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Preface

This thesis is comprised of four self-contained research papers taking us through a journey
into the realms of quantitative finance. We join the ranks of practitioners and academic
researchers who work on pricing of financial derivatives. A derivative is a financial in-
strument that derives its value from the value of some underlying quantity or asset, for
instance, the stock price of a listed company. This means that a derivative does not have
any intrinsic value in itself but should be priced relative to the value of the underlying and
other derivatives traded in the market. The importance of sound pricing of such products
is stressed by the sheer size of the derivatives market. Looking at just over-the-counter
(OTC) products, the market value of outstanding derivatives equaled $24.7 trillion by
the end of 2012 with a whopping $632.6 trillion in notional value (Bank for International
Settlements (2013)). The research papers consider different aspects of derivatives pricing;
yet, a common aim is to solve problems of a quantitative nature but with a clear financial
grounding. Mathematics is an invaluable tool in this endeavor, but the story — we hope

— is one of finance.

In the first two chapters we take a step into the risk anatomy of an equity option.
Viewed as a package of risk exposures to the underlying stock, the option’s fair value must
naturally price in all inherent risks and the magnitudes of the risk premiums will depend
on the assumed stochastic dynamics of the underlying stock. Nevertheless, this notion
is somewhat lost in modern derivatives pricing. The hunger for ever more sophisticated
mathematical models to capture the informational content of option prices has called
for the use of heavy numerical artillery, even to price plain vanilla options. However,
numerical methods act as a black box that fails to reveal the link between the risks that

actually drive option prices, the structural properties of the option pricing model, and the



ultimate effects on the generated surface of option prices. To address this issue, in the
first chapter, we expand the true option price around the classical Black-Scholes price. In
particular, we show how the true price of an option is determined by a series of premiums
on higher-order risks which are not priced under the Black-Scholes model assumptions. In
practice, however, options are typically quoted in terms of implied volatilities. So, in the
second chapter, we extend our analysis and explore how option risks and the analytical

features of the underlying model are translated into implied volatilities.

In the third chapter, we study options on realized variance and, in particular, the
impact of jump distributions on the implied volatility of variance. Despite the common
notion to include jumps in the variance dynamics, an examination of the distribution
of such jumps and its financial implications appear — to the best of our knowledge —
disturbingly absent from the literature. The chapter shows that the particular distribution
of jumps does have a profound impact on the shape of the implied volatility smile of
variance. Some jump distributions imply a behavior of the volatility of variance that is
clearly at odds with the upward-sloping smile observed in variance markets such as, for
example, options on CBOE’s VIX index. Evidently, correctly grasping the distribution
of jumps in variance is of paramount importance for trading and risk management of

volatility derivatives. This chapter attempts to fill this gap.

Finally, in the last chapter we take a step back from the classical pricing paradigm and
address risks of the derivatives business which used to be neglected. Prior to the recent
financial crisis, dealers tended to ignore the credit risk of high-quality rated counterparties,
but the lesson of history has shown that this was a particular dangerous assumption. In
addition, as banks became reluctant to lend to each other with the crisis rumbling through
the Western economies, the spread between the rate on overnight indexed swaps (OISs)
and the LIBOR rate blew up making it apparent that LIBOR is contaminated by credit
risk. To keep up with these sudden market changes, dealers today make a number of
adjustments when they book derivatives trades, especially, in the OTC market. The credit
valuation adjustment (CVA) corrects the price for the expected costs to the dealer due
to the possibility that the counterparty may default, while the so-called debit valuation
adjustment (DVA) is a correction for the expected benefits to the dealer due to his own
default risk. The latter adjustment has the perverse effect that the dealer can book a

profit as his default risk increases.

Most controversially, however, dealers often adjust the price for the costs of funding the

trade. In the industry, this practice is known as a funding valuation adjustment (FVA).
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When a derivatives desk executes a deal with a client, it backs the trade by hedging it with
other dealers in the market. This involves borrowing or lending cash and other assets.
Classical derivatives pricing theory rests on the assumption that one can borrow and lend
at a unique risk-free rate of interest. This assumption may have been reasonable prior
to the crisis with banks funding their hedging strategies at LIBOR. But with drastically
increasing spreads, LIBOR is clearly an imperfect proxy of the risk-free rate. In this final
chapter we attempt to develop a general pricing framework for valuation of derivatives
deals under the presence of complexities such as collateralization, counterparty credit risk

and, in particular, funding costs.
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Summary

In the following we provide short summaries of each of the four chapters of the thesis.

English summary

In Chapter 1 we derive a closed-form expansion of option prices in terms of Black-
Scholes prices and higher-order Greeks. We show how the true price of an option less
its Black-Scholes price is given by a series of premiums on higher-order risks that are
not priced under the Black-Scholes model assumptions. The expansion can be used for a
broad class of option pricing models with dynamics governed by time-changed Brownian
motions. Specifically, we study expansions for exponential Lévy models such as the Vari-
ance Gamma and the Normal Inverse Gaussian models as well as their stochastic volatility
counterparts, e.g., the VGSV and NIGSV models. Moreover, we consider extensions of
the expansion to a more general subclass of affine jump-diffusion models for which the
pricing transform may not be known in closed form. This chapter is based on a research

paper published in Quantitative Finance.

In Chapter 2 we derive a closed-form expansion of implied volatility and at-the-
money skew. The expansion is simple, transparent, and easy to implement. It is based on
a mixing representation of the underlying model. We apply the expansion to the Heston
stochastic volatility model as well as the Variance Gamma model and provide a clear anal-
ysis of the at-the-money term structure of implied volatility. However, the expansion may
be used for a broad class of option pricing models displaying both jumps and stochastic

volatility in the underlying dynamics. Finally, we explore two domains of application of



the expansion: one as a control variate to speed up Fourier option pricing, and another

one as a fast, first-order approach for calibration to at-the-money volatilities and skews.

In Chapter 3 we examine the impact of the distribution of jumps in realized vari-
ance. We show that the jump distribution has a profound impact on the characteristics
and shape of the implied volatility of variance smile. Some jump distributions predict im-
plied volatilities that are clearly at odds with the upward-sloping volatility skew observed
in variance markets. We consider a tractable affine stochastic volatility model that gen-
eralizes the seminal Heston (1993) model by augmenting it to jumps in the instantaneous
variance. The model allows us to isolate the unique impact of the jump distribution and
we provide sufficient conditions for the asymptotic behavior of the volatility of variance
for small and large strikes. In particular, we show that for several specific jump distri-
butions, one obtains fundamentally different shapes of the implied volatility of variance

smile.

In Chapter 4 we develop an arbitrage-free framework for consistent valuation of
OTC derivative trades with collateralization, counterparty credit risk, and funding costs.
Based on the risk-neutral pricing principle, we derive a general pricing equation where
CVA, DVA, and FVA are introduced by simply modifying the payout cash-flows of the
deal. Funding risk breaks the bilateral nature of the deal price and makes the pricing
problem a highly non-linear and recursive one. This means that FVA is not generally
an additive adjustment as commonly assumed by market participants. Our framework
addresses common market practices of ISDA governed deals without restrictive assump-
tions on collateral margin payments and close-out netting rules. In particular, we allow
for asymmetric collateral and funding rates. The pricing equation can be cast as a set
of iterative equations that can be solved by least-squares Monte Carlo and we propose
such a simulation algorithm. Our numerical results confirm that funding risk does have

a non-trivial impact on the deal price.

Dansk resumé

I kapitel 1 udleder vi en ekpansion af optionspriser som funktion af Black-Scholes priser
og hgjere ordens Greeks. Vi viser, at prisen pa en option fratrukket sin Black-Scholes pris

er givet ved en kombination af preemier pa hgjere ordensrisici, der ikke er prisfastsat under
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Black-Scholes” modelantagelserne. Ekspansionen kan anvendes pa en bred vifte af mod-
eller for optionsprisfastsaettelse, hvor den underliggende dynamik er drevet af Brownske
bevaegelser pa stokastisk tid. Specifikt studerer vi ekspansioner for eksponentielle Lévy-
modeller, som f.eks. Variance Gamma og Normal Inverse Gaussian modellerne, samt
de tilsvarende modeller med stokastisk volatilitet, dvs. VGSV og NIGSV modellerne.
Ydermere undersgger vi udvidelser af ekspansionen til en mere generel delklasse af affine
spring-diffusionsmodeller, hvor Fourier-transformationer til optionsprisfastsaettelse ikke
findes i lukket form. Dette kapitel er baseret pa en forskningsartikel publiceret i Quanti-

tative Finance.

I kapitel 2 udleder vi en ekspansion for den implicitte volatilitet og for skeevheden
af at-the-money volatiliteten. Ekspansionen er baseret pa en mixing-repraesentation af
den underliggende model. Den er simpel, intuitiv og let at implementere. Vi anvender
ekspansionen pa Hestons stokastiske volatilitetsmodel samt Variance Gamma-modellen,
og vi giver en grundig analyse af den at-the-money implicitte volatilitetsstruktur over
tid. Ekspansionen kan anvendes pa en bred vifte af optionsprisfastseettelsesmodeller med
bade spring og stokastisk volatilitet i den underliggende dynamik. Ydermere undersgger
vi to mulige praktiske anvendelser af ekspansionen. For det fgrste foreslar vi, at den
kan anvendes som en kontrolvariabel i forbindelse med optionsprisfastsaettelse baseret pa
Fourier transformation. For det andet kan ekspansionen anvedes til hurtig, fgrsteorden-

skalibrering af modeller til at-the-money volatiliteter og skaevhedsveerdier.

