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INDICATORS

Smoothing Techniques For
More Accurate Signals

More sophisticated smoothing techniques can be used t&We use moving averages (low-pass filters) in technical

determine market trend. Better trend recognition can leaddaalysis to remove the random noise from a time series, to
more accurate trading signals. Here’s how. discern the underlying trend or to determine prices at which
we will take action. A perfect moving average:

by Tim Tillson

= ] fter studying his first stock chart, 1 Would be smooth, not sensitive to random noise in|the
—1| the novice technician is most underlying time series. That is, its derivative would hot
likely to learn next about moving spuriously alternate between positive and negative
averages. This is a reasonable  values.
| progression. First, moving aver- 2 Would not lag behind the time series from which it is
ages are easy to understand. The computed. Lag, of course, produces late buy or |sell
simple moving average is just the signals that kill profits.
average of agiven number, which

) ; _| we will refer to asy, of previous  The only way a perfect moving average could be computed
L, 4 closing prices, recalculated eachs to have knowledge of the future, and if we tizat, we
day at the close. And second, technicians use moving aweould buy one lottery ticket a week rather than trade! That
ages because the moving average offers a smoother visisade, we can stillimprove on conventional simple, weighted,
image of the market trend. In effect, the moving average exponential moving averages.
removes the noise around the trend.

This concept of eliminating noise from the trend is similaf\y/o BENCHMARKS

to what engineers strive for in their application of digitg}e || examine two benchmark moving averages based on

filters. As R.W. Hamming observed: linear regression analysis. In both cases, a linear regression
e , _._line of lengthn is fitted to price data. The first benchmark

Digital filtering includes the process of smoothing, predictin oving average (MA) is calledis, which stands fointe-

differentiating, integrating, separation of signals, and removal 0 | of li : lonén thi . th
noise from a signal. Thus many people who do such things g{@' oflinéar regression slopen this moving average, the

actually using digital filters without realizing that they are; bein§lOP€ Of a linear regression line is simply integrated asit is
unacquainted with the theory, they neither understand what tH&{ed in @ moving window of length across the datdahe
have done nor the possibilities of what they might have dondlerivative of LRsis the linear regression slopersis not the
same as a simple moving averageA$of lengthn, which is
This quote applies to the vast majority of indicators iactually the midpoint of the linear regression line as it maves
technical analysis. Moving averages, be they simple, weightadross the data.
or exponential, arlow-pass filterslow-frequency compo-  We can measure the lag of moving averages with respect
nents in the signal pass through with little attenuation tr a linear trend by computing how they behave when| the
reduction, while high frequencies are severely reduced. @wutis a line with unit slope. Both SMA(n) and ILRS(n) hgve
cillator-type indicators, such as moving average convéag of n/2, butilrRs is much smoother tharv&.
gence/divergence (McD), momentum and relative strength Our second benchmark is thkad point moving average
index, are another type of digital filter referred to as (&pPmA). It is the endpoint of the linear regression line| of
differentiator lengthnasiitis fitted across the dateNm hugs the data more
Early in the steps of calculating any of these indicators, tblesely than a simple or exponential moving average of the
difference between today’s price and some price a numbesafne length. The price we pay for thisM& is much noisier
days ago or the difference between two moving averagestaan LRS, and it also overshoots the data when linear trends
measured — hence the termmro8ks& CoMMODITIES Con-  are present, as can be seen in Figure 1.
tributing Editor Tushar Chande has observed that manyHowever, EMA has a lag of zero with respect to lingar
popular oscillators are highly correlated, which makes senggut! This makes sense because a linear regression line will
because they are measuring the rate of change of the unfitdinear input perfectly, and the endpoint of the LR line will
lying time series. be on the input line.
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These two moving averages frame the tradeoffs that ®ema. Can we build something that is comparable,
are facing. On one extreme we havrd, which is very smoother? Figure 1 showsrls, EPMA and IE/2.
smooth but has considerable phase lag. At the other ex-
treme, PMA has zero phase lag, but it is too noisy arfdILTER TECHNIQUES
overshoots. We would like to construct a better movimgny student of filter theory would be able to tell you th
average that is nearly as smoothias] but runs closer to the smoothness of a filter could be improved by running it
where EPMA lies, without the overshoot. through itself multiple times, at the cost of increasing

A easy way to do this is to split the difference — that iphase lag.
use (ILRS(n)+EPMA(n))/2. This will give us a moving There is a complementary technique (caileiding by J.W.
average (call it IE/2) that runs in between the two, haskey, author oExploratory Data Analys)that can be used to
phase lag of n/4 but still inherits considerable noise froimprove phase lag. If stands for the operation of running data

QANDREW VANDERKAg
=
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through a low-pass filter, then twicing can be described by:
= L(time series) + L(time series - L(time series))

We add a moving average of the difference between the in
and the moving average to the moving average. This
algebraically equivalent to:

2L-L(L)

This is thedouble exponential moving averagbemA),
popularized by 8ocks& CoMMODITIES contributor Patrick | &1 i
Mulloy. DEMA has some phase lag (although it exponentia Iya’ F o

