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Have you ever felt miserable because of a sudden whipsaw in the price that triggered an 

unfortunate trade? In an attempt to remove this noise, technical analysts have used various 

types of moving averages (simple, exponential, adaptive one or using Nyquist criterion). 

These tools may have performed decently but we show in this paper that this can be 

improved dramatically thanks to the optimal filtering theory of Kalman filters (KF). We 

explain the basic concepts of KF and its optimum criterion. We provide a pseudo code for 

this new technical indicator that demystifies its complexity. We show that this new 

smoothing device can be used to better forecast price moves as lag is reduced. We provide 

4 Kalman filter models and their performance on the SP500 mini-future contract. Results 

are quite illustrative of the efficiency of KF models with better net performance achieved 

by the KF model combining smoothing and extremum position. 
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INTRODUCTION 

 

1 INTRODUCTION 

Have you ever felt angry because a sudden price whipsaw triggered an unfortunate signal 

and a resulting bad trade? Prices have inherent blips and jerks that are not easy to control. 

Moreover, prices are inputs for technical analysis indicators. This can result in corrupted 

or non-efficient indicators. In an ideal world, one would like prices heading to a clear 

direction. Remember the old adage: “trade with the trend”. But in real life, prices hiccups 

create noise and perturb the signal. 

 

A first attempt to remove these yanks and jolts is to smoothen prices with moving averages. 

However, moving averages suffer from two flaws: lags and no dynamics. The first 

drawback, delay in moving average response, is widely known as moving averages used 

past data. Adaptations to moving averages have been suggested (exponential, adaptive, zero 

lag or Nyquist criterion based moving averages). Durchner in [Dürschner-2012] suggested 

the use of Nyquist criterion to create moving average 3.0 with no lag. 

This is intellectually very enticing as the lag is completely removed. This improves moving 

averages from Patrick Mulloy [Mulloy-1994] with zero lag or the attempts by John Ehlers 

to provide sophisticated moving averages ([Ehlers-2001a] or [Ehlers-2001b]). But this 

does not address the second problem of capturing price dynamics. What we mean by price 

dynamics is the price movement. If we can identify that prices are moving upwards 

(respectively downwards), then a good guess for next price observation should be higher 

(respectively lower) than the current price. Let us pause for a moment and imagine instead 

of prices, we were looking at car position using a GPS. We measure the car position with a 
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GPS but with some noise as the signal is not perfectly accurate. Could we capture the car 

dynamics to compute the best guess at next time step and hence reduce noise in car 

position? The answer is yes! And guess what, this is what your car GPS is doing. This 

theory simply explained is referred to as Kalman filter (from its inventor [Kalman-1960]) 

shortened to KF in this paper. It was created for the spatial industry to remove noise and 

capture shuttle movements. In a scientific way, the Kalman filter is an efficient recursive 

filter that estimates the state of a dynamic system from a series of incomplete and noisy 

measurements to estimate the best forecast according to an assumed distribution. In the 

original paper, Kalman assumes a Gaussian distribution of noise but extended version can 

now cope with more advanced distribution (see [Kalman-Filter-Wikipedia]). In this 

article, we first revisit moving averages and then present different Kalman filter models 

and their implementation to create trading strategies. We then provide performance results 

for our 4 KF models on one year of data of the E-mini-SP continuation future. 

 

1.1 Motivation for smoothing 

Smoothing prices is natural. The basic idea is to remove noise from prices to better identify 

important patterns or trends. Remember, when we trade, we want the big picture. So 

smoothing enables us removing bumps, bangs, bounces, and shocks and getting an average 

clean signal. If we believe that prices do not follow a random walk model, the smoothened 

signal provides us a clear directional signal. 
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1.2 Impact for trading strategies 

Conversely, if we do not smoothen prices, we could act on tugs, wrenches, or snatches that 

are against the trend and result in bad trades. Smoothing is the right way! But we need to 

be careful. If we smoothen with lag (one of the major drawbacks of moving averages), we 

act with delay and enter trades too late, potentially facing reverse direction markets. In an 

ideal world, we would like the smoothing technique to have zero lag and to provide a fist 

move advantage. 
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MATERIAL AND METHODS 

 

2 REVIEW OF MOVING AVERAGES 

2.1 The usual moving averages 

The usual way to remove noise in prices is with moving averages. Let us denote weights 

by 𝑤𝑖 for the time𝑇𝑖, where 𝑖 goes between 0 to 𝑁. Then, the moving average is given by 

𝑀𝐴(𝑤0, … , 𝑤𝑁) = ∑ 𝑤𝑖𝑃𝑖
𝑁
𝑖=0     (EQ 2.1) 

Whose lag is  

𝐿𝐴𝐺 𝑀𝐴(𝑤0, … , 𝑤𝑁) = 
∑ 𝑤𝑖𝑇𝑖

𝑁
𝑖=0

∑ 𝑤𝑖
𝑁
𝑖=0

    (EQ 2.2) 

If we do a moving average of a moving average, equation (2.1) becomes 

𝑀𝐴⨀𝑀𝐴(𝑤0, … , 𝑤𝑁) = ∑ 𝑤𝑖(∑ 𝑤𝑗
𝑁
𝑗=0 𝑃𝑖+𝑗

𝑁
𝑖=0 ) (EQ 2.3) 