I kapitel 3 undersgger vi effekten af sandsynlighedsfordelingen for spring i realiseret
varians. Specifikt viser vi, at springfordelingen har en afggrende betydning for formen pa
det sakaldte implicitte volatilitetssmil for variansoptioner. Nogle springfordelinger leder
til implicitte volatiliteter, der er tydeligt inkonsistente med den positive heeldning pa
volatilitetssmilet, som man observerer i variansmarkeder. Vi anvender en affin stokastisk
volatilitetsmodel, der generaliserer den populeere Heston (1993) model ved at tillade spring
i variansen. Modellen ggr det muligt at isolere effekten af springfordelingen, og vi udleder
tilstraekkelige betingelser for variansvolatilitetens asymptotiske adfeerd for sméa og store
optionsstrike-veerdier. For en raekke specifikke fordelinger for spring i variansen viser vi,

at disse fgrer til fundamentalt forskellige volatilitetssmil for variansoptioner.

I kapitel 4 udvikler vi en konsistent veerdianseettelsetilgang for OTC handler un-
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der sikkerhedsstillelse, modpartskreditrisiko og finansieringsomkostninger. Vi udleder en
generel risikoneutral prisligning, hvor CVA, DVA og FVA indgar som simple modifika-
tioner af handlens payout-pengestrgomme. Finansieringsrisiko bryder handelsprisens bi-
laterale natur og ggr prisfastsaettelse til et seerdeles ikke-linesert og rekursivt problem.
Dette betyder, at FVA ikke generelt kan betragtes som en additiv priskorrektion, som
det ellers ofte antages blandt praktikere. Vores veerdiansaettelsestilgang imgdekommer
markedspraksis for ISDA-regulerede handler uden at opstille restriktive antagelser for
sikkerhedsstillelsesproceduren og reglerne for sakaldt close-out netting. Konkret tillader
vi asymmetriske renter bade pa de sikkedsstillede aktiver og i forbindelse med finansierin-
gen af handlens risikoafdackningsstrategi. Vores prisligning kan lgses iterativt ved hjeelp
af least-squares Monte Carlo metoden og vi opstiller en konkret simulationsalgoritme.
Vores numeriske resultater bekraefter, at finsieringsrisiko har en ikke-triviel betydning for

handelsprisen.
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Risk Adjustments of Option Prices
under Time-changed Dynamics

E. Nicolato" and D. Sloth'

T Department of Economics and Business, Aarhus University, Aarhus

Abstract

We derive a closed-form expansion of option prices in terms of Black-Scholes prices
and higher-order Greeks. We show how the true price of an option less its Black-
Scholes price is given by a series of premiums on higher-order risks that are not
priced under the Black-Scholes model assumptions. The expansion can be used for
a broad class of option pricing models with dynamics governed by time-changed
Brownian motions. Specifically, we study expansions for exponential Lévy models
such as the Variance Gamma and the Normal Inverse Gaussian models as well as
their stochastic volatility counterparts, e.g., the VGSV and NIGSV models. More-
over, we consider extensions of the expansion to a more general subclass of affine
jump-diffusion models for which the pricing transform may not be known in closed

form.

1.1 Introduction

Getting to grips with the risk anatomy of an option is paramount for understanding
its price. Viewed as a package of risk exposures to the underlying, the option’s fair
value must naturally price in all inherent risks. Moreover, the magnitudes of the risk
premiums will depend on the assumed dynamics of the underlying asset. Yet, the notion
is somewhat lost in modern derivatives pricing. The hunger for ever more sophisticated
models to capture the informational content of option prices has called for the use of heavy

numerical artillery, even to price plain vanilla options. For example, in the presence of



jumps and stochastic volatility in the underlying dynamics, one often resorts to Fourier
transform methods (Carr and Madan (1999), Lewis (2001), and Lipton (2002)). Given
the characteristic function of the model, these methods are indeed very efficient for option
pricing in terms of accuracy. However, Fourier methods act as a black box that fails to
reveal the link between the risks that actually drive option prices, the structural properties
of the option pricing model, and the ultimate effects on the generated surface of option
prices.

In this paper, we take a step into the anatomy of option prices and explore the direct
relation between option risks and the option price for a generalized class of option pricing
models. Inspired by the results of Drimus (2011), we expand the true option price around
the Black-Scholes price. Despite the empirical shortcomings, its broad market acceptance
still makes the model of Black and Scholes (1973) the natural reference point. We show
how the true price of an option less its Black-Scholes price is given by a series of premiums
on higher-order risks which are not priced under the Black-Scholes model assumptions.

Every day traders hedge their option books against exposures to convexity of volatility
and sensitivity of the Delta to the level of volatility; in market jargon, so-called Volga
and Vanna risks. Our expansion clarifies how these risks are priced across different option
pricing models, and we show how the risk adjustments are directly related to the features
and parameters of the particular model at hand. Besides simply demystifying option
prices of sophisticated models by bringing them down to the risks that actually generate
them, this gives the market participant the opportunity to select the model that prices
these risks consistent with his or her own expectations.

Approximations of option prices are by no means the dawn of a new day; attempts
in this direction have been the focus of research for as long as we have had options. A
significant part of the previous literature deals with computing option prices through
an approximation of the risk-neutral density. Abadir and Rockinger (2003), Ait-Sahalia
(2002) and Egorov et al. (2003) consider such approximations for diffusion processes,
while jump diffusions and their multivariate extensions are considered in Yu (2007) and
Filipovic et al. (2011). In addition, saddlepoint approximations of densities are studied
in Rogers and Zane (1999), Xiong et al. (2005) and Ait-Sahalia and Yu (2006). Finally,
Sartorelli (2010) and Poulsen and Ribeiro (2012) consider Edgeworth expansions of the
density to approximate option prices in the Heston (1993) model.

Other popular approximations for options are based on perturbation and asymptotic

methods. A classical reference is Hagan et al. (2002) who employed singular perturbation

3



techniques to the PDE of the SABR model assuming small volatility. Lewis (2000) derives
an asymptotic expansion for small volatility of volatility in a stochastic volatility model.
Similar results were obtained by Lee (2001) assuming slow mean-reversion of volatility,
Fouque et al. (2000) study the case of fast mean-reverting volatility, while Antonelli and
Scarlatti (2009) make an expansion around zero correlation. Medvedev and Scaillet (2007)
include jumps and derive an asymptotic expansion in a general jump-diffusion stochastic
volatility model. Recently, Alos et al. (2007) and Benhamou et al. (2009) have derived
approximations of options using Malliavin calculus. Common to these methods is the fact

that the approximations are restricted to either short or long maturities.

This work, however, is more closely related to the approach in Lewis (2000) and the
recent papers of Alos (2012), Kristensen and Mele (2011) and, in particular, Drimus (2011)
who consider direct expansions of option prices around the Black-Scholes price. These
studies are limited to diffusion-type models without jumps. Nonetheless, to generate
sufficient variability and asymmetry in short-term returns to match implied volatility
skews, we need to allow for jumps. We derive a unifying expansion framework for the
broad class of option pricing models driven by a time-changed Brownian motion. This
allows us to obtain closed-form expansions of option prices valid under both jumps and
stochastic volatility in the underlying dynamics. Analytical and numerical results are
presented for popular models such as exponential Lévy models (e.g., Madan et al. (1998),
Barndorff-Nielsen (1998)), Lévy stochastic volatility models (Carr et al. (2003)) as well

as more general affine model constructions.

For the considered model cases, the accuracy of the expansion is well within one
volatility point which is usually the bid-ask spread around at-the-money for even liquid
equity underlyings. Moreover, we find that the expansion can be used for speedy, first-
order calibration and to provide smart initial values for a more accurate, but often time-
consuming calibration routine. This is particularly attractive for affine models without
a closed-form pricing transform, in which case calibration based on Fourier inversion can

be a daunting task in terms of computational time.

The paper is organized as follows. In Section 2 we describe the general model setup and
derive the expansion of option prices in terms of the Black-Scholes price and higher-order
Greeks. In Section 3 we consider the simplest case of expansions under Lévy dynamics.
This is further generalized in Section 4 where we consider the case of Lévy stochastic
volatility models, which allows for both jumps and stochastic volatility. In Section 5 we

investigate extensions to more general affine jump-diffusion stochastic volatility models.
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Finally, Section 6 concludes the paper. The facts on semimartingale characteristics, cu-
mulant processes and affine processes which are relevant for this work are collected in the

Appendix.

