
27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 1/96

Bzarg

On the future, science, & tech

How a Kalman �lter works, in pictures

I have to tell you about the Kalman �lter, because what it does is pretty damn amazing.

Surprisingly few software engineers and scientists seem to know about it, and that makes me sad because it

is such a general and powerful tool for combining information in the presence of uncertainty. At times its

ability to extract accurate information seems almost magical— and if it sounds like I’m talking this up too

much, then take a look at this previously posted video where I demonstrate a Kalman �lter �guring out the

orientation of a free-�oating body by looking at its velocity. Totally neat!

What is it?

You can use a Kalman �lter in any place where you have uncertain information about some dynamic sys-

tem, and you can make an educated guess about what the system is going to do next. Even if messy reality

comes along and interferes with the clean motion you guessed about, the Kalman �lter will often do a very

good job of �guring out what actually happened. And it can take advantage of correlations between crazy

phenomena that you maybe wouldn’t have thought to exploit!

Kalman �lters are ideal for systems which are continuously changing. They have the advantage that they

are light on memory (they don’t need to keep any history other than the previous state), and they are very

fast, making them well suited for real time problems and embedded systems.

The math for implementing the Kalman �lter appears pretty scary and opaque in most places you �nd on

Google. That’s a bad state of a�airs, because the Kalman �lter is actually super simple and easy to under-

stand if you look at it in the right way. Thus it makes a great article topic, and I will attempt to illuminate it

with lots of clear, pretty pictures and colors. The prerequisites are simple; all you need is a basic understand-

ing of probability and matrices.

I’ll start with a loose example of the kind of thing a Kalman �lter can solve, but if you want to get right to the

shiny pictures and math, feel free to jump ahead.

What can we do with a Kalman �lter?

Let’s make a toy example: You’ve built a little robot that can wander around in the woods, and the robot

needs to know exactly where it is so that it can navigate.

https://www.bzarg.com/
https://www.bzarg.com/p/improving-imu-attitude-estimates-with-velocity-data

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 2/96

We’ll say our robot has a state , which is just a position and a velocity:

Note that the state is just a list of numbers about the underlying con�guration of your system; it could be

anything. In our example it’s position and velocity, but it could be data about the amount of �uid in a tank,

the temperature of a car engine, the position of a user’s �nger on a touchpad, or any number of things you

need to keep track of.

Our robot also has a GPS sensor, which is accurate to about 10 meters, which is good, but it needs to know

its location more precisely than 10 meters. There are lots of gullies and cli�s in these woods, and if the robot

is wrong by more than a few feet, it could fall o� a cli�. So GPS by itself is not good enough.

We might also know something about how the robot moves: It knows the commands sent to the wheel mo-

tors, and its knows that if it’s headed in one direction and nothing interferes, at the next instant it will likely

be further along that same direction. But of course it doesn’t know everything about its motion: It might be

bu�eted by the wind, the wheels might slip a little bit, or roll over bumpy terrain; so the amount the wheels

have turned might not exactly represent how far the robot has actually traveled, and the prediction won’t be

perfect.

The GPS sensor tells us something about the state, but only indirectly, and with some uncertainty or inaccu-

racy. Our prediction tells us something about how the robot is moving, but only indirectly, and with some

uncertainty or inaccuracy.

xk
→

= (,)xk
→

p ⃗ v ⃗

https://www.bzarg.com/wp-content/uploads/2015/08/robot_ohnoes.png

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 3/96

But if we use all the information available to us, can we get a better answer than either estimate would

give us by itself? Of course the answer is yes, and that’s what a Kalman �lter is for.

How a Kalman �lter sees your problem

Let’s look at the landscape we’re trying to interpret. We’ll continue with a simple state having only position

and velocity.

We don’t know what the actual position and velocity are; there are a whole range of possible combinations of

position and velocity that might be true, but some of them are more likely than others:

The Kalman �lter assumes that both variables (postion and velocity, in our case) are random and Gaussian

distributed. Each variable has a mean value , which is the center of the random distribution (and its most

likely state), and a variance , which is the uncertainty:

= []x ⃗
p

v

μ

σ2

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 4/96

In the above picture, position and velocity are uncorrelated, which means that the state of one variable tells

you nothing about what the other might be.