And the corresponding lag is 

𝐿𝐴𝐺 𝑀𝐴⨀𝑀𝐴(𝑤0, … , 𝑤𝑁) = 
∑ 𝑤𝑖𝑤𝑗𝑇𝑖+𝑗

𝑁
𝑖=0,𝑗=0

∑ 𝑤𝑖𝑤𝑗
𝑁
𝑖=0,𝑗=0

 (EQ 2.4) 

We can easily derive similar formula for a recursive moving average at the order kth: 

𝑀𝐴⨀𝑘(𝑤0, … , 𝑤𝑁) = ∑ 𝑤𝑖1
… 𝑤𝑖𝑘

𝑃𝑖1+⋯+𝑖𝑘

𝑁
𝑖1=0,…,𝑖𝑘=0  (EQ 2.5) 

The resulting lag is 

𝐿𝐴𝐺 𝑀𝐴⨀𝑘(𝑤0, … , 𝑤𝑁) = 

∑ 𝑤𝑖1
…𝑤𝑖𝑘

𝑇𝑖1+⋯+𝑖𝑘
𝑁
𝑖1=0,…,𝑖𝑘=0

∑ 𝑤𝑖1
…𝑤𝑖𝑘

𝑁
𝑖1=0,…,𝑖𝑘=0

 (EQ 2.6) 

2.2 Explicit Lag Computation 
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Prices are sampled with equidistant time steps 𝑇𝑖 =
𝑖

𝑁
𝑇. Formulae (EQ.2.6) can be easily 

computed in terms of its first order value as follows: 

𝐿𝐴𝐺 𝑀𝐴⨀𝑘(𝑤0, … , 𝑤𝑁) = 𝑘  𝐿𝐴𝐺 𝑀𝐴(𝑤0, … , 𝑤𝑁) (EQ 2.7) 

(See Proof A.1:) 

Furthermore, if we combine recursive moving averages, it is easy to find back the results 

of Mulloy. In the case of a moving average of moving average, the only possible choice 

with zero lag whose coefficient sum is equal to 1 is the double moving average: 

𝐷𝐸𝑀𝐴 = 2𝑀𝐴- 𝑀𝐴⨀2    (EQ 2.8) 

(See Proof A.2) 

And for the triple moving average (if we impose the additional constraint that the 3rd order 

recursive moving average coefficient is 1), we have 

𝑇𝐸𝑀𝐴 = 3𝑀𝐴- 3. 𝑀𝐴⨀2 + 𝑀𝐴⨀3   (EQ 2.9) 

(See Proof A.3) 

 

3 INTRODUCTION TO KALMAN FILTER 

3.1 Basic concepts 

Kalman filter is a recursive algorithm that has been invented in the 1960s to track a moving 

target, remove any noisy measurements of its position and predict its future position. In 

finance, KF has been used by the asset management industry for various purposes. KF is 

an optimal choice in many cases and do at least better than a moving average smoothing. 

Dao et al [Bruder-Dao-Richard-Roncalli-2011] and [Dao-2011] showed that for price 

following random walk with noise, KF is equivalent to the optimal exponential moving 

average with parameter equal to Kalman gain. However, for more sophisticated dynamics, 
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like a linear Gaussian model, KF is the optimal choice and the most efficient computational 

solution for finding the model parameters.  

KF has also been used over the last decade by different authors. Martinelli and Rhoads in 

[Martinelli-2006] and [Martinelli-Rhoads-2010] used Kalman filter to find optimal guess 

for trading strategies on stocks. Haleh-et-al in [Haleh-et-al-2011] used Extended Kalman 

filter for forecasting stock prices, combining technical and fundamental data. They showed 

it outperformed regression and neural networks. Ernie Chan in [Chan-2013] suggested 

using KF for pair correlation trading, while Cazalet and Zheng in [Cazalet-Zheng-2014] 

used KF for hedge fund replication. 

In a general way, Kalman filter consider a linear dynamic system given by 

𝑋𝑡+1 = 𝜙𝑋𝑡 + 𝑐𝑡 + 𝑤𝑡    (EQ 3.1) 

     𝑌𝑡 = 𝐻𝑋𝑡 + 𝑑𝑡 + 𝑣𝑡    (EQ 3.2) 

Where 𝜙  is the state transition matrix, 𝐻 the measurement matrix, 𝑤𝑡  the model noise, 𝑋𝑡  

the state vector, 𝑌𝑡  the measurement vector, 𝑣𝑡  the measurement noise, 𝑤𝑡  and 𝑣𝑡  the 

independent white noises with zero mean and their variance matrices given by 𝑄 and 𝑅 

respectively. 𝑐𝑡 , respectively 𝑑𝑡 , is the drift of the state vector, respectively the 

measurement vector. The corresponding Kalman filter is: 

Prediction step:        𝑋𝑡+1|𝑡 = 𝜙𝑋𝑡|𝑡 + 𝑐𝑡                           (EQ.3.3) 

With         𝑃𝑡+1|𝑡 = 𝜙𝑃𝑡|𝑡𝜙𝑇 + 𝑄             (EQ.3.4) 

Correction step:           𝑋𝑡+1 = 𝑋𝑡+1|𝑡 + 𝐾𝑡+1(𝑌𝑡+1 − 𝑌𝑡+1|𝑡)           (EQ.3.5) 

With                     𝑌𝑡+1|𝑡 = 𝐻𝑋𝑡 + 𝑑𝑡       

With Kalman gain         𝐾𝑡+1 = 𝑃𝑡+1|𝑡𝐻𝑇[𝐻𝑃𝑡+1|𝑡𝐻𝑇 + 𝑅]
−1

           (EQ.3.6) 

With     𝑃𝑡+1|𝑡+1 = [𝐼 − 𝐾𝑡+1𝐻]𝑃𝑡+1|𝑡             (EQ.3.7) 
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KF works in a two-step process (prediction and correction steps). The algorithm is 

recursive, can run in real time, using only the present input measurements, the previously 

calculated state and its uncertainty matrix. 