1.2 (General Model Setup and Derivation of

Expansions

We consider a general market model specified via a bivariate semimartingale process
(X,V) which lives on a given filtered probability space (2, F, (F;)o<i<r+, Q) and takes
values in R x R, . The positive component V is assumed to be an increasing process with

Vo = 0 and cumulant process K" (¢) given by

KtV(g):/Ot/-cZ(C)ds with /()= + [ (<" —1) FV(dw),  (L1)

R

where b" is a positive predictable process while F' is a transition kernel from (Q xR, P)
to (R, B) with FV({0}) = 0 and [ (1 A z)F(dz) < +oco. Hence, the process V admits
differential characteristic triplet (b",0, F) relative to the zero truncation function and
the Lévy exponent £ (¢) is well defined for any ¢ € C_ where C_ = {z € C: Rz < 0}.

We furthermore assume that the process V' is regular enough to satisfy the following

property.

Assumption 1. We assume that for all ( € R_ the exponentially compensated process
M(C) given by
My(¢) = e " Orev (1.2)

s a true Q-martingale.

The real-valued component X represents the source of randomness driving the under-
lying asset price process and it is constructed via the time-change technique. Specifically,
we assume that X admits the following representation

Xi =0V, + Wy, (1.3)

where W is a standard Brownian motion independent of V' and the parameter 6 is a real
constant introducing skewness in the distributions of X as well as correlation between X

and V. Thus, X is obtained by Bochner’s subordination of a Brownian motion with drift

bt



to V which can be interpreted either as the stochastic clock or the cumulative random
variance of the return-driving process. In this work the second interpretation is more
natural and we will refer to V' as the total variance process.

For notational convenience, we will often use the re-parameterization ¢ = 6 + % and
refer to ¢ as the skewness parameter. We shall impose the simplifying constraint that
the skewness parameter satisfies ¢ < 0. This assumption is not restrictive in practice but
consistent with the negative skew of volatility surfaces observed in equities markets.

Next, we derive the differential characteristics of the process X.

Proposition 1. The process X has cumulant process KX(¢) given by
KR (Q) =K/ (0¢ + 3¢,
and it is well defined for those ¢ € C with RC € [0, —26]. Relative to a fized truncation
function h(z), X admits differential triplet (b%,cX, FX) given by
b = 0b + [g, FY(du) [ h(z)pu(dz; O u, u),
X = b, (1.4)

FX(B) = fR+M(B;9u,u)FtV(du), B € B(R),

where p(dx; m,v) denotes the distribution of a Gaussian variate with mean m and variance

V.

Proof. Proceeding by conditional expectations, it follows immediately that the process
e K (O+¢Xt g a local martingale for all those ¢ € C for which KX (¢) is well-defined.
Moreover, we have that

/R(1 A 2?) X (do) = /R+ /R(l A 22)pu(de; 0w, u) FY (du)
< e (/R,u(dx;@u,u)/\/RJ:QM(da:;Hu,u)) FY (du)

= (1 A (u+ 92u2)> FY (du) < oo,
Ry

and therefore expression in (1.4) yields a well defined transition kernel F'X. Finally the
fact that (bX,cX, FX) is the differential triplet of X follows from the uniqueness of the

cumulant process and verifying that K~ ({) satisfies the following

KX(¢) = /0 t (gbgf + ;g%gf + /]R (e =1 = h(x)¢) X (dx)) ds.



Finally, assuming a simplified economy with zero interest rates and dividend yields,

we specify the dynamics of an asset price process S as follows
Sy = Spe KEW+Xe — g oK+ X (1.5)

where KV (c) is well-defined as ¢ < 0. Due to Assumption 1 and the independence between
W and V, the process S in (1.5) is a true martingale and therefore describes the risk-
neutral dynamics of the asset price. The generalization to the case of non-zero constant
interest rates and dividend yields is straightforward.

The applicability of the presented model class relies on the tractability of the joint

Laplace transform of the total variance Vz and the cumulant KY. evaluated at ¢
Lor(u,v) = Ele™r(©+oVr] (1.6)
defined in the domain
Dr = {(u,v) € C?: B[|e“Kr@+oVr|] < —l—oo}.

For example, in order to compute option prices based on Fourier or other transform
methods, it is quite crucial that L is available in closed or semi-closed form as the

characteristic function of the log-price log St is given by
, . 1
E [e”logST} = Sy Lr(—iz,iz0 — 52'2) (1.7)

As we shall see, the Laplace transform Lr is also the computational engine for the option
price approximation that we develop.
At the core of our approach is the fact that the price process S in (1.5) can be

represented as the product of two positive martingales as follows
Sy = Sy & e 2Vt (1.8)
where the spot-correcting process & is the martingale with mean-value one given by
g = e K@+l (1.9)

Notice that if the total variance process V' is absolutely continuous, the spot correcting

martingale degenerates to the process identically equal to one due to the fact that
t
v, — / Wds  and  KY(C) = (Vi
0
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Hence, to allow for a flexible behavior of the risk-neutral skewness we will implicitly
assume the presence of jumps in the paths of the total variance process.

In complete analogy to Romano and Touzi (1997), we can exploit representation (1.8)
to express the price of a European call as the risk-neutral expectation of the Black-Scholes
price evaluated in the spot-corrected price of the underlying Sp& and the total variance
V. Specifically, for a European call option with strike K and expiry 7', we obtain the

following mixing representation for its price C'(Sp,T') at time ¢t = 0
C(So, T) = E[(Sr — K)"| = E[Cps(So&r, V1)l (1.10)

where Cpg(S, V') denotes the Black-Scholes price of a call option in terms of the spot

price and total variance of the underlying asset. That is,
Cps(S.V) = SB(d.) — KO(d_). (L.11)

where
\/_
dy = — £+ —
VYV 2

with = log(S/K) denoting the log-moneyness. When the spot-correcting martingale

: (1.12)

¢ =1, i.e.,, when V is absolutely continuous or when the skewness parameter ¢ = 0, we
can proceed along the lines of Proposition 3.1 in Renault and Touzi (1996) to show that
the generated implied volatility smile is symmetric around the at-the-money point x = 0.
On the other hand, allowing for the presence of jumps in V' and letting ¢ < 0 enables the
model to capture the empirically-observed negative volatility skew.

We are now ready to derive a simple, closed-form expansion of the call price in terms
of a Black-Scholes price and higher-order Greeks. Like Drimus (2011), we apply a two-
dimensional Taylor series to expand (1.10) in the underlying asset price and total variance
around the point (S, EVr). Truncating the expansion to the n-th order and recalling that

E[¢r] = 1, we obtain the following approximation of option prices at time ¢t = 0

C(So,T) =~ CBS(SO,EVT)

n 1 0*Cpg
Z_: ZO D! 0SIOVFE (s Bvr)

Sy El(ér = 1)! (Ve — EVp)F]. (1.13)

Clearly, the n-th order approximation given in (1.13) is meaningful only under the as-
sumption that all the moments entering the expression are finite. Also, the practical

applicability of the approximation relies on the possibility of computing expectations of
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the type E[V]"&}], preferably in closed form. Well-known results from probability theory
relate these issues to the regularity and the tractability of the joint Laplace transform L
introduced in (1.6). Sufficient mechanics for computing the moments are summarized in

the proposition below.

Proposition 2. Assume that for a given n > 0 both the points (0,0) and (—n,nc) lie
in the interior domain Dy of the Laplace transform Lp. Then E[Viek] < 400 for all
m>0,0<k<n and it is given by
m ¢k o
BV €] = S (u.0) . (1.14)

ov u=—ku=ke

Proof. The result follows from the fact that the Laplace transform is analytic in the
interior of its domain and can be found in, e.g., Hoffmann-Jgrgensen (1994), Section 4.19.
[

Notice that even when all the moments are finite, there is no guarantee that the expansion
(1.13) converges with higher-order approximations capturing the true option prices more
accurately. As observed by Drimus (2011) (see also Carr (2000)), this is due to the fact
that a Taylor expansion of the Black-Scholes price in the spot and variance has a finite
radius of convergence, while here we expand the mixing representation (1.10) over the
entire domain (S,V’) € (0,00) x (0,00). However, this is not a shortcoming peculiar to
our specific approach but rather a common trait of many expansions proposed in the
literature.

The major advantage of the expansion (1.13) is in adding transparency to how option
prices are generated as deviations from the simplifying Black-Scholes prices through a
series of risk-adjustment terms. For example, let us consider the second-order approxi-

mation which will play the main role in the numerical examples below. It is given by

19°C
C(50.T) % Cps + 555 % Elér = 1)
19°Cps
+ 5 g Bl(Ve = BV’ (1.15)
0*C
+ gy S0 Blr = 1)(Ve — EVy)),



where we have dropped the common argument (Sy, EVr). The Greeks are given by

GQC’BS (S, V) (p(d+)

Gamma = 52 = N
0*Cyg Sp(dy)
VOlg(l = an (S, V) = W(d+d_ — 1)
(92035 (p(d+)d,
Vanna = 5551 (S,V) = B 7

with ¢(-) being the density of the standard normal distribution and d defined as above.
Market participants try to cope with smile effects by hedging their exposures not
only to classical Greeks but also to higher-order sensitivities like the Vanna and Volga.
This notion is elegantly captured by the expansion. Taking the Black-Scholes price as
its reference, the expansion adjusts the option price for volatility convexity and cross-
convexity; smile risks that are not priced in the classical Black-Scholes model.

