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1. Introduction

Evolving volatility is a dominant feature observed in most financial time series and a key

parameter used in option pricing and many other financial risk analyses. Although there is now

an extensive literature on the estimation of parametric volatility models (see Engle (1982), Tay-

lor (1986), Bollerslev, Chou and Kroner (1992), Harvey, Ruiz and Shephard (1994), Shephard

(1996) and Barndorff–Nielsen and Shephard (2001) for example) less attention has been paid

to simpler non–parametric alternatives. Exceptions include Aı̈t–Sahalia (1996), Anderson and

Grier (1992), and Andersen, Bollerslev, Diebold and Labys (2001) for example. More closely

related to this paper is the work of Turner and Weigel (1992) who analyse the volatility of

the daily returns of the S&P 500 and Dow Jones indices using the interquartile range as well

as other measures of volatility. However such estimates needs to be rescaled to estimate the

variance of the underlying data since this is the predominant measure of volatility in financial

applications due to its use in standard option pricing and portfolio optimisation methodologies.

In this paper we present preliminary findings on the construction and properties of non–

parametric estimators of time–varying volatility where volatility is assumed to be a measure of

variance. Our focus is on financial data and, in particular, the daily returns of market prices

such as equities, market indices, exchange rates etc, where daily returns are the first differences



of the logarithms of the prices. Thus each daily return measures the continuously compounded

rate of return on the asset, index etc over the day concerned. It is noted that non–parametric

volatility estimators are particularly appropriate for extracting and understanding historical

volatility prior to fitting any more sophisticated parametric model. They also provide robust

benchmarks for testing the forecasting and in–sample performance of competing parametric

procedures.

Our objective is to construct non–parametric volatility estimators that have simple struc-

ture, are cheap to compute, and are tailored to the typically heavy–tailed distributions met in

practice. In particular we seek procedures that are robust to distributional assumptions, resis-

tant to outliers, and have a sound statistical basis with reasonable precision properties. The

estimation procedures that we consider construct local robust scale estimates (not necessarily

estimates of standard deviation) based on finite moving–averages of the squared deviations of

the time series from its local level. The moving–average weights are selected with reference to

a target family of heavy–tailed distributions exemplified by the t–distribution, and the span of

the moving–average is chosen so that the volatility is approximately constant within the local

time window concerned. Finally, a global correction factor is applied to the local scale estimates

to provide estimates of time–varying volatility.

Underpinning this approach are two key assumptions. The first assumes that volatility

generally changes smoothly over time and, in particular, is locally constant over the local time

windows within which estimation takes place. This seems a reasonable assumption for the most

part; without it reliable volatility estimation would be difficult to achieve. It also accords with

the long–memory dependence of squared daily returns and absolute returns observed in practice

(see Ding, Granger and Engle (1993), Granger and Ding (1995), Rydén, Teräsvirta and Åsbrink

(1998) for example). However this framework does not properly account for discontinuous

breaks in volatility which may occur in practice (see Lamoureux and Lastrapes (1990), Hamilton

and Susmel (1994), McConnell and Perez–Quiros (2000) for example) although our methodology

could no doubt be adapted to better identify such changes.

The second key assumption is that the daily returns of financial time series have heavy–

tailed distributions that are better approximated by a t–distribution with low degrees of freedom

than a Gaussian distribution. There are many studies, Fama (1965) being the first, that

support the general heavy–tailed hypothesis which would appear to be a ubiquitous feature

of financial data. A number of candidate distributions have been proposed of which the t–

distribution is a common choice. See, for example, Blattberg and Gonedes (1974), Harvey,

Ruiz and Shephard (1994), Hurst and Platen (1997), Liesenfeld and Jung (2000) and Barndorff–

Nielsen and Shephard (2001) among many others. Typically the degrees of freedom ν of the t–

distribution found in such studies range between 3 and 9. Note, however, that the tν distribution

has infinite moments of order k when k ≥ ν. Thus ν ≥ 3 ensures finite variance and ν ≥ 5

ensures finite kurtosis.



Subject to these assumptions, the global correction factor is computed from the sample

variance of the original data standardised by the local scale estimates. Although the heavy

tailed distributions of the returns make the moving sample variance an unreliable local volatility

estimate, particularly if the moving time window is small, we shall assume that the sample

variance is a reliable estimator of the variance of the underlying heavy–tailed distribution in

large samples of the order of the length of the data. In essence we assume that the extreme

values of the heavy–tailed distribution will appear representatively in large samples where they

will not distort the sample variance. However, in small samples of the order of the moving time

window, such extreme observations will be over–represented when they occur and can severely

distort the sample variance.