Obviously, one needs to specify the state and measurement vector. A logic choice is to use 

a physical system with concepts similar to speed and acceleration: 

𝑥𝑡+1 = 𝑥𝑡 + 𝑥̇𝑡δt + 1/2 𝑎𝑡δt2           (EQ.3.8) 

𝑥̇𝑡+1 =  𝑥̇𝑡 + 𝑎𝑡δt              (EQ.3.9) 

    𝑦𝑡 =  𝑥𝑡 + 𝑣𝑡            (EQ.3.10) 

Where 𝑥𝑡   and 𝑥̇𝑡 are price and rate of change of stock price at time 𝑡 (similar to position 

and speed).  𝑎𝑡 can be seen as the acceleration of price at time 𝑡. It is considered to be a 

model noise. 𝑇 is the sampling period, 𝑦𝑡 the measurement, 𝑣𝑡 the measurement noise. This 

can be analyzed as a KF system with 

𝑋𝑡 = [
𝑥𝑡

𝑥̇𝑡
] , 𝜙 = [

1 δt
0 1

] , 𝑤𝑡 = [
1

2
δt2

δt
] 𝑎𝑡, 𝐻 = [1 0], 𝑐𝑡  = 0         (EQ.3.11) 

This is named model One. This model has the advantage to take into account a certain 

dynamic compared to the simple Random Walk model that is often used in the KF literature 

where there is no speed term. In our model One, The speed is initially estimated as the 

difference between two consecutive prices. The parameters to estimate are the following (4 

in total) 

𝑄 = [
𝑝1𝑝1 𝑝2𝑝1

𝑝1𝑝2 𝑝2𝑝2
] , 𝑅 = [𝑝3], 𝑃𝑡=0 = [

𝑝4 0
0 𝑝4

]          (EQ.3.12) 

It is interesting to note that this model is very closed to a local linear trend model. Indeed, 

the local linear trend model writes as 

xt+1 = xt + βt +  w1,t            (EQ.3.13) 

βt+1 =  βt + w2,t            (EQ.3.14) 

https://en.wikipedia.org/wiki/Real-time_Control_System
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    yt =  xt + vt            (EQ.3.15) 

We can notice that in this specific case, the KF parameters are the following: 

𝑋𝑡 = [
𝑥𝑡

𝛽𝑡
] , 𝜙 = [

1 1
0 1

] , 𝑤𝑡 = [
𝑤1,𝑡

𝑤2,𝑡
] , 𝐻 = [1 0], 𝑐𝑡  = 0          (EQ.3.16) 

The parameters to estimate are the following (5 in total) 

𝑄 = [
𝑝1𝑝1 𝑝2𝑝1

𝑝1𝑝2 𝑝2𝑝2
] , 𝑅 = [𝑝3], 𝑃𝑡=0 = [

𝑝4 0
0 𝑝5

]          (EQ.3.17) 

This model has almost the same parameters as model one. This is named model Two. 

Comparing equation 3.12 and 3.17, we know that model One and Two should have very 

similar behavior. 

We can create a more general two factors model with contribution to price split between a 

short term 𝑥𝑡
1 and a long term 𝑥𝑡

2. This leads to: 

xt+1
1 = a11xt

1 + a12xt
2 +  w1,t            (EQ.3.18) 

xt+1
2 = a22xt

2 +  w2,t             (EQ.3.19) 

    yt =  h1xt
1 +  h2xt

2 + vt            (EQ.3.20) 

In this specific model, we have the following parameters 

Xt = [
xt

1

xt
2] , ϕ = [

a11 a12

0 a22
] , wt = [

w1,t

w2,t
] , H = [

h1

h2
] , ct  = 0    (EQ.3.21) 

We call this model Three. Because of its generality, this model encompasses models 1, 2. 

The parameters to estimate are the following (10 in total) 

ϕ = [
p1 p2

0 p3
] , H = [

p4

p5
] , Q = [

p6p6 p7p6

p6p7 p7p7
] , R = [p8], Pt=0 = [

p9 0
0 p10

]    (EQ.3.22) 

 

The last model we use is a model inspired by a combination of oscillators and the previous 

model. In this model, we use the price position with respect to its extremums as in the fast 

stochastic oscillator. We denote the variable 𝐾𝑡 over a d period given by 

Kt
d =

Current Close−Lowest Low(d)

Highest High(d)−Lowest Low(d)
× 100          (EQ.3.23) 
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We denote by 𝐿𝑡
𝑑 = 𝐿𝑜𝑤𝑒𝑠𝑡 𝐿𝑜𝑤(𝑑) and 𝐻𝑡

𝑑 = 𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝐻𝑖𝑔ℎ(𝑑) the lowest low and 

highest high over d period. We use in our example a 14 days period. As in model 3, we also 

split the contribution of the price due to short term 𝑥𝑡
1 and long term 𝑥𝑡

2. This leads to: 

𝑥𝑡+1
1 = 𝑎11𝑥𝑡

1 + 𝑎12𝑥𝑡
2 + (𝑀1 − 𝑁1𝐾𝑡

𝑑) +  𝑤1,𝑡         (EQ.3.24) 

xt+1
2 = a22xt

2 + (M2 − N2Kt
d) +  w2,t          (EQ.3.25) 