1.3 Expansions under Lévy Dynamics

In this section we specialize the general framework described in Section 1.2 to the case

where the total variance process V' is specified as a Lévy subordinator, i.e.,
V= (Z1)ez0,

where Z is an increasing process with independent and stationary increments’.
For such a process the differential triplet, termed the Lévy-Khintchine triplet, is de-

terministic and time-independent with
by =pB% and FY(dx)=v?(dzx) forallt >0,

where 7 > 0 and v?(dz), termed the Lévy measure, is a measure on R, such that
Je, (L A z)v?(dz) < co. Thus, also the cumulant process is deterministic and takes the
form K (¢) =t - kZ(¢) where k7 is the Lévy-Khintchine exponent

KZ(C) = (A% + /R (= 1 (). (1.16)

'For a comprehensive account on Lévy processes and their applications in financial modeling, we refer
the reader to Cont and Tankov (2004)
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Assumption 1 is automatically satisfied by any subordinator Z, and Proposition 1 implies

that the associated X process is a Lévy process
X = (Lt)e=o
with triplet (8%, 4%, v*) computed according to equations (1.4)
Bt = 057+ fo, v (du) [ h(x)pu(dr; 0 u, u),
o= B (1.17)
vH(B) = [g, (B;0u,u)v?(du), B € B(R).

Correspondingly, the resulting asset-pricing model in (1.5) belongs to the class of ezpo-
nential Lévy models.

If we furthermore assume that there exists ¢ > 0 such that the Lévy exponent xZ in
(1.16) satisfies kZ(g) < oo, then the expansion (1.13) can be truncated at any desired
order as Proposition 2 ensures that E[V;"¢}] < oo for all n,m > 0, with formula (1.14)
yielding

E[Viren] = emtor O rre)] (1.18)
do™ v=ne
We note in passing that we may also employ the following alternative representation

E[Vfy) = 00 =T £ (/) (119)

where Q" is the probability measure defined by the following Esscher transform

dQ" —k? (ne)t +neV;
= et +neVi, 1.20
dQ |7, ( )

Under Q" the total variance process V is a subordinator Z with exponentially tilted Lévy

measure
U(du) = e"v? (du) (1.21)

and unchanged drift B = 3%,

1.3.1 Specific exponential Lévy models

Popular exponential Lévy models that can be obtained in this framework include the

Hyperbolic models suggested by Eberlein and Keller (1995), the Normal Inverse Gaussian
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(NIG) process proposed in Barndorff-Nielsen (1998), the Variance Gamma (VG) process
introduced by Madan and Seneta (1990), the Meixner process studied in Schoutens (2002)
and the CGMY process considered in Carr et al. (2002) and Boyarchenko and Levendorskii
(2002).

In the following we concentrate on the VG model and the NIG model. While very
easy to describe, the two specifications differ considerably in their structural properties,
with the VG process displaying paths of finite variation and the NIG process displaying
paths of infinite variation.

The VG model is obtained by specifying the total variance V' process as a Gamma-
subordinator, i.e., by setting the unit-time distribution as a Gamma law with density
function

f(z)= mxa_le_bw, x>0, ab>0.
a

The corresponding Lévy exponent is given by

1 —bx

K7(¢) = log ((1—@—1)> — /Ooo(e@ 1) da, (1.22)

T

aefbac

x

dz. The mean and

implying that the drift 32 = 0, while the Lévy measure v%(dx) =
variance are given by ,

anZ(()) - % j@KZ(O) - b%
Notice that in the VG model the expansion of option prices can be truncated at any order
n as the Lévy exponent 7 in (1.22) is finite for ¢ < b. Moreover, the exponential tilting
(1.21) preserves the Gamma property implying that the total variance process V' is still

a Gamma-subordinator under Q" defined in (1.20), albeit with different parameters

a = a, b=b—nc.
Therefore, the representation (1.19) readily provides all the cross-moments E[V/"¢}] via a
re-parametrization of simple moments of a Gamma distribution. The explicit expressions

entering the second-order approximation (1.15) are given as follows
2
_a 9 @ a
E[Vr] _TZ’ EVi =T ﬁ—i_Tﬁ’

1 1—cb )2\
BVrér] = BY [Vr] = Tbic’ Bl¢7) = (<1—;cb)1> :
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While very convenient for nesting the VG model in the general framework of Section 1.2,
the above description in terms of the parameters (a, b, ¢) is not the most commonly used in
the literature. Madan et al. (1998), to whom we refer below, adopt another parametriza-

tion (o, v, ) which stems from the equivalent time-change representation
Xt = 9% —+ O'Ww,

where the unit-time is specified as a Gamma law with mean one and variance v. The

relationship between the two parameterizations is given by

0= (c—;)z. (1.23)

, a

o=+
) b Y
For later use, we also report the parametrization (C, G, M) employed in Schoutens et al.
(2004) which is based on the alternative representation of a VG process X as a difference

of two independent Gamma-subordinators

Xt — Ft(07 M) - Ft(07 G),

where
C=a,

5 -1

c—1/2 1  c¢—1/2
M= < 2b >+2b+ 20 ’
5 -1

B c—1/2 1 c—1/2

¢= < 2b >+2b_ 2b

As a second example, we consider the NIG model. This model is obtained by defining V'
as a subordinator with unit-time distributed according to an Inverse Gaussian (IG) law

with density function

a a2
flz)= —eabx_%e_(w“?)/?, x>0, a,b>0.

V21

The Lévy exponent is given by

K(C) = ab — ayJb? — 2 = /Ooo(e@ —1) \/a_e_dix , (1.24)
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and the mean and variance read as follows
d a ?
—r7(0) = — —r7(0) = — .
Similar to the VG case, the closed-form expansion of NIG option prices can be truncated
at any order n as xZ(¢) < oo for ¢ < b*/2. From the expression of the Lévy measure in
(1.24) we see that the IG distribution is closed under the exponential tilting in (1.21).
Under the measure Q" in (1.20), the total variance process V' is still an IG-subordinator

with parameters

a=a, b=vb2 - 2nc.

Once again it is straightforward to derive the cross-moments from moments of the IG
distribution via representation (1.19). The moments entering the second-order approxi-
mation are given by
2
_aa 91 @ a
E[V7] _TE’ ElVi|=T b—2+Tﬁ,
a b2 /b2
ElV; =T 7 E 2 :eaT(2 b2 —2¢ — b—4c—b)‘
[ TgT] m [gT]

Also the NIG process is usually not described in terms of the parameters (a, b, ¢). In what
follows we will refer to the («, 3, §)-parameterization employed for example in Kéllezi and

Webber (2004) which corresponds to the following time-change construction

where the unit-time is specified as an IG law with parameters a = 1 and b = §v/a? — 52
The relationship between the two parameterizations is given by

a=96, b= /a®—32, c=p+1. (1.25)

1.3.2 Numerical results

Let us bring the approximation to the numbers. We do this in two steps: First, we look
at the numerical accuracy of the approximation to determine its domain of application.
The implied volatilities of the expansion truncated to 2nd order are compared to the true
ones under both VG dynamics and NIG dynamics.

Figure 1.1 compares the true implied volatility surface with the volatility surface

implied by the approximation. For the VG model we use the original parameters ¢ =
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Figure 1.1: Approximated volatilities (lower surface) against true volatilities (upper sur-
face). The approximate surface is moved down by 200 bps for ease of interpretation.
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Figure 1.2: Absolute errors of the approximation.
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Figure 1.3: Approximation of implied volatility for time to maturity fixed to 7' = 1/2
year.

0.1213, v = 0.1686 and § = —0.1436 presented in Madan et al. (1998), while in the
NIG case the parameters? o = 28.4214, 3 = —15.0862 and § = 0.3196 from Kéllezi and
Webber (2004) are used. To compute the true option prices or implied volatilities, we
use an efficient Fourier inversion algorithm based on the Lewis-Lipton approach (Lewis
(2001), Lipton (2002)).3

Figure 1.2 illustrates the numerical errors (in absolute terms) between the true volatili-
ties and the approximated ones. Overall, it seems that the approximation works somewhat
better for VG prices compared to NIG prices, at least for the given parameters. In both
cases, however, we generally observe a pattern of diminishing approximation error as time
to maturity increases. In addition, the validity of the approximation increases in the strike
dimension for larger time to maturity. In fact, for very short time to maturity the second-
order approximation of the left wing of the volatility surface deteriorates, especially for
more than 10% — 15% in-the-money options.

Next, we zoom in on six months to maturity and consider call options in the range
of 20% in and out of the money. Implied volatilities are plotted against moneyness

K = K/S, in Figure 1.3.2. Under VG dynamics, the approximation does a very good

2The parameter set was obtained by moment-matching.

3An alternative fast Fourier transform (FFT) procedure can be found in Carr and Madan (1999),
while Schmelzle (2010) provides a comprehensive overview of Fourier transform methods with applications
to option pricing.
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job mimicking the true implied volatilities. The mean absolute error between the true
and the approximated implied volatilities is 16 bps. Similar in the NIG case, we observe
a decent performance of the approximation, but the deterioration in the left wing for
short-maturity in-the-money options is more pronounced. In this case, the mean absolute
error is 32 bps.