The example below shows something more interesting: Position and velocity are correlated. The likelihood

of observing a particular position depends on what velocity you have:

This kind of situation might arise if, for example, we are estimating a new position based on an old one. If our

velocity was high, we probably moved farther, so our position will be more distant. If we’re moving slowly, we

didn’t get as far.

This kind of relationship is really important to keep track of, because it gives us more information: One

measurement tells us something about what the others could be. And that’s the goal of the Kalman �lter, we

want to squeeze as much information from our uncertain measurements as we possibly can!

This correlation is captured by something called a covariance matrix. In short, each element of the matrix

 is the degree of correlation between the ith state variable and the jth state variable. (You might be able to

guess that the covariance matrix is symmetric, which means that it doesn’t matter if you swap i and j).

Covariance matrices are often labelled “ ”, so we call their elements “ ”.

Σij

Σ Σij

https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Symmetric_matrix

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 5/96

Describing the problem with matrices

We’re modeling our knowledge about the state as a Gaussian blob, so we need two pieces of information at

time : We’ll call our best estimate (the mean, elsewhere named), and its covariance matrix .

(Of course we are using only position and velocity here, but it’s useful to remember that the state can contain

any number of variables, and represent anything you want).

Next, we need some way to look at the current state (at time k-1) and predict the next state at time k.

Remember, we don’t know which state is the “real” one, but our prediction function doesn’t care. It just works

on all of them, and gives us a new distribution:

We can represent this prediction step with a matrix, :

k x̂k μ Pk

x̂k

Pk

= []position

velocity

= []
Σpp

Σvp

Σpv

Σvv

(1)

Fk

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 6/96

It takes every point in our original estimate and moves it to a new predicted location, which is where the sys-

tem would move if that original estimate was the right one.

Let’s apply this. How would we use a matrix to predict the position and velocity at the next moment in the fu-

ture? We’ll use a really basic kinematic formula:

In other words:

We now have a prediction matrix which gives us our next state, but we still don’t know how to update the

covariance matrix.

This is where we need another formula. If we multiply every point in a distribution by a matrix , then what

happens to its covariance matrix ?

Well, it’s easy. I’ll just give you the identity:

So combining with equation :

External in�uence

We haven’t captured everything, though. There might be some changes that aren’t related to the state it-

self— the outside world could be a�ecting the system.

For example, if the state models the motion of a train, the train operator might push on the throttle, causing

the train to accelerate. Similarly, in our robot example, the navigation software might issue a command to

turn the wheels or stop. If we know this additional information about what’s going on in the world, we could

stu� it into a vector called , do something with it, and add it to our prediction as a correction.

Let’s say we know the expected acceleration due to the throttle setting or control commands. From basic

kinematics we get:

In matrix form:

pk

vk

= +Δtpk−1

=
vk−1

vk−1

x̂k = []1

0

Δt

1
x̂k−1

= Fkx̂k−1

(2)

(3)

A

Σ

Cov(x)

Cov(Ax)

= Σ

= AΣAT
(4)

(4) (3)

x̂k

Pk

= Fkx̂k−1

= FkPk−1FT
k

(5)

uk
→

a

pk

vk

= +Δtpk−1

=

+vk−1

+vk−1

a
1

2
Δt2

aΔt

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 7/96

 is called the control matrix and the control vector. (For very simple systems with no external in�u-

ence, you could omit these).

Let’s add one more detail. What happens if our prediction is not a 100% accurate model of what’s actually go-

ing on?

External uncertainty

Everything is �ne if the state evolves based on its own properties. Everything is still �ne if the state evolves

based on external forces, so long as we know what those external forces are.

But what about forces that we don’t know about? If we’re tracking a quadcopter, for example, it could be buf-

feted around by wind. If we’re tracking a wheeled robot, the wheels could slip, or bumps on the ground

could slow it down. We can’t keep track of these things, and if any of this happens, our prediction could be

o� because we didn’t account for those extra forces.

