Measuring Historical Volatility

Louis H. Ederington and Wei Guan

The adjusted mean absolute deviation is proposed as a simple-to-calculate alternative to the historical
standard deviation as a measure of historical volatility and an input to option pricing models. We show
that this measure forecasts future volatility consistently better than the historical standard deviation
across a wide variety of markets. Moreover, it forecasts as well as or better than the GARCH(1,1) model.
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MIn pricing options, anticipated volatility over the life
of the option is the crucial unknown. Estimation of this
parameter and calculation of option prices are
complicated by the fact that volatilities often differ
substantially over time. This is illustrated in Exhibit 1,
where we report standard deviations of returns for the
S&P 500 index, short-term interest rates (Eurodollars),
long-term interest rates (T-bonds), the yen/dollar
exchange rate, and five individual equities for the 7/05/
1967 - 9/10/2003 period divided into five subperiods
approximately seven years in length. As shown there,
volatilities differ substantially over time. For instance,
the volatility of the S&P 500 index over the 1/1/1997-9/
10/2003 subperiod was more than 80% higher than over
the immediately preceding 1/1/1990-12/31/1996
subperiod. For the two interest rate series, volatility in
the most volatile subperiod was more than double that
in the least volatile subperiod. In every market, the null
that volatility is unchanged is rejected at the .001 level.
Moreover, many changes in volatility average out over
seven-year subperiods. If we divide the period into
subperiods shorter than seven years, the differences
are even more dramatic.

The implications for option prices of different
volatility estimations can be dramatic, especially for
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out-of-the-money options. Consider, for instance, the
S&P 500 options market, the most studied and one of
the most actively traded options markets. In this
market, out-of-the money puts are the most actively
traded contracts.! At the time of this writing, the S&P
500 index is approximately 1200, short-term interest
rates are about 4%, and the dividend yield on S&P
500 stocks is about 1.9%. For a six-month put option
with a strike of 1100, the Black-Scholes price calculated
using the average 1990-96 volatility of 11.49% is $5.16.
Using the 1997-2003 average volatility of 20.84%, it is
almost five times as high at $25.38.

Estimation of likely future volatility is therefore a
crucial step in option valuation. Although
sophisticated volatility estimation procedures, such
as GARCH, are popular among finance researchers,
they require econometrics software that is difficult
for the average undergraduate student (or casual
options trader) to master and expensive to obtain, and
so they have not found their way into most derivatives
texts. Instead, most derivatives texts instruct students
to use historical volatility, specifically, the historical
standard deviation, over some recent period as the
normal volatility input. Of course, implied volatility
provides an alternative (and theoretically better)
estimate of future volatility. However, for option

'This is apparently because money managers use out-of-the-
money puts to hedge against a large decline in the value of
their portfolios (Ederington and Guan, 2002).
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Exhibit 1. Volatility of Daily Log Returns by Asset and Subperiod

The annualized standard deviation of log returns is reported for five subperiods from 10/24/67 through 9/10/03 for nine securities
or series. Figures for the 10/24/67 to 12/31/75 period are not available for Eurodollar rate and yen/dollar exchange rate.

Subperiod
Market 10/24/67 - 12/31/75  1/1/76 - 12/31/82  1/1/83 - 12/31/89  1/1/90 - 12/31/96  1/1/97 - 9/10/03
S&P 500 13.86% 13.43% 17.96% 11.49% 20.84%
T-Bonds 9.43% 14.36% 13.24% 13.41% 19.36%
Eurodollars NA 37.39% 18.12% 17.56% 17.93%
Yen/Dollar NA 10.17% 9.63% 10.08% 11.91%
Boeing 40.53% 33.84% 27.50% 25.03% 39.22%
GM 22.61% 23.03% 25.36% 29.34% 34.96%
Int. Paper 28.18% 25.23% 29.94% 22.70% 37.90%
McDonalds 44.38% 23.66% 25.61% 23.52% 31.28%
Merck 24.18% 22.08% 22.68% 24.18% 32.42%

pricing purposes, this measure suffers from an obvious
chicken and egg problem in that to calculate implied
volatility requires the option price and to calculate
the appropriate option price requires a volatility
estimate. Hence, the historical standard deviation
of log returns is the volatility estimator touted in
most textbooks and is most commonly reported on
options websites.