In general, it is not possible to put a bound on the error term associated with the
Taylor series expansion due to the fact that some Greeks of a European call option may
be unbounded. The Gamma, for instance, becomes unbounded as the total variance V'
goes to zero. However, Table 1.1 provides a numerical analysis of the error associated with
the VG approximation. We investigate how the accuracy of the approximation depends
on the parameter values of the VG model and report mean absolute errors for both half-a-
year and one-year options. One observes that the approximation is particularly sensitive
to the ¢ and v parameters. Specifically, the quality of the approximation deteriorates
with low levels of volatility (¢ < 0.10) and high excess kurtosis (v > 0.25). However,
the approximation errors are well within the bid-ask spreads observed in the market. A
similar analysis may be carried out for the NIG approximation.

Finally, we conduct a calibration experiment based on the approximation. Prices of
vanilla calls are generated from a known distribution, i.e., from the VG model and the
NIG model. Next, we calibrate to the generated option prices by minimizing the sum of
squared errors between the prices and the second-order approximation of the prices. In
particular, we study two calibration trials. In Calibration I, we calibrate to a cross-section
of 156 call prices with expiries from 3 months to 3 years and relative strikes from 30% in

the money to 30% out of the money. Specifically, we calibrate over
T € (0.25,0.5,0.75,1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.25, 3.0),

K €(0.7,0.75,0.8,0.85,0.9,0.95,1.0,1.05,1.1,1.15,1.2,1.25, 1.3).

In Calibration II we decrease the relative strike range to 20% in and out of the money.
The maturities are kept the same which leaves us with a cross-section 108 call prices to
calibrate to in this case. The calibrated parameters are provided in Table 1.2 together
with the true parameters of the distribution from which the option prices were generated
in the first place

The experiment shows that calibration based on the approximation produces parame-
ters that are reasonably close to the true parameters. However, one also observes that the

optimal parameters seem to deviate more for calibration I than for II, especially for the

17



Table 1.1: Error analysis of the VG approximation

Parameter o 0.20

Abs. change in o —0.10 —0.05 0.00 +40.05 +40.10
MAE* (T'=0.5) 19.78 895 721 509 5.15
MAE® (T = 1.0) 6.60 3.13 1.55 1.22 1.51

Parameter v 0.15

Abs. change inv —0.10 —0.05 0.00 +40.05 +40.10
MAE? (T =0.5) 0.97 3.72 7.21 13.55 1942
MAE?* (T =1.0) 020 079 155 3.09 4.73

Parameter 6 —0.15

Abs. change in ¢ —0.10 —0.05  0.00 +0.05 +0.10
MAE®* (T'=0.5) 1147 835 7.21  5.02 4.24
MAE? (T = 1.0) 531 284 155 095 087

2 Mean absolute error in basis points between the true and the ap-
proximated implied volatility curves, computed for a strike range of
K € [80;120] and a spot price Sy = 100. The base case parameters
of the VG model are ¢ = 0.20,» = 0.15,0 = —0.15.

Table 1.2: Calibration experiment under Lévy dynamics

True model Calibration I Calibration 11

VG NIG VG NIG VG NIG
o 0.1213 — 0.1224 — 0.1223 -
v 0.1686 - 0.1648 — 0.1596 —
) -0.1436 - -0.1370 - -0.1399 —
« —  28.4214 - 21.5314 — 25.5346
15} - -15.0862 — -9.4843 - -12.2494
) - 0.3169 - 0.2843 - 0.3127
Distance® - — 8.3¢c-4 2.9¢e-3 7.2e-4 1.2e-3
Speed-up® — - 36.0 41.5 65.0 53.0

& Error distance between the true volatility surface and the volatility surface based on the
calibrated parameters measured as the root mean square error (RMSE).

b Relative CPU time of calibration based on the approximation versus Fourier inversion.
The calibration experiment was implemented in a MatLab environment on a standard PC
with 2.53 GHz CPU and 4.00 GB RAM.

18



NIG model. The majority of the calibration errors are due to the wings in the strike di-
mension for short maturities. As noted, the second-order approximation does not capture
these too well under the given parameters, especially for significant in-the-money options.
This explains why the calibration performance in calibration I is somewhat worse than
in calibration II. Fortunately, the moneyness of calibration instruments is generally not
extreme and significantly less extreme for short maturities. In addition, the distance
between the true implied volatility surface and the volatility surface computed based on
the calibrated parameters is less than one third of a volatility point (30 bps) in all tri-
als. Thus, for the considered cases, the approximation seems appropriate as a first-order
calibration approach or at least to provide smart initial values for a more accurate but
time-consuming calibration procedure. The approximation-based calibration results in
a significant speed-up in computational time compared to calibration based on Fourier
inversion. On average it is more than 30 times faster than Fourier inversion. This is only
natural as the approximation is simply a sum of elementary functions. Moreover, the
moments that enter the approximation are constant across strikes for a fixed maturity

and can be safely cached.

1.4 Expansions under Lévy-Stochastic Volatility

Dynamics

It is well known that exponential Lévy models are able to capture the implied volatility
smile or skew for a single maturity, but they are not flexible enough to accommodate
the term structure of volatility, especially for long-term options. On the other hand,
models allowing for stochastic volatility can generate realistic implied volatilities across
maturities but fail to reproduce strong skews and smiles at short maturities. To depict the
volatility surface in the strike as well as in the maturity dimensions, a variety of models
displaying both jumps and stochastic volatility has been suggested in the literature. Carr
et al. (2003) propose the Lévy-Stochastic Volatility process (for short, Lévy-SV process),
where the driving source of randomness X is constructed by subordinating a general Lévy

process L to an absolutely continuous random clock Y

t
X = (Ly,)is0  with Yt:/ v ds, (1.26)
0
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where the instantaneous activity rate y is given by some positive process independent of
L.

In a similar manner we can obtain models belonging to the Lévy-SV class within
the general framework of Section 1.2 by specifying the total variance process V as a

subordinator Z evaluated at an independent and absolutely continuous stochastic time Y
t

V= (Zy,)i>0 with Y} :/ ys ds. (1.27)
0

In this case the differential triplet (b",0, F'V') and the cumulant process K"of V are given
by
b = 8%y,  F/(dr)=v¥(dr)y, and K(¢)=r7(Q)Y,

where (37,0, %) denotes the Lévy-Kintchine triplet of Z, and k7 is theLévy-Kintchine ex-
ponent given in (1.16). Proposition 1 yields the triplet (b%,c*, FX) for the corresponding

process X in (1.3) as follows
bi( :BLytv Cg( :VLyb FtX<dx) = VL<d$C) Yts

where (8%, v%, vF) is the Lévy-Kintchine triplet given in (1.17). Therefore, the driving
process X admits the Lévy-SV process representation (1.26) with L being the Lévy process
characterized by (8%, v% vF).

The Laplace transform of the stochastic clock Y at a given maturity 7" is given by
Lr(2) = E[e?7],

and is defined in the domain DY = {z € C: E[le’7|] < oo}. In virtue of the independence
between Z and Y in (1.27), the joint Laplace transform L defined in (1.6) can easily be

expressed in terms of L} as follows
Lo(u,v) = Ele” @2 @] — £¥ (unz(c) + /'iZ("U)> :

If we assume that there exists € > 0 such that x(¢) < oo, then Proposition 2 entails that
the expansion (1.13) can be truncated at the order n whenever the point —n«x?(c)+xZ(nc)
lies in the interior domain DY of £Y. The relevant moments can then be computed via
the differentiation

m

Ve = 2 (un(e) + w*(0)

0<k< 1.28
dum ’ == (1.28)

u=—k,v=kc
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which specialized to the second-order approximation leads to the following expressions
E[Vr] = E[Yr] &x7(0),

E[VF] = E[Y7]£s%(0) + E[Yr] f&r7(0),
(1.29)
EVrér] = E[Yr] gr%(c),

B[] = LY (-2x%(c) + K7 (20)) .

1.4.1 Specific Lévy-stochastic volatility models

When constructing a model within the Lévy-SV class a key issue is the choice of the
instantaneous activity process y defining the stochastic clock Y. Popular specifications
include the CIR process of Cox et al. (1985), the Ornstein-Uhlenbeck-type process in-
troduced by Barndorff-Nielsen and Shephard (2001), the quadratic class of Leippold and
Wu (2002) and the 3/2 model studied in Itkin and Carr (2010). In all these cases, the
Laplace transform LY is available in terms of elementary functions, and the corresponding
expansion (1.13) is obtained in closed form via differentiation in (1.28). We focus on the
most common choice in the literature which is the CIR specification. The activity process

y is then modeled as
dy, = k(1 — ye)dt + \\/ydWr, (1.30)

where the parameters x, 1, and A\ are positive constants and W is a standard Brownian

motion. The Laplace transform of the integrated activity process Y is given by

x &2nT
g - — el exp( 20 ) (131)

21 T
(COSh % + g sinh g) A2 K + 7y coth I~

where v = /k? — 2)\?(. Dufresne (2001) gives a thorough analysis of the integrated CIR
process and provides alternative methods for the computation of E[Y}']. The first and

the second moment needed in (1.29) for the second-order approximation are

1_6—Tn
E[Yr] =Tn+ T@(’ - 1),

S5nA2 A2 Ty)? 277)\26*“ yox\ze*QT“

21 _
ElYz] = - 2K3 + K3 + K2 + K3 B K3
Ae2Ts Ty \2e " 2Tn\2e Tk
+ 1 _ = + =1 + B[V
2K3 K2 K2
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To complete the construction of the concrete Lévy-SV models to be analyzed below,
we specify the subordinator Z in (1.27) as either the Gamma-process or the IG-process
introduced in Section 1.3.1. The resulting Lévy-SV models are the so-called VGSV and
NIGSV models examined in Carr et al. (2003) as the subordinand Lévy process L in (1.26)
becomes a VG or a NIG process. Finally, the explicit second-order approximations are
obtained by inserting the corresponding cumulants g+ (0), %RZ (0) and x”(c) from
Section 1.3.1 in (1.29).

