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I.  Introduction 
 
This paper examines the problem of estimating capital asset price volatility parameters  from the most available 
forms of public data. While many varieties of such data are possible, we shall consider here only those which are 
truly universal in their accessibility to investors, that is, data appearing in the financial pages of the newspaper. In 
particular, we shall consider volatility estimators that are based upon the historical opening, closing, high, and low 
prices and transaction volume. Since high and low prices require continuous monitoring to obtain, they 
correspondingly contain superior information content, exploited herein. 
 
Any parameter-estimation procedure must begin with a maintained hypothesis regarding the structural model within 
which estimation is to be made. Our structural model is described in Section II. Section III discusses the "classical" 
estimation approach. In Section IV we introduce some more efficient estimators based upon the high and low prices. 
"Best" analytic estimators, which simultaneously use the high, low, opening, and closing prices, are formulated in 
Section V.  Section VI considers the complications raised by trading volume.  Section VII provides a summary. 

 
 

 
 

 
 



  
 
II. The Structural Model 
 
Our maintained model assumes that a diffusion process governs security prices: 
 

P t B t( ) ( ( ))= φ                                      (1) 
  

Here P is the security price, t is time, φ is a monotonic, time-independent3 transformation, and B(t) is a diffusion 
process with the differential representation 
 

dB dz= σ               (2) 

 
where dz is the standard Gauss-Wiener process and σ is an unknown constant to be estimated. This formulation is 
sufficiently general to cover the usual hypothesis of the geometric~Brownian motion of stock prices, as well as 
some of the proposed alternatives to the geometric hypothesis (e.g. Cox and Ross 1975). Throughout this  paper, it 

shall always be implicit that we are dealing with the transformed price series 1B Pφ −= .  Thus in the geometric 
case, "price" would mean "logarithm of original price," and "volatility" would mean "variance of the logarithm of 
original prices," and similarly for other transformations. 
 
Of course, there are limitations to our maintained model. First, we are essentially considering each security in 
isolation, ignoring the covariance thought to exist among securities in specific asset pricing models (e.g., Sharpe 
1970). Second, only one parameter is to be estimated: the simultaneous estimation of other unknown parameters, for 
example, the "drift," is not treated here. Third, the above form of φ rules out a significant number of diffusion 
processes, including those having arbitrary nonzero drift, even when this drift is known.4  Fortunately, the effect of 
the foregoing limitation tends to vanish as we shorten the interval over which estimation is made.  Finally, dividends 
and other discrete capital payments are neglected, since these violate the otherwise continuous nature of the assumed 
diffusion sample paths. 
 
Moreover, the current paper is not concerned with the question of whether the maintained model is the "correct" 
model of asset price fluctuations. This has been an ongoing subject with many authors over many years, and we 
certainly could not aspire to settle this complex issue here. Rather, our purposes are to develop the estimation 
consequences of the model, given the data restrictions described earlier. 

 
 
III. "Classical" Estimation 
 
Under the maintained model, (transformed) price changes over any time interval are normally distributed with mean 
zero and variance proportional to the length of the interval. Moreover, the prices will always exhibit continuous 
sample paths. Yet we do not assume that these paths may be everywhere observed. There are at least two factors that 
interfere with our abilities to continuously observe prices.  First,  transactions often occur only at discrete points in 
time.5   Second, stock exchanges are normally closed during certain periods of time. Our maintained model assumes 
that the continuous Brownian motion of (2) is followed during periods between transactions and during periods of 
exchange closure, even though prices cannot be observed in such intervals. 
 
As a matter of choice, we shall concentrate herein on estimators of the variance parameter σ 2 of B(t). Any such 
choice of estimation parameter will have disadvantages in some contexts.6 Since such bias typically vanishes with 
increasing sample size and is usually small relative to other sources of error, we shall ignore this issue to concentrate 
solely upon the estimation of σ 2. 
 
Moreover, it is convenient to think of the interval t ∈ [0, 1] as representing one trading interval or "day," since this 
will prove to be a satisfactory paradigm for the problems of weekly and monthly data also. Our "day" will be 
divided into two portions, an initial period when the market is closed, followed immediately by a trading period 
where the market is active. Figure 1 shows this diagrammatically. 



 

In figure 1 trading is closed initially, starting with yesterday's closing when the price was C0. The price sample path 
is then unobservable until trading opens, at time f when the price is O1. In the interval [f, 1] we assume (ignoring 
transaction volume for the moment) that the entire sample path is continuously monitored, having a high value of 
H1, a low value of L1 , and a closing value of C1. (The effects of monitoring at discrete transactions will be 
considered later.) We then adopt notation as follows: 

 
 
σ 2 = unknown constant variance (volatility) of price change; 
f  = fraction of the day (interval [0, 1]) that trading is closed; 
C0 = B(0), previous closing price; 
O1 = B( f ), today's opening price; 
H1  = max B(t), f ≤ t ≤ 1, today's high; 
L1  = min B(t), f ≤ t ≤ 1, today's low;  
C1 = B(1), today's close; 
u  = H1  - O1 , the normalized high; 
d  = L1  - O1 , the normalized low; 
c  = C1  - O1 , the normalized close; 
g(u, d, c; σ 2) = the joint density of (u, d,  c) given σ 2 and f = 0. 