The historical standard deviation has several well-
known shortcomings as an estimator of future volatility.
One is that only the information in past returns is
considered, ignoring other possible information sets,
such as knowledge of future scheduled events that
might move the markets, for example, a quarterly
earnings report or an upcoming meeting of the Fed’s
Open Market Committee.? Another well-known
potential problem is that all past squared return
deviations back to an arbitrary date are weighted
equally in calculating the standard deviation and all
observations before that date are ignored (Engle, 2004,
and Poon and Granger, 2003). Evidence on volatility
clustering and persistence indicates that more recent
observations contain more information regarding
volatility in the immediate future than do older
observations. Accordingly, more sophisticated models,
such as GARCH and the exponentially weighted moving
average model used by Riskmetrics, employ weighting

See, for instance, Ederington and Lee (1993, 2001). For an
excellent review of the issues in volatility forecasting, see
Poon and Granger (2003).

schemes in which the most recent squared return
deviations receive the most weight, and the weights
gradually decline as the observations recede in time.’
However, these procedures are both too complicated
and too costly for the average student.

We see another potential drawback to the historical
standard deviation. Because the historical standard
deviation and variance are functions of squared return
deviations, they could be unduly sensitive to outliers.
In other words, if the period used to calculate the
historical standard deviation contains a single highly
volatile day, the standard deviation tends to be high
and could overestimate actual volatility over the life
of the option. We show that this is in fact the case that
historical volatilities calculated over periods with an
extreme observation tend to substantially overestimate
actual volatility, implying substantial overestimation
of an option’s value.

SFor a nice review of the highlights of this literature, see
Robert Engle’s Nobel prize acceptance speech (Engle, 2004).
Although the GARCH weighting scheme, in which the most
recent squared return deviation receives the greatest weight
and the weights decline exponentially, is theoretically more
appealing than the historical standard deviation weighting
scheme, in which all observations are weighted equally to an
arbitrary cutoff point, evidence is mixed on whether GARCH
actually forecasts better. In a comprehensive review of 39
studies comparing the historical standard deviation (or a related
measure) and GARCH, Poon and Granger (2003) report that
17 studies find that GARCH forecasts better and 22 studies
find that the historical standard deviation (or a related measure)
forecasts better.
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One way to avoid the undue impact of extreme
observations is to use a longer period to measure the
historical standard deviation. For instance, one might
use returns over the last year instead of over the last
month.* The problem with this approach is that it may
dilute the information in recent volatility. Volatility
tends to cluster. Specifically, high (low) volatility one
week, or month, is often followed by high (low)
volatility the succeeding week or month. Measuring
historical volatility over a long period smoothes out
the clusters and dilutes much of the information in
recent volatility about likely future volatility.

We propose an alternative that is less sensitive to
extreme observations while keeping the sample period
short enough to reap the benefits of volatility
clustering. Our suggestion is to measure the historical
volatility of absolute, instead of squared, return
observations and to use this measure to forecast
future volatility. Specifically, we propose using the
historical mean absolute return deviation instead of
the historical standard deviation to forecast future
volatility. Relatively, extreme observations are less
extreme when measured in absolute rather than squared
terms. Moreover, the mean absolute return deviation
is easily calculated using rudimentary statistical
software such as Excel.

A possible drawback of the mean absolute deviation
is that it is distribution specific. That is, unlike the
sample standard deviation, the relation between the
mean absolute deviation and the population standard
deviation differs among normal, beta, gamma, and other
distributions. However, because the primary use of
historical volatility is as an input into the Black-Scholes
formula, which assumes log returns are normally
distributed, basing the historical volatility estimate on
the normal distribution is a natural choice and imposes
no additional assumption in this application. We refer
to the mean absolute return deviation with the
adjustment factor suggested by the normal distribution
as the “adjusted mean absolute deviation.” We find
that the volatility estimate based on the mean absolute
deviation and on the normality assumption is fairly
robust; that is, it generally forecasts actual volatility
better than does the standard deviation even in
markets where returns differ from normality.

“An alternative proposed by Andersen and Bollerslev (1998),
among others, which gives less weight to extreme observations
without lengthening the data period, is to switch from daily to
intraday data. For instance, if the trading day is six hours,
switching from one month of daily return observations to one
month of hourly return observations increases the number of
observations six times and cuts the weight on any one
observation to one-sixth the weight on daily observations.
However, intraday data are not readily available to students
and casual traders, are costly, and are more difficult to handle.
In any case, to our knowledge, no derivatives text recommends
this approach.