We can model the uncertainty associated with the “world” (i.e. things we aren’t keeping track of) by adding

some new uncertainty after every prediction step:

Every state in our original estimate could have moved to a range of states. Because we like Gaussian blobs so

much, we’ll say that each point in is moved to somewhere inside a Gaussian blob with covariance .

Another way to say this is that we are treating the untracked in�uences as noise with covariance .

x̂k = + [] aFkx̂k−1

Δt2

2

Δt

= +Fkx̂k−1 Bkuk
→

(6)

Bk uk

→

x̂k−1 Qk

Qk

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 8/96

This produces a new Gaussian blob, with a di�erent covariance (but the same mean):

We get the expanded covariance by simply adding , giving our complete expression for the prediction

step:

In other words, the new best estimate is a prediction made from previous best estimate, plus a correc-

tion for known external in�uences.

And the new uncertainty is predicted from the old uncertainty, with some additional uncertainty from

the environment.

All right, so that’s easy enough. We have a fuzzy estimate of where our system might be, given by and .

What happens when we get some data from our sensors?

Re�ning the estimate with measurements

Qk

x̂k

Pk

= +Fkx̂k−1 Bkuk
→

= +FkPk−1FT
k Qk

(7)

x̂k Pk

https://www.bzarg.com/wp-content/uploads/2015/08/gauss_10a.jpg

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 9/96

We might have several sensors which give us information about the state of our system. For the time being it

doesn’t matter what they measure; perhaps one reads position and the other reads velocity. Each sensor

tells us something indirect about the state— in other words, the sensors operate on a state and produce a

set of readings.

Notice that the units and scale of the reading might not be the same as the units and scale of the state we’re

keeping track of. You might be able to guess where this is going: We’ll model the sensors with a matrix, .

We can �gure out the distribution of sensor readings we’d expect to see in the usual way:

One thing that Kalman �lters are great for is dealing with sensor noise. In other words, our sensors are at

least somewhat unreliable, and every state in our original estimate might result in a range of sensor readings.

Hk

μ⃗ expected

Σexpected

= Hkx̂k

= HkPkHT
k

(8)

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 10/96

From each reading we observe, we might guess that our system was in a particular state. But because there

is uncertainty, some states are more likely than others to have have produced the reading we saw:

We’ll call the covariance of this uncertainty (i.e. of the sensor noise) . The distribution has a mean equal

to the reading we observed, which we’ll call .

So now we have two Gaussian blobs: One surrounding the mean of our transformed prediction, and one sur-

rounding the actual sensor reading we got.

Rk

zk
→

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 11/96

We must try to reconcile our guess about the readings we’d see based on the predicted state (pink) with a

di�erent guess based on our sensor readings (green) that we actually observed.

So what’s our new most likely state? For any possible reading , we have two associated probabilities:

(1) The probability that our sensor reading is a (mis-)measurement of , and (2) the probability that

our previous estimate thinks is the reading we should see.

If we have two probabilities and we want to know the chance that both are true, we just multiply them to-

gether. So, we take the two Gaussian blobs and multiply them:

What we’re left with is the overlap, the region where both blobs are bright/likely. And it’s a lot more precise

than either of our previous estimates. The mean of this distribution is the con�guration for which both esti-

mates are most likely, and is therefore the best guess of the true con�guration given all the information

we have.

Hmm. This looks like another Gaussian blob.

(,)z1 z2

zk
→

(,)z1 z2

(,)z1 z2

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 12/96

As it turns out, when you multiply two Gaussian blobs with separate means and covariance matrices, you get

a new Gaussian blob with its own mean and covariance matrix! Maybe you can see where this is going:

There’s got to be a formula to get those new parameters from the old ones!

Combining Gaussians

Let’s �nd that formula. It’s easiest to look at this �rst in one dimension. A 1D Gaussian bell curve with vari-

ance and mean is de�ned as:

We want to know what happens when you multiply two Gaussian curves together. The blue curve below rep-

resents the (unnormalized) intersection of the two Gaussian populations:

σ2 μ

N (x,μ, σ) =
1

σ 2π
−−√

e
−

(x–μ)2

2σ2 (9)

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 13/96

You can substitute equation into equation and do some algebra (being careful to renormalize, so

that the total probability is 1) to obtain:

We can simplify by factoring out a little piece and calling it :

Take note of how you can take your previous estimate and add something to make a new estimate. And

look at how simple that formula is!