With      Kt
d =

h0xt−Lt
d

Ht
d−Lt

d               (EQ.3.26) 

    yt =  h1xt
1 +  h2xt

2 + vt            (EQ.3.27) 

In this specific model, we have the following parameters 

Xt = [
xt

1

xt
2] , ϕ = [

a11 a12

0 a22
] , wt = [

w1,t

w2,t
] , H = [

h1

h2
] , ct  = (

M1 − N1Kt
d

M2 − N2Kt
d

)        (EQ.3.28) 

We call this model Four. Because of its generality, this model encompasses models 1, 2 

and 3. It capture short and long term effect as well as position with regards to extrema like 

what oscillators do. This is by far the most realistic model. Short term factor 𝑥𝑡
1 models 

extreme market reactions that last for a few days. Long term factor 𝑥𝑡
2 is only influenced 

by itself and not by the short term 𝑥𝑡
1. The parameters to estimate are the following (15 in 

total) (the same set as model 3 and 5 additional parameters) 

ϕ = [
p1 p2

0 p3
] , H = [

p4

p5
] , Q = [

p6p6 p7p6

p6p7 p7p7
] . R = [p8], Pt=0 = [

p9 0
0 p10

]  (EQ.3.29) 

ct  = (
p11 − p12Kt

d

p13 − p14Kt
d

) , p15 = d   (EQ.3.30) 

3.2 Pseudo code 

 

/// Initialization phases: parameters contains  

/// - initial value for model state + measurement of model  

/// - measurement of state and model variance 

Kalman2D k = new Kalman2D(parameters); 

k.Setup( parameters ); 

int length = timeSeries.Length; 

 

Point2D[] kalmanResult = new Point2D[length]; 
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/// the loop to update in real time 

for( int i = 0; i<length; ++i ) 

{ 

 if( i<Period ) 

 { 

  k.Predict(); 

  k.Update(timeSeries[i]); 

 

  kalmanResult.Set(0, timeSeries[i]); 

  kalmanResult.Set(1, timeSeries[i]); 

 } 

 else 

 { 

  k.Predict(); 

  kalmanResult.Set(0, k.X.Get(0,0) ); 

  k.Update(timeSeries[i]); 

  kalmanResult.Set(1, k.X.Get(0,0) ); 

 } 

} 

 

Where the pseudo code for Predict and Update value is given as follows: 

 

// <summary> 

// Predict the state 

// </summary> 

public void Predict() 

{ 

    // Predict to now, then update. 

    // Predict:  

    //   X = Phi*X + C 

    //   P = Phi*P*Phi^T + Q 

    m_x = Phi*m_x+C; 

    m_p = Phi*P*Transpose(Phi) + Q; 

} 

// <summary> 

// Update the state thanks to the realized measurement Y 

// </summary> 

public void Update( Point1D Y ) 

{ 

    // Update: 

    //   I = Y-(HX+D) Called the innovation= measurement – state transformed by H.  

    m_I= Y(t)-(H*m_X+D); 

    //   S = H*P*H^T + R  S= Residual covariance = covariance transformed by H + R 

    m_S= H*m_P*Transpose(T) + R; 

    //   K = P * H^T *S^-1  K = Kalman gain = variance / residual covariance. 

    m_K= m_P * Transpose(H) * Inverse(S); 

    //   X = X + K*I     Update with gain the new measurement 

    m_X += m_K*Y; 

    //   P = (I – K * H) * P  Update covariance to this time. 

    m_P= (I – K * H) * P; 

} 
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4 TRADING STRATEGIES WITH KALMAN FILTER 

4.1 Basic concepts 

KF model enables us various things: 

- It smoothens any data. Hence the data produced by the KF can be used instead of prices 

to remove any spike. This opens multiple options as these inputs can be used in cross over 

moving averages strategies, MACD indicator, oscillators and combination of these. We do 

not explore this as the paper goal is to study the predictive power of KF models. 

-it can be used as a predictive tool to help deciding when entering long or short strategies. 

We compare the prediction with the current. This is precisely the subject of this paper. 

4.2 Pseudo code 

 

  

/// <summary> 

/// Called on each new bar event 

/// </summary> 

protected override void OnNewBar() 

{ 

if (KalmanFilter(Param1,..,ParamN).Predict[0] > Close[1]+Offset) 

 EnterLong(); 

else if (KalmanFilter(Param1,..,ParamN).Predict[0] < Close [1]-Offset) 

 EnterShort();} 

} 
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RESULTS 

5 NUMERICAL RESULTS 

5.1 Description of the sample set 

To test the efficiency of KF models 1, 2, 3 and 4, we use the E-mini-S&P-500 continuation 

Future, whose RIC is Esc1. We use the Eikon App “Trading Robot” that has been 

developed by the author. We look at daily data between 28 Feb 2015 and 28 Feb 2016. 

 

5.2 Comparison of Kalman filters with standard technical indicators 

We provide graphics of various indicators to measure how KFs best fit price information. 

We display: 

- some standard technical analysis indicators: 

 Moving averages with lag: standard and exponential moving average with 

12 days period 

 Moving averages with zero lag: double exponential moving average with 12 

days period as (EQ.2.9) and triple exponential moving average with 12 days 

period as (EQ.2.10) 

- the different KF indicators, KF model 1, 2, 3 and 4. 

