaries. Hence,bTj = T=2j � L0j is the number of coe¢ cients una¤ected by the boundary.

We now turn to the analysis of variance in the context of the MODWT. Formula (27) remains
perfectly valid. The MODWT keeps the same number of coe¢ cients at each stage of the wavelet
transform. The way one deals with boundary conditions must therefore be adapted. From the
detail coe¢ cients of a partial MODWT of order Jp < log2(T ), the wavelet variance can be
estimated as follow

eV (x) = JpX
j=1

e�x(�j) = JpX
j=1

24 1eTj
T�1X

t=Lj�1
ew2j (t)

35 ; (32)

where Lj = (2j � 1)(L� 1) + 1 is the number of scale �j wavelet coe¢ cients, which are a¤ected
by boundary conditions. This number also corresponds to the length of the wavelet �lter at
scale �j . eTj = T �Lj +1 is thus the number of wavelet coe¢ cients una¤ected by the boundary.

3.2 Implementation and practical issues

Choice of a wavelet filter

There exist many di¤erent wavelet �lters, each of them being particularly suitable for speci�c
purposes of analysis. Wavelet �lters di¤er in their properties and in their ability to match with
the features of the time-series under study. Furthermore, when it comes to implement a discrete
wavelet transform, one also has to decide about the �lter length. Because of boundary conditions,
longer �lters are well adapted for long time-series. The simplest �lter is the Haar wavelet, which
is basically a di¤erence and average �lter of length two. In �nance, most researchers have worked
either with Daubechies (denoted as "D") or with Least-Asymetric ("LA") �lters of length 4 to
8. Helder/Jin (2007) and Nielsen/Frederiksen (2005) employ D(4) �lters. Gençay, Selçuk and
Whitcher (2003, 2005) suggest that the LA(8) wavelet (i.e. a Least-Asymetric �lter of length 8)
is a good choice for analyzing �nancial time series, while Subbotin (2008) uses a LA(4) wavelet.
Crowley (2005) argues that the impact of choosing another wavelet �lter has a rather limited
impact on the distribution of the variance of the time-series across the scales.

Depending on the purpose of analysis, it might be appealing to select a wavelet �lter which
satis�es one or more of the following properties:

� Symmetry: symmetric �lters are appealing because they ensure that there will be no phase
shift in the output series. Unfortunately, most wavelets are not symmetric. An exception
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is the Haar wavelet. The requirement of a symmetric wavelet is, however, less essential if
one uses a MODWT rather than a DWT because the MODWT ensures that the original
series and its �lter coe¢ cients will be aligned.

� Orthogonality: this property refers to the fact that the wavelet and the scaling coe¢ cients
contain di¤erent information. This is an important feature as it ensures that the wavelet
decomposition will preserve the energy (variance) of the original series (Crowley (2005)).
Daubechies and Least-Asymetric wavelets meet this requirement; that is, their scaling and
wavelet coe¢ cients are orthogonal by construction.

� Smoothness: The degree of smoothness is measured by the number of continuous derivatives
of the basis function. As such, the Haar wavelet is the least smooth wavelet. The choice of
a more or less smooth �lter depends essentially on the data series to be represented. If the
original time-series is very smooth, then one will opt for a smooth wavelet. For instance,
the Haar wavelet is appropriate for the analysis of a pure jump process.

� Number of vanishing moments: The number of vanishing moments of the wavelet function
has a direct implication on the ability of the wavelet to account for the behavior of the
signal. That is, if a signal has a polynomial structure or if it can be approximated by a
polynomial of order q, then the wavelet transform will be able to properly capture this
polynomial structure only if it has q vanishing moments. For instance, Daubechies wavelets
have a number of vanishing moments which is half the length of the �lter. Thus the Haar
and D(8) have respectively 1 and 4 vanishing moments.

The last two properties depend not only on the wavelet �lter but also on its length. In fact,
the most crucial point is probably not to choose the "right" �lter but to choose a �lter with an
appropriate length. Increasing the �lter length permits to better �t the data. Unfortunately,
this also renders the in�uence of boundary conditions more severe. Hence a tradeo¤ has to be
found.