 
 
The classical estimation procedure employs 
 

$ ( )σ 0
2

1 0
2≡ −C C  

 
as an unbiased estimator of σ 2. The advantages of this classical estimator are its simplicity of usage and its freedom 
from obvious sources of error or bias. Closing prices are measured in a consistent fashion from period to period, and 
there is little question about the time interval being spanned by the estimator. Its principal disadvantage is the fact 
that it ignores other readily available information which may contribute to estimator efficiency. As we shall see, 
even minor additions to the utilized information can have remarkable impact. 



 
For example, suppose that opening prices are available in addition to the closing prices. In this case, we can form the 
estimator 
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The latter is a "better" estimator, in the sense discussed next. 
 
The classical estimator above will provide the benchmark by which we shall judge all other estimators. Therefore, 
define the relative efficiency of an arbitrary estimator $y  via the ratio 

Eff y
y

( $)
var( $ )
var( $)

≡
σ 0

2

                                                                                                                  (4) 

 
Since var( $ )σ σ0

2 42= and var( $ )σ σ1
2 4= , it follows7 that Eff ( $ )σ 1

2 2= , independent of  f. Thus we see that, by simply 
including the opening price in our estimation procedure, we may halve the variance of our volatility estimates. 
 
The importance of high relative efficiency in a volatility estimator is obvious, inasmuch as improved confidence 
may be ascribed to the estimation. Alternatively, investigators may adopt the tactic of purposely restricting data 
usage to combat nonstationarity; For example, suppose a researcher possesses a data base spanning 10 months. If 
she discovers an estimator having a high relative efficiency, say 10, this permits her to reduce the estimator 
confidence regions by a factor of 10 . Alternatively, she might choose to use only one month's data and retain the 
old confidence regions; the reason for doing this might be to use the most recent month's data, since it presumably 
has more predictive content in the presence of unknown nonstationarity. 

 
 

IV. High/Low Estimators 
 
High and low prices during the trading interval require continuous monitoring to establish their values. The opening 
and closing prices, on the other hand, are merely "snapshots" of the process. Intuition would then tell us that 
high/low prices contain more information regarding volatility than do open/close prices. This intuition is correct, as 
Parkinson (1976) has  demonstrated.8 He assumes f  = 0 and constructs the estimator 
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Here, Eff ( $ ) .σ 2
2 5 2≅ . When the high, low, open. and close prices are simultaneously available, we can also form the 

composite estimator 
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which has minimum variance when a = 0.17, independent of the value of  f. In this case, Eff ( $ ) .σ 3
2 6 2≅ . 

 
One criticism of the estimators which are based solely on the quantity (u-d) is that they ignore the joint effects 
between the quantities u, d, and c, which may be utilized to further increase efficiency. In the following section we 
therefore characterize the best analytic estimators of σ2. 

 
 

V. "Best" Analytic Scale-invariant Estimators 
 
For our purposes herein, an estimator is "best" when it has minimum variance and is unbiased. We shall also impose 
the requirements that the estimators be analytic and scale-invariant, as explained later. 
To simplify the initial analysis, we suppose f  = 0, that is, trading is open throughout the interval [0, 1]. Next, 
consider estimators of the form D (u, d, c), that is, decision rules which are functions only of the quantities u, d, and 
c. We restrict attention to these normalized values because the process B(t) renews itself everywhere, including at t = 



0, and so only the increments from the level O1 (  = C0) are relevant. According to the lemma established in 
Appendix A, any minimum-squared-error estimator D (u, d, c) should inherit the invariance properties of the joint 
density of (u, d, c).  Two such invariance properties may be quickly recounted: For all σ2 > 0 and all d ≤ c ≤ u, d ≤ 0 
≤ u, we have 
 

g u d u g d u c( , , ; ) ( , , ; )σ σ2 2= − − −                                                                                                  (7) 
and 

g u d u g u c d c c( , , ; ) ( , , ; )σ σ2 2= − − −                                                                                            (8) 
 