"Pugust " Joep” " Touober ' [Nov ' [Decernber[te8r ' [Febriary [March | leprl | Iay ' Lne' | Ludy”

approaches zero) and is somewhat noisy, comparable toFlEdnn HEWLETT-PACKARD. The EPMA(15), IE/2(15) and ILRS(15) arered,
2. We will use these two techniques to construct our bet§@g and green, respectively in MetaStock. Note how the EPMA hugs the data more

moving average after we explore the first one. closely than a simple or exponential moving average of the same length. The price
we pay for this is that it is much noisier than ILRS, and it also overshoots the data
when linear trends are present.

| FIXING OVERSHOOT
| Ann-day BvA has smoothing The problem with this approach is that multiple ru
constant alpha=2/(n+1) and ahough these filters increase their tendency to overshoot
lag of (n-1)/2. Thus, EMA(3) data, giving an unusable result. This is because the ampl
has lag 1, and EMA(11) hasresponse of BMA and EPMA is greater than 1 at certal
lag 5. Figure 2 shows that if | frequencies, giving a gain of much greater than 1 at t
: : amwilling to incur five days of frequencies when run though themselves multiple tin
Iag | get a smoother moving average if | run EMA(3) throudfigure 3 shows DEMA(7) and EPMA(7) run through the
itself five times than if | just take EMA(11) once. This suggessglves three times. EPMAas serious overshoot, and DEM
that if EemMA and DEMA have zero or low lag, why not run fassimilarly has problems.

versions (for instance, DEMA(3)) through themselves a num-The solution to the overshoot problem is to recall what
ber of times to achieve a smooth result? are doing with twicing:

METASTOCK IMPLEMENTATIONS

MetaStock 6.5 code foLRrs: Running the filter though itself three times is equivalent
cubingf:

{input number of lookback periods, default is 11}

periods:=Input(“Periods? “,2,63,11); —a3xo+(3a%+3a3) x°+(—6a~3a-3a%)x*+( 1+3a+a%+3a)x3

{determine how many points are in the time series}

size=l astValue(Cum(1)); Thus, the MetaStock 6.5 code for T3 is:

eriods:=Input(“Periods? “,1,63,5);
:=Input(“Hot? “,0,2,.7);
el:=Mov(P,periods,E);
e2:=Mov(el,periods,E);
e3:=Mov(e2,periods,E);
e4:=Mov(e3,periods,E);

%5:= =Mov(e4,periods,E);
e6:=Mov(e5,periods,E);
cl:=-a*a*a;

c2:=3*a*a+3*a*a*a;
If x stands for the action of running a time series througg3 _6*a*a-3*a-3*a*a*a:

an BvA, f is our formula for generalizedeEmA with the
variable “a” standing for our volume factor:

{determine the constant of integration by taking the 5|mplt§
moving average of the first periods points in the time
series}

start:=LastValue(Ref(Mov(P,periods,S),periods-size));

{value is the integral of linear regression slope plus th
constant of integration}
Cum(LinRegSlope(P,periods))+start;

c4:=1+3*at+a*a*a+3*a*a;
cl*e6+c2*e5+c3*ed+cl*e3;

f:=(1+a)x—ax? —T.T.

METASTOCK FOR WINDOWS (EQUIS INTERNATIONAL)
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: | DEMA(7)?

Oy" " TRugust " Jsep” " Touober ' [Nov ' [Decernber[ter ' [Febrivary [arch | leprl | Iay ' Lune' ' iy’ Oy" " Rugust " Jsep’ " Touober ' [Nov ' [Decernber[ter ' [Febrivary [March | leprl | IMay ' Lne' | iy’

FIGURE 2: HEWLETT-PACKARD. In MetaStock, the EMA(11) is red versus the FIGURE3 HEWLETT-PACKARD. In MetaStock, the DEMA(7)%is red and EPMA( )
EMA(3)%, which is green. EMA(11) and EMA(3)° both have five days of lag, but  is blue. When DEMA(7) and EPMA(7) are run through themselves three times,
EMA(3)® is smoother. DEMA?® has serious overshoot, and EPMA? similarly has problems.

DEMA(n) = EMA(n) + EMA(time series - EMA(n)) This is algebraically the same as:

The second term is adding, in effect, a smooth version of the EMA(n) * 1.7-EMA(EMA(n)) * 0.7
derivative to the HA to achieve BMA. The derivative term
determines how hot the moving average’s response to lineéaave chosen 0.7 as my volume factor. The general formula
trends will be. We need to simply turn down the volume t@vhich | refer to as “generalizede®A”) is:
achieve our basic building block:
GD(n,v) = EMA(n) * (1+v)-EMA(EMA(N)) * v
EMA(n) + EMA(time series - EMA(n)) * 0.7