Problems due to boundary conditions arise in two situations. The �rst case concerns the DWT.
To use the DWT, one requires a time-series with a dyadic length. If the series does not meet
this requirement, i.e. if its length N is such that 2j < N < 2(j+1), one has the choice between
removing observations until N = 2j or completing the series so that N = 2(j+1). Removing data
might be the best alternative but it leads to a loss of information.

The second case concerns both the DWT and the MODWT. The wavelet �lter has to be applied
on all observations, including observations recorded at the beginning (t = 1). A problem arises
because the convolution operator requires that L�1 observations are available before t. In this
case, removing data is useless. Therefore one has to complete the data series. One may pad each
end of the series with zeros; this technique is known as "zero padding". An alternative is to use
the �t from a polynomial model to replace non-existing data at each end of the series ("polyno-
mial approximation"). One may also complete each end of the series either by mirroring the last
observations ("mirror" or "re�ection") or by taking the values observed at the beginning of the
other end of the series ("circular"). The choice depends on the data considered. For instance, if
one works on stock returns, the use of a "mirror" seems to be the most suitable approach as it
accounts for the presence of volatility clustering. Moreover, after the multiresolution decompo-
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sition of the original signal, one may obviously discard the coe¢ cients that are a¤ected due to
their proximity to the boundaries of the series.

Instead of selecting a priori a speci�c wavelet function, one may also use so-called optimal
transforms. The idea is to choose the wavelet function which minimizes a loss function (e.g. the
entropy cost function, see Crowley (2005)).

Examples of wavelet filters and their gain functions

Figure 11 shows the coe¢ cients of the Haar, D(4), D(8) and LA(8) wavelets for level j = 4. One
may observe the very simple structure of the Haar wavelet. When comparing the latter with the
D(4) and D(8) �lters, it becomes clear that the longer the �lter, the smoother it is. The LA(8)
looks less asymmetric than the D(8). Nevertheless it is still far from being symmetric.
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Figure 11: Mother wavelet �lters. The Haar, D(4), D(8) and LA(8) �lters at scale j = 4.

Studying the frequency response of these �lters permit to assess their ability to capture the
di¤erent frequency components. Figure 12 displays the gain function for each wavelet �lter at
scales 1 to 4. It is evident from the �gure that the longer �lters (D(8) and LA(8) have better
frequency localization. The gain functions of the D(8) and LA(8) are similar. In order to make
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Figure 12: Gain functions for the Haar, D(4), D(8) and LA(8) wavelets.
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this statement clearer, we contrast in �gure 13 the gain functions of the Haar, D(4) and D(8)
wavelets at scale j = 5. The D(8) captures much better the components corresponding to
frequencies between 1

2j
and 1

2j+1
.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
5
(f)

Haar
D(4)
D(8)

Figure 13: Gain function for the Haar, D(4) and D(8) wavelets at scale j = 5.

Implementation in MatLab

Hereafter, we show the main steps for an e¤ective implementation of the MODWT in MatLab.
Our code considers four wavelet �lters: the Haar, D(4), D(8) and LA(8). The code deals with
boundary conditions using either the re�ection (also called mirror) or the circular approach.

1. De�nition of the function and its inputs and outputs.

Our function is called "waveletFilter" and it can be invoked through the instruction:
"[W,V,boundCond]=waveletFilter(X,nameFilt,nLev,boundCondMethod)".

It accepts four inputs: a time-series ("X"), the �lter name ("nameFilt"), the number of
levels for the wavelet analysis ("nLev") and the method to deal with boundary conditions
("boundCondMethod"), which can be either the re�ection (boundCondMethod=�re�ection�)
or the circular method (boundCondMethod=�circular�). The function returns three out-
puts: a matrix containing the wavelet coe¢ cients ("W"), a vector of scaling coe¢ cients
("V") and a matrix of dummies, which tells which wavelet and scaling coe¢ cients are not
a¤ected by boundary e¤ects.