In this article we compare the ability of the historical
mean absolute return deviation and of the historical
standard deviation to forecast future volatility
(measured as the standard deviation of ex post log
returns) across a wide variety of markets, including
the stock market, long- and short-term interest rates,
foreign exchange rates, and individual equities. Except
for the Eurodollar and yen markets at long horizons,
the adjusted mean absolute deviation forecasts future
volatility better than does the historical standard
deviation in most markets at almost all horizons. It is
not surprising that the major exception, Eurodollars, is
the market furthest from normality.

We also compare volatility forecasts generated by
the historical mean absolute deviation with those
generated by a GARCH(1,1) model. Conclusions on
their relative forecast ability partially depend on how
one measures forecast accuracy. By one of our two
criteria, the mean absolute deviation dominates; by
the other criterion, GARCH forecasts slightly better in
most markets. Certainly, our results do not justify the
extra time, effort, and cost involved in purchasing and
mastering GARCH(1,1) software. It appears that an
undergraduate armed with an Excel spreadsheet can
forecast volatility as well as or better than an
econometrician with more sophisticated software.

l. Measuring and Forecasting Volatility

Let R = In(P/P ) represent daily returns on a
financial asset.’ The historical standard deviation over
the last n days is measured as:

n-1
STD(n), = /252 % D
j=0

where r.; = Ry;- 4, the return deviation, and lL is the
expected return. Often [ is replaced by the sample mean
and accordingly the r* are divided by n-1, rather than
n. The latter procedure implicitly assumes that the
expected return over the coming period equals the mean
return in the n-day period used to estimate STD(n).
Given the low autocorrelation in returns, there is no
justification for such an assumption, and Figlewski
(1997) shows that better forecasts are normally
obtained by setting (L = 0. In our calculations, we set [
equal to the average daily return over the last five
years.® Because volatilities are normally quoted in

)

°In the case of dividend-paying stocks, the numerator is changed
to P+D,, where D, denotes any dividends paid from t-1 to t.

°Our results are not sensitive to this choice. Because the average daily
return measured over long periods is small, it makes little difference
whether L is set equal to the mean over the last five years, the entire
period, or zero. Moreover, the results are approximately the same if
we use the sample mean and divide by n-1.
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annualized terms, the sum of the squared daily return
deviations is multiplied by 252, the approximate number
of trading days in a year.

As seen in Equation 1, this volatility estimator
assigns each squared lagged return deviation, rzl_j ,
after time t-n a weight of 1/n, and observations before
t-n receive a weight of 0. An issue in applying this
procedure is choosing the cutoff date n. Although
setting the length of the period used to calculate
historical volatility n equal to the length of the forecast
period s is a common convention, Figlewski (1997)
finds that forecast errors are generally lower if the
historical variance is calculated over a longer period.
Accordingly, we consider a variety of sample period
lengths and designate the length of the sample on
which STD is based with (n). For example, STD(20)
indicates the annualized standard deviation of log
returns over the last 20 trading days.

Our alternative measure of historical volatility is the
adjusted mean absolute return deviation over the same
n days. The (unadjusted) mean absolute return
deviation is:

n-1

MAD(n)l:; > el

j=0

)

However, in this unadjusted form, MAD(n) is a
biased estimator of the population standard deviation.
Whereas STD converges to G as sample size increases,’
MAD converges to 6/k where k depends on the
distribution. If the distribution is normal, k = /7 /2
(Stuart and Ord, 1998). If the data follow another
distribution, k takes a different value. Because most
option pricing models (e.g., Black-Scholes) assume
normality, we maintain this assumption and calculate
the adjusted mean absolute deviation as:

f2527z RS
AMAD(n), = — >yl
2 n 3

This yields an unbiased estimator of ¢ if the r_are
normally distributed. Like STD(n), AMAD(n) is
annualized by multiplying by the square root of 252.

In the early part of the 20th century there was debate
among statisticians about the relative merits of STD and
MAD as measures of volatility, but use of the sample
standard deviation dominated because it is a consistent
estimator of ¢ regardless of the data distribution and is
more efficient for normal distributions. Nonetheless, it is
argued by Staudte and Sheather (1990) and Huber (1996),
among others, that MAD is more robust; that is, it yields

3)

"Although the sample variance is an unbiased estimator of o2,
the sample standard deviation is a biased estimator of ¢ in small
samples. However, it is asymptotically unbiased and consistent.

JOURNAL OF APPLIED FINANCE — SPRING/SUMMER 2006

better estimates of the population standard deviation if
the data are contaminated.