1.4.2 Numerical results

Let us evaluate the quality of the approximation under both VGSV dynamics and NIGSV
dynamics. Schoutens et al. (2004) carefully calibrate these two models to a cross-section
of call options on the Eurostoxx 50 index. In the sequel we use the parameter estimates
they find, i.e., the VGSV parameters are C = 18.0968, G = 20.0276, M = 26.3971,
k = 1.2145, n = 0.5501, A = 1.7913, while the NIGSV parameters are o = 16.1975,
b= —3.1804, 6 = 1.0867, k = 1.2101, n = 0.5507, A = 1.7864. The initial value y, of the
clock is set to one.

In Figure 1.4 the implied volatilities of the approximation (truncated to 2nd order) are
compared to the true values computed via Fourier transform inversion. The approximation
captures the smile shape of the true volatility surface very well. This is confirmed by
looking at the absolute approximation errors provided in Figure 1.5. The approximation
errors are on average fairly low and appear to decrease with time to maturity. Moreover,
the validity of the approximation opens up in the strike dimension for increasing time to
maturity.

Next, Figure 1.6 fixes the time to maturity to six months and plots the approximated
implied volatilities against the true implied volatilities. Considering calls with relative
strikes in the range of 20% in and out of the money, we get a mean absolute error of only
15 bps under the VGSV model. While under the NIGSV model, the mean absolute error
is 16 bps.

In Table 1.3 we carefully study the error of the VGSV approximation and how the
accuracy depends on the parameters of the model. The sentitivity to the VG parameters
(C,G,M) was investigated in Section 1.3.2 so in the following these are kept fixed. Instead,
we analyze how the accuracy of the approximation depends on the CIR parameters (&, 7,

A) governing the stochastic volatility in the VGSV model. We report mean absolute errors
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Figure 1.4: Approximated volatilities (lower surface) against true volatilities (upper sur-
face). The approximate surface is moved down by 200 bps for ease of interpretation.
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Figure 1.5: Absolute errors of the approximation.

23



28% T T T T T T T 0.015 28% T T T T T T T 0.015
Numerical Numerical
27%r — — — Approximation 1 27%r — — — Approximation
Error N Error
26%¢r 90.01 26% 90.01
2 = 2 =
H 8 H 8
8 @ s [
[<] o
> 25%F 2 2 25%F E
2 2 2 2
Q Q
E K £ 2
24% 10.005 24% 10.005
23%¢ q 23%¢
200 i i i i i i i 0 200 ; i i ;i i i i 0
0.8 0.85 0.9 0.95 1 1.05 11 115 1.2 0.8 0.85 0.9 0.95 1 1.05 11 1.15 1.2
Moneyness Moneyness
(a) VGSV dynamics (b) NIGSV dynamics

Figure 1.6: Approximation of implied volatility for time to maturity fixed to 7" = 1/2
year.

Table 1.3: Error analysis of the VGSV approximation

Parameter s 1.25

Abs. change in x —0.50 —0.25 0.00 +0.25 40.50
MAE? (T = 0.5) 928 849 7.8 7.20 6.66
MAE®* (T'=1.0) 16.47 13.42 1095 895 7.33

Parameter n 0.75

Abs. change innp —0.50 —0.25 0.00 +0.25 +0.50
MAE® (T'=0.5) 1147 939 7.80 652 551
MAE®* (T'=1.0) 1857 14.06 10.95 8.73 7.09

Parameter A\ 1.50

Abs. change in A —0.50 —0.25 0.00 +0.25 40.50
MAE® (T = 0.5) 3.11 496 7.80 11.98 18.12
MAE* (T = 1.0) 2.17 5.34 10.95 18.34 30.22

a Mean absolute error in basis points between the true and the ap-
proximated implied volatility curves, computed for a strike range of
K € [80;120] and a spot price Sy = 100. The base case parameters
of the VGSV model are C = 18,G = 20,M = 26,k = 1.25,n =
0.75, A = 1.50.
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Table 1.4: Calibration experiment under Lévy-SV dynamics

True model Calibration 1 Calibration 11
VGSV NIGSV VGSV NIGSV VGSV NIGSV
C 18.0968 — 18.0088 - 18.5002 -
G 20.0276 - 20.3702 - 20.4697 -
M 26.3971 - 25.8480 - 26.7156 -
o - 16.1975 - 16.2786 - 16.2464
I6] - -3.1804 - -2.7329 - -2.9643
) — 1.0867 - 1.0979 - 1.0841
K 1.2145 1.2101 1.1938 1.1913 1.1130 1.1123
n 0.5501 0.5507 0.5679 0.5688 0.5900 0.5894
A 1.7913 1.7864 1.6440 1.6437 1.7332 1.7864
Distance® - - 2.3e-3 2.4e-3 3.2e-3 3.2e-3
Speed-up® - — 60.8 58.4 69.8 61.5

a Error distance between the true volatility surface and the volatility surface based on the calibrated
parameters measured as the root mean square error (RMSE).

b Relative CPU time of calibration based on the approximation versus Fourier inversion. The calibration
experiment was implemented in a MatLab environment on a standard PC with 2.53 GHz CPU and 4.00
GB RAM.

for both half-a-year and one-year options. The VGSV approximation appears particularly
sensitive to the A\ parameter and the quality of the approximation deteriorates for high
vol-of-vol (A > 2.0). Also, slight deterioration emerges for low mean reversion (k < 0.5)
and low long-run mean (n < 0.25) of the stochastic clock. Nevertheless, the errors are

within bid-ask spreads. A similar analysis may be executed for the NIGSV model.

Finally, we investigate the performance of approximation-based calibration under
stochastic volatility Lévy dynamics. We consider the same calibration experiment out-
lined in Section 1.3.2. Table 1.4 summarizes the results of the calibration experiments.
We obtain parameter estimates that are very close to the true ones in both calibration
trials and under the two model assumptions. This confirms the good approximation of
the volatility surface that we saw above based on the parameters from Schoutens et al.
(2004). Looking at the distance between the true implied volatility surface and the volatil-
ity surface computed based on the calibrated parameters, the mean error is less than one

third of a volatility point (33 bps) in all cases. Compared to calibration I, calibration
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IT is slightly worse. This is probably due to the more sparse information contained in
this sample. Finally, the approximation-based calibration is more than 50 times faster
than calibration based on Fourier inversion, on average. Again, this speed-up can be
contributed to the facts that the approximation is simply a sum of elementary functions
and the moments that appear in the approximation only need to be computed once for

every maturity.

1.5 Expansions under Affine Dynamics

Although the Lévy-SV models examined above have proved successful in depicting both
the skew and the term structure of the volatility surface, they do not quite encompass the
well-documented leverage effect, i.e., the negative correlation between asset returns and
their volatilities. This stylized fact can be accounted for by letting the innovations of the
subordinator Z be correlated with the innovations of the random clock ¥ in the construc-
tion (1.27) of the total variance process. The framework of affine processes introduced by
Duffie et al. (2000) and further developed by Duffie et al. (2003) offers a natural way to
incorporate this correlation. We refer to Kallsen (2006) for a very comprehensive account
of affine processes. For the reader’s convenience we collect a few fundamental properties
in Appendix 1.7.2.

Here, we model the total variance process V' as one of the components of a rather gen-
eral bivariate affine process (y, V') taking values on R? and differential triplet (04", ¥V, F¥V)
given by

b =B+ By, " ="+ 7'y, Y =0+ vty

where (37,47,17), j = 0,1 are admissible Lévy triplets on R?. To ensure that the pair is
positive, V is increasing, and no explosions occur in finite time, we assume that (87,~7, %),

j = 0,1 meet the following requirements

pP>0 fori=1,2, and fSi>0

v ((R2)) =0 forj=0,1

Je, TV (dry, dag) < 400 for j=0,1, i=1,2 (1.32)
W=0 and ~'= g 2 with v > 0.
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The joint cumulant process K%Y of (y,V) is given by

t
K2V (CLG) = KOG, )+ 81, G)Ys  with Y, = /O ysds, (1.33)
where x7 denotes the Lévy exponent of the Lévy triplet (87,47, ¢7), i.e.,

KL G) = B+ B + /R (e 1) )0 (day, da), (1.34)
+
RU(CLG) = BiG+ BaG+ ;VCQI + /Ri (eﬁxlﬁm - 1) vi(dzy, drs).  (1.35)
Clearly, the cumulant process K" of the total variance process V is given by
K (Q) = K¢ (0,0) = 50, )t + K10, )Vi

We can describe the pair (y, V) in a less rigorous but perhaps more intuitive manner as
follows

dy, = (6? + 511%)6% + thO + d(Jllft) + \/’yytdBt,
AV, = (B3 + Byyy)dt + dZ) + d(Zy,), (1.36)
dn - ytdt7

where (J°, Z%) and (J!, Z') are bivariate drift-less subordinators, independent of each
other and described by the Lévy measures v° and v!, while B is a Brownian motion
independent of anything else. The dynamics (1.36) highlight that if 59 = 0 and Z° = 0,

the total variance process admits the representation as the time-changed process
V, = Zy, with Z, = pyt+ Z}. (1.37)

However, in contrast to the time-change construction presented in Section 1.4, the total
variance V and its rate of time-change y are correlated whenever the subordinators Z*
and J! are correlated.