2. Checking the validity of the inputs and de�nition of the mother and father wavelet �lters.

The �rst part of the function is devoted to checking that the arguments received by the
function are correct. We also load the �lter coe¢ cients for the mother wavelet and com-
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pute the corresponding coe¢ cients for the father wavelet using the quadrature mirror
relationship.

3. Core of the code.

The core part of the code is arranged around a main loop, which serves to compute the
wavelet and scaling coe¢ cients at each scale j for j = 1 to J ("nLev"). If the method
to deal with boundary conditions is the re�ection, then the original time-series is �rst
mirrored. Otherwise, we go on with the original vector of observations. The code looks as
follows:

T=size(X,1);

W=zeros(T,nLev);

boundCond=zeros(T,nLev);

V=X;

for j=1:nLev

start=-(lFilt-1)*2^(j-1);

temp=[V(end+start+1:end);V];

K=1;

xtemp=temp(K:end+start+K-1);

for k=2:lFilt

K=K+2^(j-1);

xtemp=[temp(K:end+start+K-1) , xtemp];

end

W(:,j) = xtemp*h�;

V = xtemp*g�;

boundCond(-start+1:T0,j)=1;

end

Example

Let�s consider a variable y, whose dynamics is primarily driven by an AR(1) process and �ve
cyclical components:

yt = 0:90yt�1 +
5X
s=3

5 cos(
2�t

s
) + "t; (33)

"t is a i.i.d. Gaussian process with mean zero and unit variance and t = 1; :::; 10:000. In the
absence of seasonalities and noise, the autocorrelation function of y should take value 0:90kat lag
k. Wavelets can be used to remove the impact of both noise and seasonalities. From equation
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(33), one may notice that the cyclical components have a period length of 3 to 5 periods. Hence
they have an impact on frequencies between 1/5 and 1/3.

At scale j, the wavelet detail Dj captures frequencies 1=2j+1 � f � 1=2j and the wavelet smooth
Sj captures frequencies f < 1=2j+1. If we use a level 2 multiresolution analysis, the wavelet
smooth S2 will thus capture the components of the time-series, which have a frequency f < 1=8.
This means that S2 will take into account changes in y that are associated with a period length
of at least 8 units of time. Therefore, S2 should keep the AR(1) dynamics of y, while removing
its cyclical behavior and noise.
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Figure 14: Autocorrelations estimated before and after having removed some spe-
ci�c frequency componenents of the original time-series. Autocorrelation coe¢ cients
for (i) a theoretical AR(1) process, (ii) for a process y that is a¤ected by noise and cyclical
components, and (iii-iv) for the wavelet smooth from a level-2 MRA with a Haar and a LA(8)
wavelet.

Figure 14 reports the autocorrelation coe¢ cients for the original time-series y, for the theoretical
AR(1) process and for the wavelet smooth S2. In order to assess the impact of choosing a di¤erent
wavelet �lter, we use both the Haar and the LA(8) wavelets. The results are very similar even
if for short lags the LA(8) seems to provide some improvements over the Haar. All in one, this
example demonstrates the ability of a wavelet �lter to deal with a complex cyclical structure
and with noise.

3.3 Illustration: Home price indices for di¤erent US-cities

Descriptive statistics

In this section, we study the evolution of home prices in twelve U.S. cities from January 1987 to
May 2008 (257 months).14 We employ the Case-Shiller home price indices. The data has been

14 Los Angeles (LA), San Francisco (SF), Denver (De), Washington (Wa), Miami (Mi), Chicago (Chi), Boston
(Bos), Las Vegas (LV), New York (NY), Portland (Po), Charlotte (Cha), Cleveland (Cl).
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gathered from the Standard & Poors website. Pj(t) denotes the price index level for the j�th
city in period t and it has been standardized so that it has a value of 100 in the �rst month of
the sample, i.e. Pj(t = 0) = 100 (8j). We compute the index returns as

rj(t) = log[Pj(t)]� log[Pj(t� 1)]:

Table 1 reports some descriptive statistics for the returns on each of the 12 home price indices.
There are huge disparities in performance. The largest price increases are to be found in Portland
(+328%), San Francisco (+249%) and Los Angeles (+234%). Cleveland (+103%), Charlotte
(+110%) and Boston (+129%) are the worst performers. The volatility of home price changes
has been much larger in cities like San Francisco, Los Angeles, Las Vegas and Miami than in
north-east cities (plus Portland and Denver). This higher volatility is, to a large extent, the
result from the severe price downturn in these four cities during the last two years of the sample.
It is worth mentioning that some cities have been much less a¤ected by the home price crash
than others. Portland is the most striking example, it has achieved a strong performance of
328% cumulated return over the sample period and, since its highest level, it has experienced
a limited price drop of about 6%. From a risk-return perspective, such an investment seems to
remain fairly attractive. Nevertheless, the large excess kurtosis and negative skewness of some
indices indicate that the volatility may be an incomplete measure of risk in this context.

LA SF De Wa Mi Chi Bos LV NY Po Cha Cl
Mean 5.66 5.86 4.45 5.31 4.86 4.83 3.88 4.16 4.49 6.81 3.48 3.33

Std. 4.24 4.18 2.17 3.13 3.58 2.40 2.88 4.30 2.48 2.32 1.55 2.17

Skew -0 .54 -0 .43 -0 .60 -0 .01 -1 .33 -0 .20 -0 .15 0.06 0.11 0.26 0.14 -0 .75

Kurt 4.65 5.53 4.39 3.95 7.86 5.10 2.96 10.27 2.49 4.70 3.85 8.12

P (T ) 334.72 349.07 258.41 310.76 282.03 280.17 228.94 242.68 260.52 427.60 210.06 203.40

max[P ] 461.72 468.50 279.42 391.62 410.03 314.85 260.49 353.80 290.02 454.35 214.36 230.69

min[P ] 100.00 100.00 94.04 100.00 100.00 100.00 89.86 98.16 97.14 99.78 100.00 99.94

Table 1. Descriptive statistics for the 12 home price indices. We report the mean
(in %), the annualized standard deviation ("Std." in the table, in %), skewness ("Skew") and
kurtosis ("Kurt") of rj(t) for j = 1; :::; 12. We also report the index level in the last month of
the sample (P (T )) as well as the maximum ("max[P ]") and minimum ("min[P ]") level achieved
by each index over the period 1987-2008.

Autocorrelations

Figure 15 shows the autocorrelations (up to 24 lags, i.e. 2 years) of the index returns. The full
lines are for the original series, while the dotted lines show the autocorrelations computed from
the smooth coe¢ cients obtained using the MRA from a partial MODWT. We employ a LA(8)
�lter with Jp = 3. Hence the wavelet smooth (S3) should capture the frequency components
that are associated with a period length of at least 16 months and should therefore be free of
seasonal e¤ects. In order to deal with the boundary conditions, we use the re�ection method.
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Figure 15: Autocorrelations of rj(t). This �gure shows the autocorrelations for both the
original returns series and the wavelet smooth series for each home price index.

Some indices are very a¤ected by seasonal e¤ects (Denver, Washington, Chicago, Boston, Port-
land, Charlotte and Cleveland), while the other indices are much less a¤ected (Los Angeles, San
Francisco and New York) or even una¤ected (Miami and Las Vegas). In general the indices that
display the least signi�cant seasonal patterns are also those that have been the most a¤ected by
the recent crisis. This observation may suggest that the (quasi) absence of these patterns is the
result of the predominant role of speculation on price changes in these cities.

One may again observe the ability of wavelets to remove seasonal patterns. The autocorrelations
estimated from the wavelet smooth show the long-run temporal dynamics of home prices. In
contrast to �nancial markets, whose evolution is almost unpredictable, home prices are strongly
autocorrelated. The autocorrelation remains positive even after 2 years.