But what about a matrix version? Well, let’s just re-write equations and in matrix form. If is the

covariance matrix of a Gaussian blob, and its mean along each axis, then:

 is a matrix called the Kalman gain, and we’ll use it in just a moment.

Easy! We’re almost �nished!

Putting it all together

We have two distributions: The predicted measurement with , and the ob-

served measurement with . We can just plug these into equation to �nd their

overlap:

And from , the Kalman gain is:

We can knock an o� the front of every term in and (note that one is hiding inside), and an

 o� the end of all terms in the equation for .

N (x, ,) ⋅N (x, ,) N (x, ,)μ0 σ0 μ1 σ1 =
?

μ′ σ ′ (10)

(9) (10)

μ′

σ ′2

= +μ0

(–)σ2
0 μ1 μ0

+σ2
0 σ2

1

= –σ2
0

σ4
0

+σ2
0 σ2

1

(11)

k

k =
σ2
0

+σ2
0 σ2

1

(12)

μ′

σ ′2

= +μ0

= –σ2
0

k(–)μ1 μ0

kσ2
0

(13)

(12) (13) Σ

μ⃗

K = (+Σ0 Σ0 Σ1)
−1 (14)

μ⃗
′

Σ′

= +μ0
→

= –Σ0

K(–)μ1
→

μ0
→

KΣ0

(15)

K

(,) = (,)μ0 Σ0 Hkx̂k HkPkHT
k

(,) = (,)μ1 Σ1 zk
→

Rk (15)

Hkx̂
′
k

HkP′
kHT

k

= Hkx̂k

= HkPkHT
k

+

–

K(–)zk
→

Hkx̂k

KHkPkHT
k

(16)

(14)

K = (+HkPkHT
k HkPkHT

k Rk)
−1 (17)

Hk (16) (17) K

HT
k P′

k

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 14/96

…giving us the complete equations for the update step.

And that’s it! is our new best estimate, and we can go on and feed it (along with) back into another

round of predict or update as many times as we like.

x̂
′
k

P′
k

= x̂k

= Pk

+

–

(–)K′ zk
→

Hkx̂k

K′HkPk

(18)

= (+K′ PkHT
k HkPkHT

k Rk)
−1 (19)

x̂
′
k P′

k

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 15/96

Wrapping up

Of all the math above, all you need to implement are equations , and . (Or if you forget those,

you could re-derive everything from equations and .)

(7), (18) (19)

(4) (15)

https://www.bzarg.com/wp-content/uploads/2015/08/kalflow.png

27/02/2023, 19:59 How a Kalman filter works, in pictures | Bzarg

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 16/96

This will allow you to model any linear system accurately. For nonlinear systems, we use the extended

Kalman �lter, which works by simply linearizing the predictions and measurements about their mean. (I

may do a second write-up on the EKF in the future).

If I’ve done my job well, hopefully someone else out there will realize how cool these things are and come up

with an unexpected new place to put them into action.

Some credit and referral should be given to this �ne document, which uses a similar approach involving over-

lapping Gaussians. More in-depth derivations can be found there, for the curious.

This entry was posted in Mini-courses, Programming on August 11, 2015 [https://www.bzarg.com/p/how-a-

kalman-�lter-works-in-pictures/] .

350 thoughts on “How a Kalman �lter works, in pictures”

Great article! Loving your other posts as well.

it seems its linear time dependent model. is it possible to introduce nonlinearity. what if the transformation

is not linear. then how do you approximate the non linearity. every state represents the parametric form of a

distribution. that means the actual state need to be sampled. is not it an expensive process?

Valen

August 11, 2015 at 5:51 pm

AKM Sabbir

February 28, 2017 at 4:19 am

AKM Sabbir

February 28, 2017 at 4:22 am

http://www.cl.cam.ac.uk/~rmf25/papers/Understanding%20the%20Basis%20of%20the%20Kalman%20Filter.pdf