With these points in mind we now choose to model a time series of (daily) returns Rt as

Rt = σtεt (1)

where Rt = lnSt − lnSt−1 and St is the underlying time series of prices concerned. The εt

are assumed to be independently and identically distributed with mean zero and unit variance.

The condition E(ε2t ) = 1 serves to identify the volatility σ2
t which is assumed to be a strictly

positive, smoothly–varying function of time so that Rt has mean zero and variance σ2
t . In fact

Rt will almost always have a non–zero mean level that is typically very small in relation to σtεt

since it represents the mean return over just one day. However we shall assume that Rt has

been corrected for such an evolving mean level if appropriate. As mentioned before, the Rt will

typically be heavy–tailed so that the common distribution of the εt will be heavy–tailed also.

In Section 2 we review methods for robust estimation of scale in the case where σt is a

constant and in Section 3 we use this information to construct robust and resistant estimates

of evolving volatility. Section 4 presents a preliminary assessment of these estimators using

simulated data and also applies the estimators to stock price data.

2. Robust scale estimation

An excellent review of robust and resistant scale estimation methods is given in Iglewicz

(1983) who builds on the Monte Carlo studies of Gross (1976) and Lax (1975). In a subsequent

paper, Lax (1985) reported on a more extensive Monte Carlo study on the finite–sample per-

formance of 17 robust scale estimators for heavy–tailed symmetric distributions. The 17 scale

estimators considered had been identified as promising or commonly used from earlier studies.

The general conclusion of the Lax (1985) study was that appropriately tuned A–estimators

of scale were more robust for heavy–tailed symmetric distributions than the other estimators

considered.

Given n independent and identically distributed observations X1, . . . , Xn, the A–estimator



of scale with biweight weight function is given by

s2
A =

k2
A

n− 1

n∑
t=1

(1− u2
t )

4e2
t (2)

where

k−1
A =

1

n

n∑
t=1

(1− u2
t )(1− 5u2

t ), ut =
et
cs0

, et =

 Xt −M (|Xt −M | ≤ cs0)

0 (|Xt −M | > cs0)

and M is an M–estimator of location. Here c is a positive tuning constant that depends on the

choice of auxiliary scale estimate s0 > 0, and s0 is generally taken to be the median absolute

deviation of the Xt from the sample median

MAD = median{|Xt −medianXt|}.

An A–estimator of scale is based on the sample analogue of the asymptotic variance of an

M–estimator of location (see Iglewicz (1983) or Lax (1985) for further details). The estimator

(2) with c = 9 and s0 = MAD performed best in the Lax (1985) Monte Carlo study. Note

that for Gaussian data E(MAD)/0.6745 is an unbiased estimator of the standard deviation so

that, in this case, (2) with s0 = MAD and c = 9 will ignore observations that lie more than 6

standard deviations from the location estimate M . Typically M is the sample median although

other robust estimates of location can be used. In the financial time series context considered

in Section 3 the level of the time series will typically be determined by a robust smoothing

procedure such as loess (see Cleveland, Grosse and Shyu (1992)), but other smoothers based

on M–estimates of location are also possible.

To better identify appropriate values for c in (2) we re–worked the Lax (1985) study for

a selection of scale estimators of interest. Given the significant improvements in speed and

accuracy of modern computing that have taken place since the mid 1980s, a larger scale, more

accurate study was able to be undertaken. The results of this particular study will be reported

elsewhere. However, as before, the A–estimators performed best, but with c = 10 and c = 11

emerging as better choices for c in (2) than the value c = 9 found by Lax (1985). Optimal

estimators were taken as those whose logarithms had the largest triefficiency (see Beaton and

Tukey (1974)). As well as being a symmetrising transformation, the use of logarithms allows

direct comparison between the reliability of scale estimators whose expected values differ. Here

triefficiency is measured as the minimum of the efficiencies obtained in the three cases where the

data follows the Gaussian, one–wild and slash distributions. These three “corner” distributions

have varying degrees of heavy tail behaviour and are meant to encompass most situations met

in practice. In particular, the slash distribution has infinite variance and heavier tails than the

target family of tν distributions (ν ≥ 3) that we have in mind here.

We now develop an alternative estimator to (2) which is more closely tailored to the

t–distribution. Let X1, . . . , Xn denote the n independent and identically distributed random



variables given by

Xt =
σZt√
St

(t = 1, . . . , n)

where the Zt are independent N(0, 1) random variables that are independent of the St, the

St are independent random variables on [0,∞) each with distribution function FS(s), and

E(X2
t ) = σ2. We have in mind the case where St is proportional to a χ2

ν random variable so

that the Xt are scaled tν random variables with ν ≥ 3 to ensure finite variance. However, for the

moment, we pursue the more general case of arbitrary distribution function FS(s) and consider

estimating σ2 using maximum likelihood. Note that, in almost all cases of practical interest,

the maximum likelihood estimator of σ2 will have to be obtained using iterative optimisation

procedures and it is the moving–average equivalent of such procedures that we seek.