The first condition represents price symmetry: for the Brownian motion of form (2), B(t) and -B(t) have the same 
distribution. Whenever B(t) generates the realization (u, d, c), - B(t) generates (u, d, c). The second condition 
represents time symmetry: B(t) and B(1 - t) - B(1) have identical distributions.  Whenever B(t) produces (u, d, c),  
B(1-t) - B(1) produces (u - c, d - c, -c).  By the lemma of Appendix A, then, any decision rule D (u, d, c) may be 
replaced by an alternative decision rule which preserves the invariance properties (7) and (8) without increasing the 
expected (convex) loss associated with the estimator. Therefore, we seek decision rules which satisfy 
 

D u d c D d u c( , , ) ( , , )= − − −                                                                                                         (9) 
and 
 

D u d c D u c d c c( , , ) ( , , )= − − −                                                                                                  (10) 
 

Next, we observe that a scale-invariance property should hold in the volatility parameter space: for any λ > 0, 
 

g u d c g u d c( , , ; ) ( , , ; )σ λ λ λ λ σ2 2 2=                                                                                                    (11) 
 

In consequence of (11), we now restrict our attention to scale-invariant decision rules for which 
 

2( , , ) ( , , ), 0D u d c D u d cλ λ λ λ λ= >                                                                                 (12)   
 

If we now adopt the regularity condition that the decision rules considered must be analytic in a neighborhood of the 
origin, condition (12) implies that the decision rule D (u, d, c) must be quadratic in its arguments.  (Proof of this is 
given in Appendix B.) Thus we have 
 

D u d c a u a d a c a ud a uc a dc( , , ) = + + + + +200
2

020
2

002
2

110 101 011                                              (13) 
 

Scale invariance and analyticity are combined to reduce the search for a method of estimating σ2 from an infinite-
dimensional problem to a six-dimensional one. Applying the symmetry property (9) to equation (13), we have the 
implications a a200 020=  and  101 011a a= .   By virtue of property (10), we have the additional constraint 

2 2 0200 110 101a a a+ + = , hence we have 
 

2 2 2

200 002 200 101 101( , , ) ( ) 2( ) ( )D u d c a u d a c a a ud a c u d= + + − + + +                                          (14) 

 
Insisting that D (u, d, c) be unbiased, that is, E[D (u, d, c)] = σ2, leads to one further reduction. Since9 E[u2] = E[d2] 
= E[c2] = E[c(u+d)] =  σ2 and E[ud] = (1 - 2 log,2)σ2, we may restrict attention further to the two-parameter family 
of decis ion rules D(.) of the form 
 

D u d c a u d a c u d ud a a a ce( , , ) ( ) { ( ) } { ( )log }= − + + − + − + +1
2

2 1 2 2
22 1 4 2                                     (15) 

 
To minimize this quantity, note that, for any random variables X, Y, and Z, the quantity 
V a a E a X a Y Z( , ) [( ) ]1 2 1 2

2≡ + + is minimized by a1 and a2  which satisfy the first-order conditions 

 



E a X a Y Z X E a X a Y Z Y[( ) ] [( ) ]1 2 1 2 0+ + = + + =                                                                         (16) 
 

Solving the above for a1 and a2 , we have 
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and 
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In the problem at hand, 
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Analysis via generating functions (Appendix C) reveals the following fourth moments: 
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where ζ ( ) / .3 1 120213

1
= =

=

∞∑ k
k

is Riemann's zeta function. Substituting the above moments into (17a) and (17b) 

via (18), we find that a1 0 511* .=  and a2 0 019* .= − .  Employing these values in (15) yields the best analytic scale-
invariant estimator: 

  
$ . ( ) . ( ) } .σ 4

2 2 20 511 0 019{ 2 0 383≡ − − + − −u d c u d ud c .                                                           (19) 
 

We find that Eff ( $ )σ 3

2 7.4≅ . The recommended and "more practical" estimator  
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5
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possesses nearly the same efficiency but eliminates the small cross-product terms. 
 



Now suppose that 0 < f < 1, that is, trading is both open and closed in [0, 1].  Then the opening price O1, may 
differ from the previous closing price C0, and so we may form the composite estimator 
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The variance of this estimator is minimized when a = 0.12, and in this case the efficiency is approximately 8.4. 
Thus, there exists an estimator possessing an efficiency factor which is more than eight times better than the 
classical estimator, given only high, low, open, and close prices. 

 
 

VI. Volume Effects 
 
The derivation of all of the high-low estimators of the previous sections depends critically upon the assumption of 
continuously monitored price paths. When the path can only be monitored at discrete transactions, all our statistics 
will be biased. Technically speaking, the knowledge that only a finite number of observations are available should 
lead us to commence a new search for the best estimator; however, we shall defer this task to a later paper. 