In Figure 1, we see that the KF model 1 sticks much better to price data than any of the two 

moving averages. This is normal as KF model has 0 to 1 period lag. We do not show in this 

graphic the other KF models as they would be barely distinguishable. In Figure 2 and Figure 

3, we compare KF model with zero-lag moving averages like DEMA or TEMA. We 

emphasize area of difference with orange circles and see that KF models stick much better 
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to price data. In Figure 4, we compare the different KF models and see that KF model 1&2 

are similar while models 3&4 are also similar, with an advantage to the latter ones. 

 

Figure 1: Comparison of Kalman filter with classical moving averages. 

The red line representing the KF model 1 sticks much better to the price data than any of the two moving averages 

(standard and exponential ones with both 12 periods). 

 

 

Figure 2: Comparison of Kalman filter with double and triple exponential moving averages 

Red lines representing the KF model 1 stick much better to the price data than DEMA or TEMA as displayed in orange 

circles. 
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Figure 3: Zoom on differences between Kalman filter and zero lag moving averages. 

KF model 1 reacts faster to price changes as emphasized by orange circles. 

 

 

Figure 4: Comparison between the different Kalman filters. 

Within the KF model family, model 3 and 4 are even better than model 1 and 2. Model 1 and 2 (respectively model 3 

and 4) have similar  behaviors. 
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5.3 Kalman filter trading strategies performance 

We look at the same one-year of data and compute the optimal parameters for the 4 KF 

models. For each model, we use no leverage, trade only one future contract regardless of 

the current trading account. We also assume a 4 dollar round trip commission, which is the 

observed price at retailed brokers like Interactive-Brokers. For large trader with more than 

20,000 contracts per months and CME membership, round trip commission lowers to 1.4 

USD.  

Table 1 shows that the best model is model 4 with an annual net profit of 39.5 k USD, 

followed by model 3 with 29 k USD and the last two being model 2 and 1 with net profit 

of 22 and 19 k USD.  

We can make various remarks: 

 The final model ranking makes senses as model 4 is richer than 3 that is itself richer 

than 2 that is richer than 1. 

 The best model, KF 4, provides a nice net profit, 39 k with a max drawdown of -

2,600, hence representing a ratio of net profit over drawdown (also called recovery 

ratio) of 15. This is excellent! 

 E-mini-S&P daily margin is about 5 to 6 k USD, hence 40k USD net profit is an 

amazing statistic. In addition, model 4 incurs only positive monthly PnL (Figure 5). 

 KF model 3 has a nice and steady cumulative profit curve (Figure 6), while model 

4 outperforms because it captures a few large additional trades (Figure 5 and Figure 

9). 

 KF model 1 & 2 are Kalman filter models already explored in literature. We find 

some negative monthly PnL and large drawdown (see Figure 7 and Figure 8). This 

is a known feature as these models have a poor dynamic. This may explain why 

these standard KF models have been disregarded. 

 The difference between KF model 3 and 4 is the oscillator factor. This confirms the 

well-known fact that oscillators capture others features than trending indicators and 

catch any mean reverting market (in trading range environment). The combination 

of trend following factors (like in model 3) with the new extra term inspired from 

oscillators yields a powerful model called 4. We can notice that parameter 14, 𝑁2, 
is null. It indicates that the oscillator factor plays a role only on short term factor. 

This can be interpreted as an empirical evidence that range trading has only 

influence on short term while trend dominates in long term. 

 The parameters 11 and 13 in KF model 4 represent the neutrality level at which the 

oscillator factors changes from bullish to bearish. It is amazing that its optimal value 

turns  out to be 50%, which is also a well-known feature of oscillators where the 

level of neutrality is 50% 

We provide optimal parameters in Table 2. We also provide various statistics for KF model 

4, 3, 2 and 1 (starting with the best model and going to the worst) in Table 3, Table 4, Table 

5, Table 6 and the list of all trades in Table 7 
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We provide in Figure 5, Figure 6,Figure 7, Figure 8 the cumulative profit and loss curve 

for trading strategy of model 4, 3, 2 and 1, starting by the best one. Figure 9 zooms on the 

period where model 4 locks in large profit due to accurate prediction of turning points. 

 

 

 

Table 1: Trading performance of Kalman filter model 1, 2, 3 and 4. 

 

 

Table 2: Model parameters for Kalman filter model 1, 2, 3 and 4 

 

Model Net Profit Gross Profit Gross Loss Drawdown Trades Commission Recovery ratio Sharpe Ratio

Kalman Filter 1 18,755 39,151 -20,396 -7,348 55 220 2.55                  0.72

Kalman Filter 2 22,380 40,747 -18,367 -7,348 55 220 3.05                  0.76

Kalman Filter 3 29,022 47,548 -18,526 -3,800 57 228 7.64                  1.22

Kalman Filter 4 39,558 50,243 -10,685 -2,600 48 192 15.21               0.73

Model Kalman Filter 1 Kalman Filter 2 Kalman Filter 3 Kalman Filter 4

Parameter 1 5.00                  5.00                  1.00                  1.00                  

Parameter 2 5.00                  5.00                  0.40                  0.40                  

Parameter 3 45.00                41.00                1.20                  1.20                  

Parameter 4 10.00                1.00                  1.00                  1.00                  

Parameter 5 1.00                  1.00                  1.00                  

Parameter 6 0.80                  0.80                  

Parameter 7 0.40                  0.40                  

Parameter 8 0.70                  0.70                  

Parameter 9 1.00                  1.00                  

Parameter 10 0.40                  0.40                  

Parameter 11 0.50                  

Parameter 12 0.90                  

Parameter 13 0.50                  

Parameter 14 -                    

Parameter 15 5.00                  
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Table 3: Trading strategy statistics for Kalman filter model 4 