In this article, STD(n) and AMAD(n) are compared
in terms of their ability to forecast actual volatility
over various future horizons, s, corresponding to likely
option times to expiration. We (like all other studies in
this area) measure this realized volatility as the standard
deviation of daily log returns from t to t+s. Specifically,

RLZ(s), = ’ 252 Zi:%i 4)

Note that STD(n) and AMAD(n) are both evaluated
using the same measure of ex post volatility, the ex
post standard deviation of returns, RLZ(s), the
measure used in virtually all previous studies of
forecasting ability.

We compare the ability of STD(n) and AMAD(n) to
forecast RLZ(s) using the two most common measures
of forecast accuracy. The first is the root mean squared
forecast error:

RMSFE =[ (1/T) i(RLZ(s)l -Fm) )1 (5)

where F(n), designates the volatility forecast: STD(n),
or AMAD(n),. The second is the mean absolute
forecast error:

MAFE = (1/T) i\RLZ(s)l - F(n)| (6)

Our main interest here is in which of these two simple
volatility estimators, STD(n) and AMAD(n), forecasts
realized volatility better. Both of these estimators are
easily explained to and calculated by undergraduates.
However, we are also interested in how AMAD(n) and
STD(n) compare with the more sophisticated ARCH-
GARCH models proposed by academic researchers.
By far the most popular of these ARCH-GARCH models
is the GARCH(1,1) model:

ver = a0t airi T By, (7)
where v represents the (unobserved) conditional
variance at time t. Consequently, we also calculate

how well this model forecasts actual volatility using
RMSFE and MAFE.?

Il. Data and Procedures

We compare the volatility forecasting ability of these
three models for four financial assets with highly active

8The model in Equation 7 yields a forecast variance for the
next day, t+1. The forecast variance over the next s days is
obtained by successive forward substitution following the
procedure outlined in Ederington and Guan (2005).
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options markets: the S&P 500 index, the 10-year
Treasury bond rate, the 3-month Eurodollar rate, and
the yen/dollar exchange rate. We also collect data for
five equities chosen from those in the Dow Jones index:
Boeing, GM, International Paper, McDonald’s, and
Merck. Daily return data for S&P 500 index and four of
the five equities were obtained from the Center for
Research in Security Prices (CRSP) for 7/3/62 to 12/31/
02 and for McDonalds from 7/6/66 to 12/31/02. Daily
interest rate and exchange rate data were obtained from
Federal Reserve Board files for: 1/3/62-12/31/03 for the
10-year bond rate, and 1/5/71-12/31/03 for Eurodollars
and the yen/dollar exchange rate.

Descriptive statistics for daily log returns are
reported in Exhibit 2, where the mean and standard
deviation are standardized for ease in interpretation.
Skewness varies and is slight for all returns except
those on the S&P 500 index. All returns, except those
for Merck, exhibit excess kurtosis, which is most
extreme for the S&P 500 index. Because the AMAD
measure provides a consistent estimate of the
population standard deviation only if the underlying
distribution is normal, the Kolmogorov-Smirnov D
statistic (hereafter, K-S D) test for normality shown in
the last column is of particular interest. In all nine
markets, the normality null is rejected at the .01 level.
However, the K-S D is considerably higher for
Eurodollar returns than for any of the other log return
series, indicating a more serious deviation from
normality in that market. This is surprising because
both skewness and kurtosis are more serious for the
S&P 500 index, suggesting that skewness and kurtosis
do not completely account for deviations from
normality. Given that the normality null is rejected in
every market, it will be interesting to see how well
AMAD(n) predicts.

Using the three procedures STD(n), AMAD(n), and
GARCH, we forecast volatility over horizons, s, of 10,
20, 40, and 80 market days, or approximately two weeks,
one month, two months, and four months. Because
the best past period, n, for calculation of the STD(n)
and AMAD(n) is unclear, they are calculated
separately over historical periods, n, of 10, 20, 40, and
80 market days, and each is then used to forecast
volatility over the four s horizons. The GARCH model
is estimated using 1,260 daily return observations, or
approximately five years of daily data. Consequently,
our estimation periods for RLZ begin approximately five
years after the beginning dates for our data sets reported
previously, for example, 10/24/67 for the S&P 500 index
and four of the five equities, and 12/3/71 for McDonald’s.
They end 80 trading days before the end of the data
sets, for example, 9/6/02 for the S&P 500 index and the
equities, and 9/10/03 for the interest and exchange rate
series. To limit the computational burden, the GARCH

model is re-estimated every 40 days.