The affine structure for the pair (y, V) carries over to all the relevant elements of the
asset pricing model (1.5) constructed upon it. Noticeably, the pair (y,log M({)) with
M (¢) defined in (1.2) and ¢ < 0 is affine with defining Lévy triplets (37,47, 77) given by

_ G o |
y-| | = PB)= [ el G (dr, day),
—9(0,0) + ¢4 R}
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for j = 0,1 and (52,72, %) = (0,0,0). As a result, Assumption 1 is automatically satisfied

in virtue of the integrability requirement (1.32) and Proposition 6 in Appendix 1.7.2.
Proceeding along the lines of Proposition 1, we obtain that the pair (y, X) driving

the asset price dynamics (1.5) is an affine process taking values on R, x R. The defining

Lévy triplets (37,37, 57), j = 0,1,2 are given by
Bl =pi, B =085 + /]R2 l/j(dxl,dacQ)/Rh(w),u(dw;exg,xg),
+

0 0 v 0
, 7
0 A9 0 B

9

Ijj(Bl X Bg) = /RQ 131 (LUI),U(BQ;95(?2,.%2)I/j(d371,dl’2>,
+
for j = 0,1, while (52,'72,52) = (0,0,0). We note that if 89 = 0 and Z° = 0, the time-
change representation (1.37) of the total variance V' transfers to the X process which is

described by the following heuristic dynamics

dy: = (BY + Biyy)dt + dJ) + d(Jy,) + /74%dBy,
dX, = d(Ly,), (1.38)
dY; == ytdt7

where (J!, L) is the bivariate Lévy process characterized by the triplet (5',3",7"') and
JO(J', L) and B are independent. Under suitable integrability conditions, the covariation

between the innovations of X and y is given by

d(JL, L) = /

R+XR

T1090" (day, dag) = (9/2 w129t (day, dag) = 0d(J}, Z}).
R+

Since the underlying assumption for the skewness parameter is § < we see that a

1
-4
positive correlation between y and V' translates into a negative correlation, the leverage
effect, between the asset returns driven by X and the volatility y.

Let us now turn to the joint Laplace transform L defined in (1.6).
Proposition 3. The transform Lr is given by
Lr(u,v) = exp (Ar(u,v) + Br(u,v)y), Y(u,v) € CT x C~ (1.39)
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where the functions A and B solve the Riccati-type equations

9 4w, v) = 0 (Ba(u,),0) + un’(0,0) (1.40)
OB, v) = £ (B, 0), ) + us (0,), (141)

with k° and k' given by (1.34) and (1.35) and initial conditions Ay(u,v) = By(u,v) = 0.

Proof. The three-variate process (y,V, K" (c)) is affine with defining triplets (BJ A0, D7)
given by

5{ 7{1 7{2 0
Bj = 6% ) f/};j = 7%1 7%2 01, ﬁj(B) :/1B($17x2,0)l/j<d$1,d372),
k7 (0, c) 0 0 0

for j = 0,1 and (Bjﬁj, v7) =0 for j = 2,3. Applying Theorem 1 in the Appendix 1.7.2
yields the result. O

For some specifications of x° and x! the ODEs above can be solved analytically. The
characteristic function (1.7) is then available in closed-form and Fourier transform meth-
ods become a feasible technology for option pricing and model calibration. However, in
most cases the solution of (1.40) and (1.41) needs to be found numerically. Fourier trans-
form inversion is a numerical integration problem which involves hundreds of evaluations
of Lr, each of them requiring the numerical solution of a system of ODEs. While a single
price computation for a given parameter set may seem amenable, the method becomes
computationally too slow and not optimal for calibration purposes (see e.g. Glasserman
and Kim (2009) for a discussion on this issue). Typically, the expansion moments E[VEF]
are not available in closed-form either, as the differentiation required in (1.14) cannot be
carried out explicitly except in those cases when L7 can be computed analytically. Nev-

ertheless, differentiation yields the following useful result.

Proposition 4. Assume that the functions A and B solving (1.40) and (1.41) have
an analytical continuation on an open set U C C% with 0 € U. Then the moments
E[Vre K1 @+Vr] gre finite for all (u,v) € UNR2, m > 0 and they are given by

EVe KT @] = £ (4, )
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where we have employied the notation £§~ (u,v) = Lo L(u,v). Furthermore, the deriva-

8 m
tives E(Tm)(u, v) can be computed via the recursive scheme

L (u,v) = Lr(u,v) = exp (AP (u,v) + BY (u,v)yp) m =0,
m—1
m m — 3 m—i m—i
L5 vy =3 (LY () (AP (w0) + BE T (wv)go) . om> 1,
where Aﬁi) (u,v), Bt(i) (u,v), i =0,...,m satisfy the following system of ODEs

d
714150) (U7 'U) = HO(Bt(O) (U’7 'U), U) + URO(O’ C)’

dt

d

%B(O)(u v) = ml(B(O)(u v),v) + ur' (0, ¢),
d ) 0 (0

&At u,v 81}1 (/{ (B (u,v) )) ,

d e 0)

—BY 1 B(

) = 5 (B0 ).

with ko and Ky given by (1.34) and (1.35) and initial conditions A (u,v) = BY )(u v) =0
fori=0,....m

Proof. Theorem 2 in Appendix 1.7.2 ensures that the Laplace transform Lr is given by
(1.39) not only for (u,v) € CT x C~ but for all (u,v) € Dr. Successive differentiations of

(1.39) with respect to v yield the resulting variational equations. O

To sum up, if both (0,0) and (—n,nc) lie in the interior domain Dy, the expansion
(1.13) can be truncated at the order n. The relevant moments and cross-moments are
available up to the solution of a system of ODEs which can be computed fast by standard
numerical methods. In contrast to Fourier transform methods, only a very limited number
of such computations is required by the approximation which then provides a potentially
useful alternative for computing option prices in numerically demanding problems such
as calibration.

The second-order approximation requires the following quantities

E[e"ET ©+Vr] = £ (u,v) = exp (A(O) + Bg))yo)
E[VTe“K‘T/(C)+”VT] = Lp(u,v) (A(Tl) + B(Tl)y())

E[VEe St @) = Lq(u,v) ((Agp + BV ye) 4 (AP + Bé”yo)) 7
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where we have suppressed the common argument (u,v) of the functions Agi)(u,v) and

B (u,v) which are given as the solution of

iAﬁ” = r(B{",v) +ur’(0,c),

CZBP = &'(B”,v) + ur'(0, ),

ZAS) = Vi (B, v)- (B, )T,

ZBP = Vi (B, v) - (B, )T,

SAR = (B, 1) OB ) - (B )T+ V(B o) - (B0
CZBt(z) = (BY, 1) v2:'(B®,v) - BV, 1)T + V& (B, v) - (B®,0)7,

with initial conditions Aéi)(u, v) = B(()i) (u,v) =0fori=1,2.

1.5.1 Numerical results

Let us revisit the VGSV model of Section 1.4. As mentioned, the CIR dynamics is just an
affine diffusion process. Thus, the VGSV model constitutes a simple case of the general
affine model (1.38). Below we conduct a number of calibrations of the VGSV model to
study the speed-up obtained with the approximation compared to Fourier inversion.
Assume we have a data matrix of 146 call prices generated from the true distribution
with parameters C' = 18.0968, G = 20.0276, M = 26.3971, x = 1.2145, n = 0.5501,

A = 1.7913. The maturities and relative strikes are given by
T € (0.25,0.5,0.75,1.0,1.25,1.5,1.75, 2.0, 2.25, 2.5, 2.25, 3.0),

K € (0.7,0.75,0.8,0.85,0.9,0.95, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3).

Calibration using the approximation (truncated to the 2nd order) or Fourier inversion
yields the parameter values given in Table 1.5.