Bearing these points in mind we now use the EM algorithm (Dempster, Laird and Rubin

(1977)) to construct an iterative formula for estimating σ2. Ignoring additive terms that are

not functions of the parameter σ2, the log-likelihood of the complete data X = (X1, . . . , Xn),

S = (S1, . . . , Sn) is proportional to

log L̃ = − log σ2 − 1

σ2

1

n

n∑
t=1

StX
2
t .

Maximising E0(log L̃|X) with respect to σ2 yields

σ̂2 =
1

n

n∑
t=1

E0(St|X)X2
t (3)

where the expectation is with respect to the conditional distribution evaluated at σ2
0, a previous

estimate of σ2. It can be shown that

E0(St|X) = Q

(
1
2

(
Xt

σ0

)2
)

(4)

where Q(t) = −d logM(t)/dt and M(t) is the Laplace transform

M(t) =
∫ ∞

0
e−ts
√
sdF (s) (t ≥ 0).

Note that (3) has the same structure as (2) since both involve averaging squared observations

weighted using weights that are a function of an auxiliary or preliminary estimate of σ2. In

this sense both estimators can be regarded as M–estimators of scale.

Now consider the case where the St are χ2
ν/(ν − 2) random variables so that the Xt are

scaled tν random variables with E(X2
t ) = σ2. Then (3) becomes

σ̂2
ν =

ν + 1

ν − 2

1

n

n∑
t=1

(
1 +

X2
t

(ν − 2)σ2
0

)−1

X2
t . (5)



For given ν this estimator will need to be iterated to obtain the maximum likelihood estimator

of σ2. It is the moving-average equivalent of this estimator that we choose to base our volatility

estimation procedure on.

Other possible choices could be considered for the distribution of St that involve censoring

to minimize the impact of outliers, mixed distributions with point mass at zero to account

for sticky prices, and mixture distributions among other candidate distributions chosen to

exemplify the target family of distributions under study. In some circumstances it may also

be possible to infer the underlying distribution of St from procedures where Q(t) has been

specified. These remain topics for further research.

3. Local volatility estimation

We now consider the time series of daily returns Rt (t = 1, . . . , T ) defined by (1) with

heavy–tailed εt and where the Rt have been corrected for evolving level if appropriate. Natural

time series estimators of the evolving volatility σ2
t based on (2), (3) and (5) are the finite moving

averages of span n = 2r + 1 given by

σ̂2
t =

r∑
j=−r

wjqt+jR
2
t+j (6)

where the smoothness weights wj satisfy
∑r
j=−r wj = 1 and the robustness weights

qt = Q

(
1
2

(
Rt

st

)2
)

depend on a prior estimate s2
t of σ2

t . Here the function Q(t) is as defined for (2), (3) or (5).

In practice the estimates will involve iteration so that initial estimates of σ2
t are successively

refined. If (6) is based on (2) then st will be the moving MAD and only two iterations through

the data are required, one to determine st and the other to determine the final estimate of σ2
t .

In the case of (5) one could iterate until approximate convergence using the moving sample

variance as the initial estimate of σ2
t (a limited simulation study shows that a total of 4 iterations

is usually sufficient) or use one iteration with s2
t estimated by (2) yielding a total of 3 iterations.

However these estimators, together with those based on the moving standard deviation

and moving MAD, will typically estimate σ2
t /τ where τ is a positive constant and τ 6= 1. To

correct for this bias we multiply through (6) by τ̂ where

τ̂ =
1

T

T∑
t=1

(
Rt

σ̂t

)2

. (7)

This estimator is just the sample variance of the scale adjusted returns and, although not a

robust or reliable estimator in small samples, it can be expected to provide a reliable estimate



of the variance for very large samples. As noted in Section 1, the extreme values of the heavy–

tailed distribution are assumed to appear representatively in large samples of the order of the

series length T , but will be over–represented when they occur in small samples of the order of

the span n of the moving estimation window.

4. Simulations and data analysis

Using simulated and real data, we now consider the relative performances of the local

volatility estimators based on the standard deviation, MAD, biweight A–estimator, and t–

estimator respectively. We selected ν = 5 for the t–estimator since the t5 distribution has

heaviest tails among the t–distributions with finite variance and kurtosis. In all cases the

iterated t–estimator was initialised by the local sample variance and iterated a further 3 times

to produce a final estimate.