lll. The Historical Standard Deviation as
a Forecast of Future Volatility

Before comparing the volatility forecasting ability
of the three models, consider the hypothesized
deficiency of the historical standard deviation. We posit
that because it is calculated from squared surprise
returns, the historical standard deviation is especially
sensitive to outliers. If the period used to calculate
the historical standard deviation contains a single
highly volatile day, we hypothesize that the historical
standard deviation will be high and will overestimate
actual future volatility over the life of the option. To
test whether this is the case, we consider all 20-day
periods with at least one observation whose absolute
return deviation is in the top 1%. For instance, for the
S&P 500 index, this consists of all 20-day periods with
at least one absolute return deviation greater than
2.92%. If there were no overlap, 20% of our 20-day
periods would contain one of these extreme return
observations, but because of volatility clustering,
many contain more than one. Consequently, the actual
percentage ranges from 10.34% for McDonald’s to
15.41% for Boeing.

As reported in Exhibit 3, the historical standard
deviation is indeed much higher when measured over
20-day periods with one or more extreme observations.
The ratio of the average standard deviation over
periods with an extreme observation to that over
periods without one of these observations ranges from
1.717 for Merck to 2.535 for Eurodollars.

As the theory of volatility persistence predicts,
volatility is indeed higher than normal for periods after
one of these extreme observations. However, it is
substantially and considerably less than the historical
standard deviation predicts. We calculate the
percentage mean volatility overprediction as (M_STD
-M _RLZ)/M RLZ,where M_STD is the mean historical
standard deviation over past 20-day periods with an
extreme observation and M_RLZ is the mean realized
volatility over the subsequent 20-day periods. In Exhibit
3, we report both this mean overprediction and t-
statistics of tests for the null that it equals zero. The
mean overprediction ranges from 18.3% for Merck to
29.9% for Eurodollars, and it averages 25.9% across
our nine markets. In every market, the null that the
historical standard deviation does not overpredict
actual volatility following one of these extreme
observations is rejected at the .0001 level. When the
historical period does not contain an extreme
observation, the historical standard deviation slightly
underestimates subsequent volatility.
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Exhibit 2. Descriptive Statistics

Statistics are reported for annualized daily log returns for the following periods: S&P 500 and the five individual equities:
10/24/67-9/06/02 (McDonalds starts on 12/3/71), T-bonds: 2/20/67-9/10/03, Eurodollars and the yen/dollar exchange rate:
2/20/76-9/10/03.

Standard Kolmogorov-
Mean Deviation Skewness Kurtosis Smirnov D
S&P 500 0.06438 0.1560 -1.5263 37.949 0.0594
T-Bonds -0.00236 0.1404 0.1261 5.011 0.0803
Eurodollars -0.05706 0.2425 -0.3945 8.434 0.2191
Yen/Dollar -0.03317 0.1047 -0.5084 4.551 0.0734
Boeing 0.10097 0.3379 0.1404 5.211 0.0561
GM 0.06468 0.2698 -0.1750 7.235 0.0475
Int. Paper 0.08518 0.2883 -0.4048 12.991 0.0462
McDonalds 0.11301 0.2905 -0.3224 7.953 0.0510
Merck 0.13056 0.2504 -0.0405 3.373 0.0451

Exhibit 3. Bias in the Forecasting Ability of the Historical Standard Deviation Following Periods
with Extreme Returns

The ability of the historical standard deviation of returns calculated over the previous 20 trading days to forecast the standard
deviation over the subsequent 20-day period is analyzed when the historical period contains at least one absolute return deviation
in the top 1%. The percentage of historical periods with at least one extreme observation is reported in column 2, the ratio of the
mean standard deviation for these periods to the mean for periods without an extreme observation is reported in column 3, the
mean percentage prediction error for the subsequent 20-day period is reported in column 4, and t-statistics for tests of the null
hypothesis that the mean prediction error is zero are reported in column 5.