PERFECT MOVING AVERAGES AND OSCILLATORS
10.00

LY PN

If we had knowledge of the future, perfect moving averag
and oscillators could be constructed. Here's how it is do

computationally:
5.00

» A perfect moving average can be constructed | i :-"' ;
adding an exponential moving average that mov W
backwardin time to one that movéderwardin time, A A {
then dividing by two. The phase lead of the backwal L
EmA cancels the phase lag of the forwardaE pro- VV
ducing a moving average that is both smooth and
phase (but only for historical data, not the data on tf . . 3}
right-hand side of the chart, where we want to trade

* A perfect oscillator can be had by subtracting th 60000 50000 -40000 30000 -200.00 -100.00  0.00
forward BvA from the backward A, or by taking the
derivative of the perfect moving average. These calcu$BEBAR FIGURE 1: PERFECT(20). Tillson plotted the two-sided derivative as
tions are analogous to the two-sided derivative in calc flotted line, while the 20-day linear regression line slope is the black line.
lus, which uses the futufé+h) term in the definition:

0.00

Lim The limitations of technical analysis become very apparent
h->0  f(x+h)-f(x-h when one compares left-sided oscillators with perfect osgil-
2h lators on historical data! Using about 600 days’ worth of

il
1

Hwep daily closes, | plotted the two-sided derivative PE
In the real world, oscillators are constrained to be like tFECT(20) as a dotted line, while the 20-day linear regres-

noisier left-sided derivative: sion line slope is the black line (sidebar Figure 1). PER-
Lim FECT(20) has about 10 days of phase lead orsrdbout
h->0 i(l)_f(;](_h) what one would expect-T.T.
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P The system used MA  Optimal parameter Best APR

-z was very simple. A ILRS 7 19.02
- 7| moving average was gSyMA 8 20.20
24 computed using each _EMA 8 28.17
- o of the five above. A DEMA 7 28.81
- = derivative was taken _T3 5 (volume =0.7) 33.59

able to achieve. Note that the optimal parameters

2 43 11
-] long positionwas en- .. widely.

E (one-period rate of FIGURE 5: PARAMETERS AND PERFORMANCE.
L change function). A Here’s asummary of the best results that each MAwas

did

- o tered at bottoms and
- = closed at tops, of the

A RN A SR o g o S e Y T TV
FIGURE 4: HEWLETT-PACKARD. The EPMA(15) is blue, the T3(6) is red, the ~ “enter long” for an A was:
IE/2(15) is yellow and the ILRS(15) is green in MetaStock.

res:=Mov(C,opt1,E);
wherevranges between zero and 1. WherD, GDisjustan  d1:=ROC(res,1,points);
EmMA, and wherv =1, GD is EMA. In between, GD is aless d1 > Ref(d1,-1) AND Ref(d1,-1) < Ref(d1,-2)
aggressive version ofHMA. By using a value for less than
1, we cure the multiple ®mA overshoot problem but at thel let optlvary from two to 10. This is a fast system, whi
cost of accepting some additional phase delay. Now we @xecutes a lot of trades. Figure 5 summarizes the best re
run GD through itself multiple times to define anew, smoothttat each MA was able to achieve; note that the opt
moving average (T3) that does not overshoot the data: parameters did not vary widely.

No single set of backtesting results is conclusive. But th

T3(n) = GD(GD(GD(n))) numbers confirm that T3 has merit — it not only looks g

. . to the eye on the chart, but it can also be a powerful buil
Figure 4 shows T3(6) plotted with EPMA(15), ILRS(15) ané?ock inyother indicators and trading systenﬁs
IE/2(15). T3 is very similar to IE/2 anddMA, but smoother ‘

than both, which was our goal. - . .
! : . . . _TimTillsonis a software project manager at Hewlett-Packa
In filter theory terminology, T3 is a six-pole nonlinear . . ; :
' . with degrees in mathematics and computer science. He
Kalmant filter. Kalman filters are ones that use the BITor . ~telv traded options and equities for 15 vears
in this case, (time series - EMA(n)) — to correct themselves. y P q y '

In th_e realm of technical anaIyS|s_, these are caltiptive RELATED READING
moving averagesthey track the time series more aggre

sively when itis making large moves. Mulloy, Patrick G. [1994]. “Smoothing data with less la

Technical Analysis @rocks& COMMODITIES, Volume 12:

TRADING RESULTS
February.

| used MetaStock 6.5 to compare five moving averages (S [1994]. “Smoothing data with faster moving averag

ILRS, EMA, DEMA and T3) on the Kspa index (Nox) from Technical Analysis @rocks& COMMODITIES, Volume 12:

July 19, 1993, to June 30, 1997, almost four years of data. |

: . . anuary.
set the interest rate at 4% annualized, and a trading co ‘? A ]
0.1% for entry and exit. This is realistic, since | can tradesj}:@( ey, J.W.[1976Exploratory Data Analysj#ddison-Wesley:

to 1,000 shares through Fidelity Web Express for $14.95, and?eadlng, MA.
a typical trade might be 300 shares of a $50 stock. tSee Traders’ Glossary for definition

ﬁamming, R.W. [1989Digital Filters, 3d edition, Prentice-Hall,

" *| derivative. No shorts were taken. For example, the code for
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