 

Figure 5: Cumulative profit and monthly PnL distribution for KF model 4 

 

 

Field All Long Short

Net Profit (A+B) 39,558      17,279      22,279      

Gross Profit (A) 50,243      20,957      29,286      

Gross Loss (B) (10,685)     (3,678)       (7,007)       

Total Commission 192            96              96              

Drawdown (2,600)       (2,137)       (2,520)       

Sharpe Ratio 0.73           0.84           0.55           

Profit Factor (A/B) 4.70           5.70           4.18           

Number of Trades 48              24              24              

Winning Trades 30              17              13              

Average Trade Profit 824            720            928            

Average Winning Trade 1,675         1,233         2,253         

Largest Winning Trade 11,309      5,434         11,309      

Max. conseq. Winners 6                 5                 3                 

Losing Trades 18              7                 11              

Average Losing Trade (594)           (525)           (637)           

Largest Losing Trade (1,729)       (1,729)       (1,267)       

Max. conseq. Losers 4                 2                 3                 

Ratio avg. Win / avg. Loss 2.82           2.35           3.54           

Winning/Total 0.63           0.71           0.54           

Avg. Time in Market 6.92 days 3.88 days 9.96 days

Profit per Month 3,623         1,583         2,047         

Max. Time to Recover 58 days 56 days 92 days

Kalman Filer Model 4
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Table 4: Trading strategy statistics for Kalman filter model 3 

 

Figure 6: Cumulative profit and monthly PnL distribution for KF model 3 

 

Field All Long Short

Net Profit (A+B) 29,022      12,009      17,013      

Gross Profit (A) 47,548      24,403      23,145      

Gross Loss (B) (18,526)     (12,394)     (6,132)       

Total Commission 228            116            112            

Drawdown (3,820)       (3,366)       (1,579)       

Sharpe Ratio 1.22           0.38           1.65           

Profit Factor (A/B) 2.57           1.97           3.77           

Number of Trades 57              29              28              

Winning Trades 35              18              17              

Average Trade Profit 509            414            608            

Average Winning Trade 1,359         1,356         1,361         

Largest Winning Trade 5,234         5,234         4,271         

Max. conseq. Winners 14              7                 7                 

Losing Trades 22              11              11              

Average Losing Trade (842)           (1,127)       (557)           

Largest Losing Trade (2,879)       (2,879)       (1,579)       

Max. conseq. Losers 5                 3                 3                 

Ratio avg. Win / avg. Loss 1.61           1.20           2.44           

Winning/Total 0.61           0.62           0.61           

Avg. Time in Market 5.82 days 6.45 days 5.18 days

Profit per Month 2,658         1,100         1,860         

Max. Time to Recover 53 days 64 days 71 days

Kalman Filer Model 3
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Table 5: Trading strategy statistics for Kalman filter model 2 

 

 

Figure 7: Cumulative profit and monthly PnL distribution for KF model 2 

 

Field All Long Short

Total Net Profit 22,380      8,692         13,688      

Gross Profit 40,747      19,611      21,136      

Gross Loss (18,367)     (10,919)     (7,448)       

Commission 220            108            112            

Drawdown (7,348)       (6,628)       (2,283)       

Sharpe Ratio 0.76           0.32           0.55           

Profit Factor 2.22           1.80           2.84           

Number of Trades 55              27              28              

Winning Trades 32              16              16              

Average Trade Profit 407            322            489            

Average Winning Trade 1,273         1,226         1,321         

Largest Winning Trade 6,521         3,221         6,521         

Max. conseq. Winners 4                 6                 3                 

Losing Trades 23              11              12              

Average Losing Trade (799)           (993)           (621)           

Largest Losing Trade (3,679)       (3,679)       (1,717)       

Max. conseq. Losers 4                 5                 2                 

Ratio avg. Win / avg. Loss 1.59           1.23           2.13           

Winning/Total 0.58           0.59           0.57           

Avg. Time in Market 6.04 days 6.41 days 5.68 days

Profit per Month 2,050         801            1,254         

Max. Time to Recover 132 days 146 days 70 days

Kalman Filer Model 2
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Table 6: Trading strategy statistics for Kalman filter model 1 

 

Figure 8: Cumulative profit and monthly PnL distribution for KF model 1 

 

Field All Long Short

Total Net Profit 18,755      6,880         11,876      

Gross Profit 39,151      18,861      20,290      

Gross Loss (20,396)     (11,982)     (8,415)       

Commission 220            108            112            

Drawdown (7,348)       (6,628)       (2,283)       

Sharpe Ratio 0.72           0.26           0.48           

Profit Factor 1.92           1.57           2.41           

Number of Trades 55              27              28              

Winning Trades 31              16              15              

Average Trade Profit 341            255            424            

Average Winning Trade 1,263         1,179         1,353         

Largest Winning Trade 6,521         3,221         6,521         

Max. conseq. Winners 4                 6                 2                 

Losing Trades 24              11              13              

Average Losing Trade (850)           (1,089)       (647)           

Largest Losing Trade (3,679)       (3,679)       (1,717)       

Max. conseq. Losers 4                 5                 2                 

Ratio avg. Win / avg. Loss 1.49           1.08           2.09           

Winning/Total 0.56           0.59           0.54           

Avg. Time in Market 6.04 days 6.45 days 5.64 days

Profit per Month 1,718         634            1,088         

Max. Time to Recover 132 days 146 days 71 days

Kalman Filer Model 1
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Table 7: Trades list for Kalman model 4 