Percentage of 20-Day Ratio of STD for t-value for Test of

Periods with at Least  Periods with Extreme Mean Percentage Null That the Mean

One Extreme Observations to Overestimation of Overprediction is
Observation Those Without Subsequent Volatility Zero
S&P 500 12.51% 2.143 25.77% 15.17
T-Bonds 12.11% 2.187 23.26% 21.49
Eurodollars 12.82% 2.535 29.91% 22.18
Yen/Dollar 13.87% 1.919 28.56% 23.81
Boeing 15.41% 1.840 26.98% 24.71
GM 13.97% 1.859 26.01% 21.51
Int. Paper 14.38% 1.839 26.52% 22.76
McDonalds 10.34% 2.170 18.28% 11.86
Merck 14.64% 1.717 27.66% 29.34

Average 2.023 25.88%
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IV. Results: Forecast Accuracy

Although the historical standard deviation, STD,
overpredicts volatility when the calculation period
contains an extreme observation, it might still predict
better than AMAD and GARCH. After all, GARCH is
also calculated from squared return deviations. Hence,
we next compare the forecasting ability of the three
models following the procedures outlined in Section II.

Calculations of how accurately the three measures
forecast actual future volatility (RLZ) according to the
RMSFE (Equation 5) and the MAFE (Equation 6) criteria
are reported in Exhibit 4 for a 20-day forecast horizon.
RMSFE statistics are reported in Panel A and MAFE in
Panel B. STD(n) and AMAD(n) are calculated using
sample period lengths n of 10, 20, 40, and 80 trading
days. For each n, the measure, STD(n) or AMAD(n),
with the lowest RMSFE and MAFE is shown in bold.
Also, in each market, the cell of the model with the
lowest RMSFE or MAFE (among all nine) is shaded.

As shown by cells in bold in Panel A, when forecast
accuracy is evaluated in terms of the RMSFE in all
nine markets for all four n (a total of 36 pairwise
comparisons), the historical adjusted mean absolute
deviation anticipates actual future volatility better than
does the historical standard deviation. Moreover, in
14 of the 36 pair-wise comparisons, the forecasting
ability of AMAD is significantly better than that of
STD at the .05 level according to Diebold and Mariano’s
(1995) S1 statistic.

When forecast ability is evaluated using the MAFE
in Panel B, the same results generally hold. However,
for the 20-day forecast horizon, STD(10) has a lower
MAFE than AMAD(10) for Eurodollars and GM. We
regard this as of little consequence, as the results in
Exhibit 4 indicate forecast accuracy is much better if a
period longer than 10 days is used to forecast volatility
over the subsequent 20 days. For longer data periods,
AMAD has a consistently lower MAFE.

As shown by the shaded cells, the AMAD model
forecasts better than the GARCH model in five of the
nine markets according to the RMSFE criterion and in
eight of nine markets according to the MAFE criterion.
This surprising finding implies that by using the
adjusted mean absolute deviation approach, an
undergraduate student armed only with an Excel
spreadsheet can forecast volatility at least as well as
an econometrician with sophisticated software. This
comparison is not quite fair to GARCH because in
Exhibit 4 we compare the lowest of four AMAD models
with GARCH. But if we restrict attention to AMAD(40)
or AMAD(80), they still outperform GARCH more than
half the time according to the MAFE criterion and break
roughly even according to RMSFE. Of course, because
it is dominated by AMAD, STD fares worse against

GARCH. In most markets, GARCH forecasts better
than the historical standard deviation by both criteria.

As shown in Exhibit 4, forecast accuracy is best
when STD(n) and AMAD(n) are measured over 40 or
80 trading days instead of 10 or 20. This parallels
Figlewski’s (1997) finding that the historical standard
deviation is best measured over a period longer than
the forecast horizon. Therefore, to conserve space, in
Exhibit 5, we report results using STDs and AMADs
calculated over the past 40 days for the 10-day forecast
horizon and over the last 80 days for the 40- and 80-
day forecast horizons. These choices do not materially
affect the comparison of STD and AMAD, and full
results for all four calculation periods are available
from the authors on request.

As shown by cells in bold in Panel A, when forecast
accuracy is evaluated in terms of the RMSFE criterion,
the historical adjusted mean absolute deviation
anticipates actual future volatility better than does the
historical standard deviation in all markets except for
Eurodollars and yen at the 40- and 80-day horizons. At
the 10-day horizon, the RMSFE of AMAD is
significantly lower than that of STD in most markets,
but the differences are not significant over longer
horizons. Comparing AMAD with GARCH, in 17 of the
27 pair-wise comparisons in Exhibit 5, the RMSFE of
GARCH is lower than that of AMAD.