 
TABLE 1:   Expected Values of Volatility Estimators (true variance = 1.0) 

  
No.  transactions $σ 0

2  $c 2
 $σ 2

2  $σ 4
2  

5 1.03 0.48 0.55 0.38 
10 1.01 0.67 0.65 0.51 
20 1.00 0.82 0.74 0.64 
50 1.00 0.92 0.82 0.73 

100 1.00 0.97 0.86 0.80 
200 1.00 0.99 0.89 0.85 
500 1.00 1.00 0.92 0.89 

 
 
 

We instead confine our considerations here to determining the extent of the bias in using the estimators already 
described, when only a finite set of observations is available. Simulation studies  were employed to arrive at table 1.10 
Note that the close-to-close estimator $σ 0

2  has only a slight positive bias.11  On the other hand, the exp ected values of 

volatility estimators $ ( )c C O2
1 1

2≡ − , $σ 2
2  and $σ 4

2  are significantly less than 1.0 whenever a finite number of 

transactions take place.  Moreover, there are two distinguishable reasons for the observed biases. The estimator $c 2  

has downward bias because the “effective” time period over which it is estimated, since this is diminished to the 
span between the first and the last transaction, being an open-to-close estimator. The latter two estimators are also 
subject to this effect when trading is closed during some portion of the day. (In the absence of other considerations, 
finite transaction volume will make the opening appear to be later and the closing appear to be earlier. However, 
many exchanges will collect orders during the night for execution at the opening; additionally, some exchanges have 
a "closing rotation" in which firm-offer prices are quoted at the closing. Each of these procedures might tend to 
obscure the effective-time bias.) The second reason affects only the latter high-low estimators, which take on a 
downward bias because the observed highs and lows will be less in absolute magnitude than the actual highs and 
lows. In addition, the high-low estimators are indirectly affected by the effective-time bias since highs and lows tend 
to occur at the first and last transactions. 
 
As a practical procedure, one should divide the corresponding empirical estimators by the numbers in table 1. Since 
the composite estimators are linear combinations of the given estimators, their bias and that of several others may be 
quickly computed therefrom. 
 
Random transaction volume is one source of predictable bias somewhat within the scope of the current model. But 
there are other important sources of bias which can be made predictable only by significant extension of the current 
model. Some of these unpredictable bias sources are the following. (1) To the extent that transactions themselves 
may convey new information, daytime volatilities may be different from nighttime volatilities.  (2) Bid-ask spreads 



usually exist, within which the transactions process may be quite complicated (Garman 1976).  (3) In addition, 
volatilities are though be nonstationary, possibly in a variety of fashions. 
 
 
VII. Conclusions 
 
We have examined a number of estimators of price volatility. Efficiency factors more than eight times better than 
the classical estimators have been demonstrated. These same estimators are also subject to more sources of 
predictable bias, one of the most evident of which is finite transaction volume.  
 
Appendix A 
 
Estimator Invariance Properties 
 
Lemma: Let Θ  be a parameter space. Let X = ( , , , )X X Xn1 2 …  be a vector of (not necessarily independent) 

observations whose joint density fθ ( )X  depends on an unknown parameter θ ∈Θ  to be estimated.  Let 

T:R Rn n→  be a fixed measure-preserving transformation. Suppose that, for all θ ∈Θ  and all X in the support of 

fθ ( )X , 
 

f T fθ θ( ) ( )X X= .                                                                                                               (A1) 
Let D( )X  be any decision rule which estimates θ . Let L D( , ( ))θ X  be any loss function such that L D( , ( ))θ X  is a 

convex function for each fixed θ ∈Θ . Defining T TTj j≡ −1 , where T 0  is the identity operator, let Ak  be an 
averaging operator which maps decision rules into decision rules according to the prescription 

A D
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1

                                                                                            (A2) 

Then, for all θ ∈Θ , 
 

E L A D E L Dkθ θθ θ( , ( ( ))) ( , ( ))X X≤ .                                                                                (A3) 
 

Proof:  [Deleted for brevity. Use the convexity, take expectations.] 
Note:  The relevant transformations used in the text, namely price symmetry and time symmetry in formulas (7), (8), 
both have the property that T I2 ≡ , and clearly these will be measure-preserving. 
 
 
Appendix B 
 
 
Analytic Estimators are Quadratic 
 
Lemma: Estimators D u d c( , , )  of σ 2  which are analytic in the neighborhood of the origin are quadratic in form  
Proof: If D u d c( , , )  is analytic in the neighborhood of the origin, we may write its Taylor series expansion as 
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Next define 
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From the scale invariance property (12), this latter function must be identically zero.  It may also be extended to an 
analytic function in some open neighborhood of the origin. Thus, by uniqueness, all coefficients of powers of λ  in 

(B2) must be identically zero. It follows that a u d cijk
i j k = 0  for i j k+ + ≠ 2 , that is, D is quadratic. 

 
Appendix C 
 
Generating Function of High, Low, and Close12 
 
The expectation of the moments of  u, d, and c is given by 
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where n p q r= + +  and our generating function H is  
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