 

 

Trade Direction Entry date Entry price Exit date Exit price Profit PnL Commission Days in position

1 Long Mar-31-15 2,043 Apr-01-15 2033.5 (454.0) (454.0) 4 2

2 Short Apr-01-15 2,034 Apr-02-15 2026 371.0 (83.0) 4 2

3 Long Apr-02-15 2,026 Apr-08-15 2045.25 958.5 875.5 4 4

4 Short Apr-08-15 2,045 Apr-09-15 2047.5 (116.5) 759.0 4 2

5 Long Apr-09-15 2,048 Apr-10-15 2061.5 696.0 1,455.0 4 2

6 Short Apr-10-15 2,062 Apr-21-15 2076.25 (741.5) 713.5 4 8

7 Long Apr-21-15 2,076 Apr-22-15 2069.75 (329.0) 384.5 4 2

8 Short Apr-22-15 2,070 May-04-15 2081.75 (604.0) (219.5) 4 9

9 Long May-04-15 2,082 May-05-15 2079.75 (104.0) (323.5) 4 2

10 Short May-05-15 2,080 May-07-15 2048.25 1,571.0 1,247.5 4 3

11 Long May-07-15 2,048 May-11-15 2084.75 1,821.0 3,068.5 4 3

12 Short May-11-15 2,085 Jun-10-15 2062.25 1,121.0 4,189.5 4 23

13 Long Jun-10-15 2,062 Jun-11-15 2083.5 1,058.5 5,248.0 4 2

14 Short Jun-11-15 2,084 Jul-01-15 2054.25 1,458.5 6,706.5 4 15

15 Long Jul-01-15 2,054 Jul-03-15 2049.75 (229.0) 6,477.5 4 3

16 Short Jul-03-15 2,050 Jul-10-15 2050.5 (41.5) 6,436.0 4 6

17 Long Jul-10-15 2,051 Jul-14-15 2074.5 1,196.0 7,632.0 4 3

18 Short Jul-14-15 2,075 Jul-29-15 2071 171.0 7,803.0 4 12

19 Long Jul-29-15 2,071 Jul-30-15 2077.5 321.0 8,124.0 4 2

20 Short Jul-30-15 2,078 Aug-24-15 1851.25 11,308.5 19,432.5 4 18

21 Long Aug-24-15 1,851 Aug-28-15 1960 5,433.5 24,866.0 4 5

22 Short Aug-28-15 1,960 Sep-02-15 1921.25 1,933.5 26,799.5 4 4

23 Long Sep-02-15 1,921 Sep-10-15 1920.25 (54.0) 26,745.5 4 7

24 Short Sep-10-15 1,920 Sep-11-15 1928.25 (404.0) 26,341.5 4 2

25 Long Sep-11-15 1,928 Sep-17-15 1974.75 2,321.0 28,662.5 4 5

26 Short Sep-17-15 1,975 Sep-21-15 1948.5 1,308.5 29,971.0 4 3

27 Long Sep-21-15 1,949 Oct-06-15 1967.5 946.0 30,917.0 4 12

28 Short Oct-06-15 1,968 Oct-15-15 1986.25 (941.5) 29,975.5 4 8

29 Long Oct-15-15 1,986 Oct-19-15 2010.25 1,196.0 31,171.5 4 3

30 Short Oct-19-15 2,010 Dec-15-15 2031 (1,041.5) 30,130.0 4 42

31 Long Dec-15-15 2,031 Dec-16-15 2048.25 858.5 30,988.5 4 2

32 Short Dec-16-15 2,048 Dec-22-15 2022.75 1,271.0 32,259.5 4 5

33 Long Dec-22-15 2,023 Dec-23-15 2043 1,008.5 33,268.0 4 2

34 Short Dec-23-15 2,043 Jan-11-16 1924.5 5,921.0 39,189.0 4 12

35 Long Jan-11-16 1,925 Jan-14-16 1890 (1,729.0) 37,460.0 4 4

36 Short Jan-14-16 1,890 Jan-15-16 1862 1,396.0 38,856.0 4 2

37 Long Jan-15-16 1,862 Jan-18-16 1869.5 371.0 39,227.0 4 2

38 Short Jan-18-16 1,870 Jan-19-16 1894 (1,229.0) 37,998.0 4 2

39 Long Jan-19-16 1,894 Jan-26-16 1878.5 (779.0) 37,219.0 4 6

40 Short Jan-26-16 1,879 Jan-27-16 1890.25 (591.5) 36,627.5 4 2

41 Long Jan-27-16 1,890 Jan-28-16 1894 183.5 36,811.0 4 2

42 Short Jan-28-16 1,894 Jan-29-16 1894.5 (29.0) 36,782.0 4 2

43 Long Jan-29-16 1,895 Feb-02-16 1913.5 946.0 37,728.0 4 3

44 Short Feb-02-16 1,914 Feb-04-16 1901.5 596.0 38,324.0 4 3

45 Long Feb-04-16 1,902 Feb-17-16 1906 221.0 38,545.0 4 10

46 Short Feb-17-16 1,906 Feb-25-16 1931.25 (1,266.5) 37,278.5 4 7

47 Long Feb-25-16 1,931 Feb-26-16 1959.75 1,421.0 38,699.5 4 2

48 Short Feb-26-16 1,960 Feb-26-16 1942.5 858.5 39,558.0 4 1
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Figure 9: Efficiency of Kalman filter model 4 to detect trends 
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6 DISCUSSION 

Parameters for the Kalman filter models are obtained by a general optimization. Hence they 

provide the best possible choice of parameters. Results presented here should be analyzed 

with this in mind. 