For the simulation study we simulated 270 returns from the scaled tν distribution with

unit variance and with ν = 3, 5, 9 to represent varying degrees of heavy tailed behaviour. The

series length was chosen to roughly represent a calendar year of trading days allowing for end

effects. Our estimators were based on moving windows of span n = 21 with uniform weights

wj = 1/21. The latter were selected since our concern at this stage was with the precision of

the estimators rather than their smoothness. The impact of the smoothness weights wj on the

properties of the estimators, among other issues, remains to be investigated as part of a more

extensive simulation study. The 270 tν returns were then multiplied by the smooth volatility

function σt where

σ2
t = 9esin(πt/125).

The four estimates of σ2
t were calculated and scaled so that the standardised returns had unit

sample variance. They were assessed by their mean absolute error (MAE = 1
N

∑ |σ2
t − σ̂2

t |)
and mean absolute proportionate error (MAPE = 1

N

∑ |σ2
t − σ̂2

t | /σ2
t ) where the latter were

computed over the N = 250 volatility estimates available. These statistics were then averaged

over 200 independent realisations of the time series, for each of the three distributions, and the

four estimates to yield the results in Table 1.

The results are self evident. The iterated t–estimator performed best, even in the cases

where the underlying distribution was not the t5 distribution. As expected, the volatility

estimator based on the moving standard deviation performed reasonably well for ν = 9, but

its performance deteriorated as ν decreased. The biweight A–estimator performed reasonably

well in all cases. It might be expected that the A–estimator would have a comparable or

better performance than the iterated t–estimator for heavy tail data not well–approximated by

a t–distribution. However this has not yet been verified.

Finally we turn to examine the performance of these estimators on actual stock data.

Coca-Cola Amatil Ltd (CCL) is among the largest and most actively traded companies listed



Table 1. The mean absolute error (MAE) and mean absolute proportionate

error (MAPE) of four local volatility estimators estimating a smoothly varying

volatility function over moving windows of span 21. The simulated returns have

scaled tν–distributions with ν = 3, 5, 9.

t3 t5 t9

Estimator MAE MAPE MAE MAPE MAE MAPE

Standard deviation 6.01 0.801 4.45 0.441 3.28 0.338

Median absolute deviation 6.06 0.638 6.05 0.520 5.47 0.479

Biweight A-estimator with c = 10 4.86 0.568 4.04 0.402 3.38 0.344

Iterated t-estimator with ν = 5 4.02 0.539 3.30 0.347 2.83 0.292

on the Australian Stock Exchange. Daily closing price data for this stock, for the 500 trading

days preceeding 11 September 2000, was analysed. A time series plot of the daily return data

features periods of low volatility and periods of high volatility, and a small number of extreme

returns.

Calculation of evolving volatility for CCL using the moving standard deviation produced

volatility estimates which were badly affected not only by the large returns, but also by the

many small returns. The resulting fluctuations in the volatility estimates gave a distribution

of standardised returns that was not well approximated by the Gaussian distribution since it

had a sharp peak and values outside four standard deviations from the mean. Estimating scale

using the A-estimator also resulted in standardised returns that were not well approximated by

the normal distribution. However the distribution of these standardised returns had a smoother

peak (the generally lower volatility estimates had not brought so many returns close to zero),

and a distribution that was reasonably well–approximated by a tν distribution with ν = 5.55.

On this basis, parametric volatility estimation based on the t5 distribution should improve the

quality of the volatility estimates.

A plot against time of the three estimates of evolving volatility based on the standard

deviation, A–estimator and iterated t–estimator showed that the t–estimator was the most

stable. It typically adopted a compromise position between the standard deviation and the A–

estimator, but closer to the A–estimator. The impact of extreme returns was clearly evident on

the standard deviation and the A–estimator often appeared to discount such returns too heavily.

The superior performance of the iterated t–estimator was to be expected given the results of

the simulation study reported in Table 1 and the fact that the distribution of standardised

returns was well–approximated by a t–distribution.



5. Conclusions

This paper considers non–parametric estimation of evolving volatility in the context of

heavy–tailed distributions of returns. A new robust time series estimation procedure based

on finite moving averages and the t–distribution has also been introduced. Our preliminary

findings indicate that local volatility estimation based on the biweight A–estimator with tuning

parameter c = 10 is a reliable estimator in all situations. However local volatility estimation

based on the iterated t–estimator performed best in the many cases where the distribution of

returns is well–approximated by a t–distribution.
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