Variance and cross-correlations

Next, we analyze the variance of each index returns series and the correlations between the
di¤erent indices at a variety of frequencies. We employ a partial MODWT with Jp = 5. Hence
at the largest scale, the wavelet coe¢ cients contain information regarding price changes over
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Figure 16: Distribution of the wavelet variance across scales. Each bar corresponds to
the variance recorded at a speci�c scale j and for a particular city. Cities are ordered as follows
(from left to right): Miami, Las Vegas, Los Angeles, Washington, New York, San Francisco,
Chicago, Portland, Boston, Denver, Charlotte, Cleveland.

an horizon of 32 to 64 months. Similarly, the scaling coe¢ cients capture the evolution for
periods longer than 64 months. Figure 16 shows the distribution of variance across the di¤erent
frequencies.

From �gure 16, one may notice that most of the variance is due to frequency components
associated with scales 3 and 6. On the other hand, variance at scales 1 and 2 is low and may
be due to noise. Scales 4 to 5 are not related to important frequency components, neither to
seasonal patterns (scale j = 3) nor to business cycle (scales j > 5) components. Thus it comes
at no surprise that they do not have much information content.

Scale 3 corresponds to periods of 8 to 16 months and as such the variance observed at this scale
re�ects the importance of seasonal patterns in the dynamics of the various home price indices.
As before, we observe that seasonal e¤ects have a very limited impact on prices in Miami, they
are also much less important in cities like Las Vegas, Los Angeles, Washington and New-York
than in Boston, Denver, Charlotte and Cleveland. Interestingly the ordering is reversed when
considering the variance at scale 6. That is, the index returns series on which seasonalities have
a weak impact exhibit the largest percentage of long-term volatility.

Figure 17 reports the correlation between the various city indices at di¤erent scales. Dark colors
correspond to correlations in the range �0:15 to 0:15., while light colors are associated with
signi�cantly positive correlations. The lighter the cell, the larger is the correlation between two
indices. The diagonals are white as the correlation of an index with itself is obviously equal to
1. The largest correlations are observed at scales larger than 2. In particular at scale 3, the
correlations are very signi�cant. This is because seasonalities a¤ect all indices simultaneously.
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Figure 17: Correlations between home price indices at di¤erent frequencies. The
panel denoted by W1 to W5 show the correlations between the wavelet coe¢ cients at scales
j = 1; :::; 5, while panel denoted V5 show the correlations between the scaling coe¢ cients at
scale j = 5. The 12 cities are order as follows: Los Angeles, San Francisco, Denver, Washington,
Miami, Chicago, Boston, Las Vegas, New York, Portland, Charlotte, Cleveland.

One may notice that the �fth index (Miami) shows less correlation with the other indices. At
scales 5 and 6, the correlations become highly signi�cant. This demonstrates that the series
tend to behave very similarly in the long-run. There are, however, some exceptions. Charlotte
is weakly correlated with the other indices; this is maybe because it is a medium size city.
Cleveland, Portland and to a lesser extent Denver and Boston also display less correlation as
compared to the other cities. In particular, Portland has a correlation that is nearly equal to
zero with Denver, Boston and New-York.

An interesting extension to this correlation analysis is to study how many (economic) factors
are important to explain the structure of the correlation matrix at each scale. In order to adress
this question, one may resort to Random Matrix Theory (RMT). A very nice introduction
is provided by Bouchaud/Potters (2004). A recent literature review on RMT can be found in
Shari�et al. (2004). Here, we concentrate on the main premisses of RMT. That is, this approach
should enable one to (1) assess if the correlation coe¢ cients have a genuine information content
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or if they are merely due to the noise inherent in the data, and, (2) estimate the number of
factors that are necessary to "explain" the correlation matrix. This is done by comparing the
eigenvalues of the empirical correlation matrix with those from a theoretical distribution.