As shown in Panel B, AMAD dominates both STD
and GARCH according to the MAFE criterion. The
MAFE of AMAD is lower than that of STD for all markets
at all horizons except for Eurodollars and yen at the 80-
day horizon. The MAFE of AMAD is significantly lower
than that of STD at the .05 level in 15 of the 27 pair-wise
comparisons in Panel B. In 19 of the 27 pairs, the MAFE
of AMAD is lower than that of GARCH.

As explained in Section II, the AMAD measure is
based on the assumption that log returns are normally
distributed. As seen in Exhibit 2, there is evidence of
non-normality for most of our series. Despite this, we
find that AMAD forecasts better than STD; therefore,
it seems to be robust to at least small deviations from
normality. However, there is reason for caution.
According to the K-S D statistic, the Eurodollar market
is the furthest from normality. Along with the yen/dollar
exchange rate, this is one of two markets where AMAD
forecasts future volatility relatively poorly.
Consequently, caution should be exercised when
applying this technique to markets that differ
significantly from normality. Users may want to test
its forecasting ability first.

V. Conclusions

We propose the adjusted mean absolute return
deviation as an alternative to the widely used historical
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Exhibit 4. Volatility Forecast Accuracy for 20-Trading-Day Horizon

Root mean squared forecast errors (RMSFE) and mean absolute forecast errors (MAFE) are reported when the procedures listed in
column 1 are used to forecast the standard deviation of returns over the next 20 trading days. STD(n) denotes the standard deviation
calculated over the last n trading days and AMAD(n) denotes the adjusted mean absolute return deviation over the last n days. For each
n, the STD(n) or AMAD(n) with the lowest RMSFE or MAFE is shown in bold. * Indicates that the RMSFE or MAFE of AMAD is
significantly lower than that of STD at the .05 level according to Diebold and Mariano’s (1995) S1 statistic. In each market, the cell of

the model with the lowest RMSFE or MAFE is shaded.

Markets
Forecasting 10-Year  90-Day Int’l
Model S&P 500 T-Bond Eurodollar Yen/Dollar Boeing GM Paper McDonalds Merck
Panel A. Root Mean Squared Forecast Errors (RMSFE)
STD(10) 007247 005371  0.11795 004379  0.14263 0.11054 0.11977  0.11630  0.09517
AMAD(10) 0.06910  0.05279  0.11419  0.04234*  0.13631* 0.10890 0.11327  0.11399*  0.09380
STD(20) 0.06898  0.04880  0.10855 003930  0.12464 0.10138  0.10930  0.10286  0.08405
AMAD(20) 0.06375 0.04738*  0.10415%  0.03775* 0.11674* 0.09733  0.10260  0.09898*  0.08206*
STD(@0) 006711 0.04713  0.10101 003731  0.11403  0.09345 0.10076  0.09752  0.07894
AMAD(40) 006184 | 0.04582¢  0.09797 003625  0.10763* 0.08931 0.0949%  0.09452% 007712+
STD(80) 006827 0.04747  0.09829 003590  0.11015 0.09054 0.09677  0.09970  0.07773
AMAD(80) 0.06366  0.04661 | 009793  0.03553  0.10622% 0.08759 | 009101 0.09891  0.07625
GARCH 006196 [[0.04502 009932 003675  0.10667 [[0.08642 | 0.09543 [[10.09277 007335
Panel B. Mean Absolute Forecast Errors (MAFE)

STD(10) 003948  0.03904  0.08016 003176  0.10003 0.07454 0.08170  0.07786  0.07097
AMAD(10) 0.03901 0.03870  0.08111  0.03095% 0.09825* 0.07504 0.08039  0.07768  0.07088
STD(20) 003680 0.03541 007479 002847  0.08803 0.06714 007332  0.06656  0.06296
AMAD(20) 0.03524*  0.03448*  0.07366  0.02714*  0.08442% 0.06608 0.07071*  0.06483*  0.06185
STD(40) 003687 003433 007197 002675 008142 006171 0.06646  0.06289  0.05881
AMAD(40) [0.03490% 0.03287¢ 0.06773*  0.02533% 0.07729% 0.05972* 0.06363* | 0.06073% | 0.05726*
STD(80) 003850 0.03511  0.07108 002641 008020 0.05937 0.06227  0.06331  0.05639
AMAD(80) 0.03579* 0.03349+ [ 0.06728  0.02516* 0.07632% 0.05678* 0.05877*| 0.06164  0.05493*
GARCH 003510 003331 007509  0.02767  0.08146 005755 006383  0.06167 |[0.05467

standard deviation as a measure of historical volatility.
Like the historical standard deviation, the adjusted
mean absolute deviation estimator is easy for students
to calculate with standard spreadsheet software. Yet,
it forecasts actual future volatility better across a wide
variety of markets and forecast horizons, enabling
students to better price options. The inability of the
historical standard deviation to forecast future
volatility very well is apparently at least partially
because, as it is a function of squared return deviations,

a single outlier produces a big jump in the historical
standard deviation, causing it to overestimate
subsequent volatility. The adjusted mean absolute
deviation model is less sensitive to such outliers
because it is based on absolute, rather than squared,
return deviations.