We clearly see that model 1 and 2 provides similar results about 20 k of net profit for one 

year trading the E-mini contract. When adding the new feature of a short and long term 

model factor, we increase net profit to 29 k, which is substantial. We reduce maximum 

drawdown from -7,300 USD to -3,800 USD. This is a material gain. Model 4 performs even 

better as we generate an additional 10 k with net profit skyrocketing to 40 k USD with an 

further reduction of drawdown to -2,600 USD. 
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CONCLUSION 

In this paper, we empirically validate that Kalman filters with meaningful dynamics have 

predictive power. After reviewing moving averages and the general equation for its lag at 

order n with respect to the one at first order, we examine 4 Kalman filter models: the 

common one with speed and acceleration concepts, the traditional statistical one referred 

to as the local linear trend, a new model that splits price contribution between short and 

long term effect and a last one that encompasses all above with an additional term 

corresponding to the position of the price with regards to its extremums. We find 

empirically that model 4 performs far better than any other models. We also confirm that 

KF models have zero lag and capture price dynamic better than previous combinations of 

moving averages like DEMA or TEMA. We confirm on model 4 that oscillators and trend 

following indicators are a powerful combination that performs better than any single 

indicators. 
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APPENDIX 

Proof A.1: 

We want to prove  

𝐿𝐴𝐺 𝑀𝐴⨀𝑘(𝑤0, … , 𝑤𝑁) = 𝑘  𝐿𝐴𝐺 𝑀𝐴(𝑤0, … , 𝑤𝑁) (EQ.2.7) 

For k=1, this result is obviously true. If the result is true at order 𝑘 − 1, let us show that it 

holds at order 𝑘. We want to compute the following lag 

𝐿𝐴𝐺 𝑀𝐴⨀𝑘(𝑤0, … , 𝑤𝑁) = 

∑ 𝑤𝑖1
…𝑤𝑖𝑘

𝑇𝑖1+⋯+𝑖𝑘
𝑁
𝑖1=0,…,𝑖𝑘=0

∑ 𝑤𝑖1
…𝑤𝑖𝑘

𝑁
𝑖1=0,…,𝑖𝑘=0

  (A.1.1) 

Which can be reformulated as: 

∑ 𝑤𝑖1
…𝑤𝑖𝑘−1

∑ 𝑤𝑖𝑘
𝑁
𝑖𝑘=0 (𝑇𝑖1+⋯+𝑖𝑘−1

+𝑇𝑖𝑘
)𝑁

𝑖1=0,…,𝑖𝑘−1=0

∑ 𝑤𝑖1
…𝑤𝑖𝑘−1

∑ 𝑤𝑖𝑘
𝑁
𝑖𝑘=0

𝑁
𝑖1=0,…,𝑖𝑘−1=0

 (A.1.2) 

Or    

∑ 𝑤𝑖1
…𝑤𝑖𝑘−1

𝑇𝑖1+⋯+𝑖𝑘−1
𝑁
𝑖1=0,…,𝑖𝑘−1=0

∑ 𝑤𝑖1
…𝑤𝑖𝑘−1

𝑁
𝑖1=0,…,𝑖𝑘−1=0

+
∑ 𝑇𝑖𝑘

𝑁
𝑖𝑘=0 𝑤𝑖𝑘

∑ 𝑤𝑖𝑘
𝑁
𝑖𝑘=0

 (A.1.3) 

Or  = (𝑘 − 1)  𝐿𝐴𝐺 𝑀𝐴(𝑤0, … , 𝑤𝑁) +  𝐿𝐴𝐺 𝑀𝐴(𝑤0, … , 𝑤𝑁)   (A.1.4) 

Which proves the result! 

Proof A.2: 

If we denote by a and b the coefficient of the linear combination between the moving 

average and the second order recursive moving average, the resulting formula should be 

     𝑎𝑀𝐴 + 𝑏𝑀𝐴⨀2    (A.2.1) 

With the constraints that first, the sum of the coefficients should be equal to 1, hence 

      𝑎 + 𝑏 = 1    (A.2.2) 

Second, the lag of the resulting combination should be 0, hence  

      𝑎 + 2𝑏 = 0    (A.2.3) 

It is easy to solve this linear system and find   
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𝑎 = 2,   𝑏 = −1   (A.2.4) 

Which is the result! 

Proof A.3: 

If we denote by a, b and c the coefficient of the linear combination between the moving 

average, the second and the third order recursive moving average, the resulting formula 

should be 

     𝑎𝑀𝐴 + 𝑏𝑀𝐴⨀2 + 𝑐𝑏𝑀𝐴⨀3   (A.3.1) 

With the following constraints. First, the sum of the coefficients should be equal to 1, hence 

      𝑎 + 𝑏 + 𝑐 = 1    (A.3.2) 

Second, the lag of the resulting combination should be 0, hence  

      𝑎 + 2𝑏 + 3𝑐 = 0   (A.3.3) 

Third, we impose that the coefficient for the third order recursive moving average is equal 

to 1, 

      𝑐 = 1     (A.3.4) 

It is easy to solve this linear system and find   

𝑎 = 3,   𝑏 = −3, 𝑐 = 1  (A.3.5) 

Which is the result! 