Let�s consider a dataset with N time-series of length T . We assume that the theoretical random
matrix belongs to the ensemble of Wishart matrices. On this basis, we can derive the theoretical
distribution of the eigenvalues of the correlation matrix. Under the null of pure randomness,
the eigenvalues must be con�ned within the bounds:15

�max = (1 +
1

q
+ 2

r
1

q
) and �min = (1 +

1

q
� 2
r
1

q
); (34)

where q = T=N . If the correlation matrix is random, then the probability that any of its
eigenvalues lies outstide the bounds de�ned by [�min; �max] is zero. Hence the presence of
eigenvalues larger than the upper bound can be taken as an evidence that the structure of the
correlation matrix is not due to chance; i.e. that there are deviations from RMT. Furthermore,
the number of such eigenvalues can be interpreted as corresponding to the number of factors
underlying the evolution of the N time-series. A potential problem with the RMT approach is
that it requires N !1 and T !1. In our case, these conditions are evidently not full�lled as
T = 256 and N = 12. To account for this, we also estimate �max from the empirical distribution
of the correlation matrix eigenvalues. To this aim, we resample (without replacement) the
original time-series of returns and then apply the MODWT on the resampled data and calculate
the correlation matrix and its eigenvalues at each scale of the MODWT. This procedure is done
100:000 times. In �gure 18, we report �max as computed on the basis of equation (34) and
the empirical values of b�max obtained from our simulations. In the latter case, we consider two
di¤erent values for b�max, which correspond to the 5%� and, respectively, 1%�quantile of the
empirical cumulative distribution of �. The theoretical (RMT) maximum eigenvalue is always
much lower than its empirical counterparts. This is probably due to the small sample size.

In Table 2, we report the eigenvalues of the correlation matrix for each scale of the MODWT.
Comparing the eigenvalues �k, k = 1; :::; 12 with b�max demonstrates that there is a single factor
underlying the evolution of home prices. At each scale, the eigenvalue that is attached to this
factor is signi�cant at the 99% level. This unique factor can be interpreted as a sort of national-
wide home price index.

15 See Shari� et al. (2004) and Kwapien et al. (2007).
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w1 w2 w3 w4 w5 v5

�1 0.50 0.32 0.05 0.07 0.01 0.00

�2 0.58 0.40 0.08 0.15 0.04 0.00

�3 0.66 0.42 0.09 0.19 0.11 0.00

�4 0.73 0.51 0.17 0.21 0.16 0.00

�5 0.85 0.66 0.22 0.33 0.20 0.01

�6 0.90 0.81 0.23 0.40 0.30 0.03

�7 1.01 0.88 0.34 0.59 0.43 0.12

�8 1.13 0.97 0.40 0.72 0.56 0.24

�9 1.27 1.04 0.51 1.08 0.72 0.87

�10 1.33 1.21 0.81 1.25 1.11 1.00

�11 1.43 1.46 1.48 1.72 1.89 1.80

�12 1.61** 3.33** 7.60** 5.30** 6.48** 7.92**

�max 1.33 1.33 1.34 1.35 1.38 1.38b�max (5%) 1.48 1.58 1.84 2.26 2.96 3.54b�max (1%) 1.59 1.71 2.07 2.62 3.53 4.27

Table 2. Eigenvalues of the correlation matrix at each scale of the MODWT. We
report the 12 eigenvalues of the correlation matrix at each scale j as well as the theoretical (RMT)
maximum eigenvalue ("�max" in the table) and the empirical 95%� and 99%�quantile ("b�max
(5%)" and "b�max (1%)") of the empirical (bootstrapped) cumulative distribution of eigenvalues
at scale j. ** and * denote signi�cance at the 95% and 99% levels.

4 Conclusion

This paper discusses spectral and wavelet methods. It aims at being an easy-to-follow intro-
duction and it is structured around conceptual and practical explanations. It also o¤ers many
supporting examples and illustrations. In particular, the last section provides a detailed case
study, which analyzes the evolution of home prices in the U.S. over the last 20 years using
wavelet methodology.
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