It may be surprising that this simple volatility
estimator compares favorably with the more
sophisticated GARCH(1,1) model. By one forecast
accuracy criterion, it forecasts about as well as the

GARCH(1,1) model and better by the other criterion.
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Exhibit 5. Volatility Forecast Accuracy for Trading Day Horizons of 10, 40, and 80 days

Root mean squared forecast errors (RMSFE) and mean absolute forecast errors (MAFE) are reported when the procedures listed in
column 1 are used to forecast the standard deviation of returns. STD denotes the historical standard deviation and AMAD denotes the
adjusted mean absolute return deviation. Forty trading days are used to calculate STD and AMAD for the 10-day forecast horizon, and
80 days are used for the 40- and 80-day horizons. For each horizon, the lowest RMSFE or MAFE of the three models is shaded, and the
lower of STD and AMAD is shown in bold. * Indicates that RMSFE or MAFE of AMAD is significantly lower than that of STD at the

.05 level according to Diebold and Mariano’s (1995) S1 statistic.

Markets
Forecasting S&P  10-Year 90-Day Int’l
Model 500 T-Bond Eurodollar Yen/Dollar Boeing GM Paper McDonalds Merck
Panel A. Root Mean Squared Forecast Errors (RMSFE)
10-Day Horizon: STD  0.07055  0.05244  0.11238 0.04233  0.13321  0.10382  0.11368 0.10923 0.09056
AMAD 0.06577 0.05113*  0.10800*  0.04113* 0.12687* 0.10011 0.10849  0.10658*  0.08847*
GARCH 0.06535  0.05057  0.11140 0.04230  0.12762 = 0.09770  0.10776 0.10595 0.08665
40-Day Horizon: STD 0.06657  0.04441 0.08858 0.03221  0.09725  0.08340  0.08699 0.09539 0.07077
AMAD 0.06135  0.04372  0.09018 0.03233  0.09400 0.08041 ~ 0.08037 0.09435 0.06916
GARCH 0.06060 0.04214  0.09021 0.03423 ~ 0.09237 0.07848  0.08647 0.08643 0.06465
80-Day Horizon: STD  0.06568  0.04331 0.08302 0.02951  0.09027 0.08016  0.08199 0.09396 0.06847
AMAD 0.05962 0.04287  0.08607 0.03022  0.08724  0.07689 = 0.07395 0.09209 0.06644
GARCH 0.06033 = 0.04130  0.08304 0.03195 ~ 0.08338 0.07339  0.08354 0.08580 0.05911
Panel B. Mean Absolute Forecast Errors (MAFE)
10-Day Horizon: STD  0.03944  0.03808  0.07925 0.03059  0.09453  0.07023  0.07733 0.07297 0.06724
AMAD 0.03745* 0.03646* 0.07313*  0.02898*  0.08980* 0.06816* 0.07482* = 0.07056*  0.06500*
GARCH 0.03773  0.03700  0.08169 0.03166  0.09523 = 0.06629  0.07461 0.07208 0.06492
40-Day Horizon: STD 0.03814  0.03338  0.06606 0.02390  0.07180  0.05476  0.05527 0.06111 0.05094
AMAD 0.03539* 0.03176*  0.06414 0.02345  0.06892 0.05237 0.05129*  0.05963  0.04940*
GARCH 0.03578  0.03179  0.07161 0.02579  0.07272 = 0.05224 0.05754 0.05921 0.04802
80-Day Horizon: STD 0.03874  0.03333 = 0.06296 0.02235  0.06927  0.05368  0.05318 0.06153 0.04929
AMAD 0.03595% 0.03228  0.06444 0.02258  0.06642 0.05128  0.04902*  0.05994 0.04801
GARCH 0.03676  0.03233 0.06718 0.02474  0.06687 = 0.05123  0.05682 0.06083 0.04377
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