Table 1.6 compares calibration speed-up gains from using the approximation over
Fourier inversion for selected initial values in the optimization routine.* In particular,

we investigate the speed-up under two scenarios. In the first scenario we use the known

4The experiment is implemented in a MatLab environment on a standard PC with 2.53 GHz CPU
and 4.00 GB RAM.
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Table 1.5: Calibrated parameters

Parameters
Method C G M K n A
Fourier 18.09 20.03 26.40 1.22 0.55 1.79

Approximation 17.97 20.45 26.01 1.20 0.57 1.65

Table 1.6: Calibration speed-up by using the approxi-
mation compared to Fourier inversion

Speed-up®
Initial values® Numerical Explicit
[5,5,5,1,1,1] 177.8 80.4
[10,10,10,1,1,1] 152.7 76.1
[15,15,15,1,1, 1] 132.3 54.0
20, 20,20, 1,1, 1] 116.5 50.8
[25,25,25,1,1,1] 152.6 73.3

2 Initial values of the parameters [C, G, M, k,n, \] used in
the optimization.

b Relative CPU time of Fourier-based calibration over
approximation-based calibration.

explicit characteristic function of the VGSV model, while in the second scenario the
characteristic function is only known up to the solution of a system of ODEs. In the
latter scenario we use an explicit Runge-Kutta algorithm (Dormand and Prince (1980))

to numerically solve the ODEs.

In terms of speed-up, the approximation-based calibration approach is most attractive
in situations where no explicit characteristic function exists. Moreover, one observes that
the computational time of the calibration depends crucially on choosing reasonable initial
values for the optimization routine. Naturally, the speed-up is much smaller when we
choose initial values close to the true parameters than when more naive initial values are

used.

From Table 1.5 we observe that approximation-calibrated parameters are just slightly

off compared to the true parameters and may work as smart initial values to speed-up
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Table 1.7: Time reduction when using the
approximation-based parameters as initial values.

Initial values® CPU time reduction®
[5,5,5,1,1,1] 85.0%
[10, 10,10, 1,1, 1] 80.3%
[15,15,15,1,1, 1] 66.2%
20, 20,20, 1,1, 1] 15.3%
[25,25,25,1,1, 1] 74.2%

& Alternative initial values of the parameters
[C,G, M, k,n, ] used in the optimization.

b Reduction in CPU time of Fourier-based calibra-
tion when using the approximation-based parameters
compared to using the alternative initial values.

Fourier-based model calibration. This is in particular so when the characteristic function
is not known in closed form. In Table 1.7 we compute the percentage computational time
reduction from using the smart values compared to calibrations taking naive initial values.

Clearly, compared to using alternative (naive) initial values in the optimization, ap-
plying the approximation-based parameters as initial values may result in a significant
time-reduction in calibration based on Fourier inversion. Thus, it appears that a viable
two-step calibration approach would be to (i) do an approximation-based calibration, and
then (ii) do a more accurate Fourier-based calibration taking the optimal parameters from

the first calibration as initial values.

1.6 Conclusion

We have presented an expansion of option prices in terms of Black-Scholes prices and
higher-order Greeks. The expansion is simple, easy to implement, and broadly applicable
across different option pricing models based on time-changed Brownian motions. We
have shown how to derive expansions for popular models such as the Variance Gamma
and Normal Inverse Gaussian as well as their stochastic volatility counterparts. Also,
we have demonstrated how our expansion approach can be extended to a more general
subclass of affine jump-diffusion models for stochastic volatility.

The expansion decomposes the option price into a series of adjustment terms associated
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with higher-order option risks. It clarifies how these risks are priced across different
option pricing models and shows how the risk adjustments are directly related to the
features and parameters of the particular model at hand. This is the primary advantage
of the expansion and allows for a much more transparent approach to option pricing in
sophisticated models.

Finally, our numerical results indicate that the proposed expansion may be used for
fast, first-order model calibration or at least to provide smart initial conditions for the op-
timization problem. This is particularly attractive to more general affine models without
closed-form pricing transforms which would otherwise be considered analytically non-

tractable.

1.7 Appendix

1.7.1 Differential Triplets and Cumulant Processes

In this appendix we report some basic facts on semimartingale characteristics and cu-
mulant processes which are relevant for this work. A detailed and rigorous analysis is
provided in Kallsen (2006) and Kallsen and Shiryaev (2002).

Let X = (X!, ..., X% be a R%valued semimartingale and let i : R? — R? denote a

truncation function, e.g. h(x) = 1<

Definition 1. Let (B,C,v) denote a triplet where B is a R%-valued predictable process,
C' is a predictable process taking values on the space of non-negative symmetric R4
matrices, both with components of finite variation, and v is a predictable random measure
on (Ry x RY) such that (1 A |z|*) xv € V. Then (B,C,v) is called the characteristics
triplet of X if the process

GATX / XX K (i)

0

is a local martingale for any X\ € RY, where

Ki(¢Q) = ¢' By + ;CTCtC + (" = 1= Ch(@)) vids,do).  (1.42)

[0,4] xR4
We refer to K(¢) as the camulant process of X in (.
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It can be shown that any semimartingale admits a characteristic triplet which is unique
up to a null set. In most applications the triplet (B, C,v) is absolutely continuous with

respect to the Lebesgue measure, i.e. it holds that

B :/tbds C :/tcds V([0 t]xG):/tF(G)ds VG € B
t 0 s ) t 0 S 9 ) 0 s )

where b is a R%valued predictable process, ¢ is a predictable process taking values on
the space of non-negative symmetric R**? matrices and F is a transition kernel from
(2 x R, P) to (Ry,B) with F({0}) = 0 and such that [(1 A |z|?)F (dz) < +o00. The

cumulant process K () is then given by

KO = [ ma(Q)ds (1.43)

where
K(C)r = ¢ by + ;cTctg + / (e@ -1- gTh(x)) F,(dx). (1.44)
When this is the case, we refer to (b, ¢, F) as the differential characteristics triplet of X
and to k(() as the Lévy exponent in (.
For a semimartingale X with differential triplet (b, ¢, F') the cumulant process K (()
in (1.43) coincides with the multiplicative compensator of the exponential process e®*.

More precisely, we have the following result.

Proposition 5. Let X be a Ri-valued semimartingale with differential triplet (b,c, F)
and let ¢ € RY be such that [ (ec“”" -1- CTh(x)) F.(dz) < co. Then the process

Mt(C) — e*Kt(O+CXt

s a local martingale.

Proof. Tt follows immediately from Kallsen and Shiryaev (2002), Lemma 2.13 and Theo-
rem 2.18. O

1.7.2 Affine Processes

Affine processes have been introduced by Duffie et al. (2003) where they are defined as a
class of time-homogeneous Markov processes with log-characteristic function depending in
an affine way on the initial state vector of the process. However, within the semimartingale

framework of this work, it is more natural to follow the approach of Kallsen (2006) and

35



define an affine process as a R%-valued semimartingale X with differential triplet (b, c, F)

given by an affine transformation of X as follows
d .
b= Po+ Y BiXi,
j=1

d
e =0+ Y uXi, (1.45)
j=1
d .
EF(B) = ¢o(B) + > ¢;(B)X{]. VB e B,
j=1

where (8;,7;,%i), j = 0,...,d is a set of d + 1 Lévy-Khintchine triplets on R%. To
ensure that the local covariance matrix ¢ and the local compensator F' remain positive,

the defining Lévy-Khintchine triplets (8;,7;,%;), j = 0,...,d must satisfy the following
set of admissibility conditions.

Definition 2 (Kallsen (2006), Definition 3.1 ). Let m, n € N with m +n = d, and let
(Bisvise), 5 =0,...,d be a set of d+ 1 Lévy-Khintchine triplets on R%. The triplets
(B, Vi ¢i), 3=0,...,d are called admissible if the following conditions hold

By = [ W (z)pi(dr) > 0
w((RTxR")C) — 0y if 0<j<m, 1<k<m, k#J;
[ R (@)p(dz) < O

=0
73 if j>m+1.
p; = 0

The existence of a semimartingale with differential triplet satisfying (1.45) is guaran-
teed by the following result.

Theorem 1 (Kallsen (2006), Theorem 3.2 ). Let (8;,7;,¢;), J = 0,...,d be admissible
Lévy-Khintchine triplets and let 1; denote the corresponding Lévy exponents

03(Q) = T+ 3¢+ [ (&7 =1~ (Thia) ey,
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Assume that the further integrability condition
/ |2¥]pj(dz) < 0o for1<j k<m
{lz|>1}

is satisfied. Then there exists a unique R x R"-valued semimartingale X with differential

characteristic satisfying (1.45). Moreover, it holds that
E[e¢" | F| = exp (A(Q) + Bu(Q)TX), ¢ €CT xiR™™, (1.46)

where the functions Ai(¢) and Bi(¢) = (Btl(g), . ,Bf(Q) solve the generalized Riccati

equations

d

aAt(C) = o (Bi(Q)) (1.47)
SBIO=0;(B(O)  with By(Q)=C. (1.48)

For practical application it is essential to establish whether expression (2) remains
valid beyond the domain € C™ x {R?™ and can be employed for computing exponential

moments, when they exist.

Theorem 2 (Duffie et al. (2003), Theorem 2.16 ). Assume that the functions A and B
solving (1.47) and (1.48) have an analytical continuation on an open set U C C% with
0€U. Then for all ( € UNR?

E [eqTXS“]}"S} < 00 Vg € UNRY,
and (1.46) holds for all ¢ € U with Re ¢ € U NR.

A classical problem in stochastic analysis is to establish whether local martingales
of exponential form are true martingales. A detailed study of exponentially affine, pos-
sibly time inhomogeneous martingales, is provided in Kallsen and Muhle-Karbe (2010).

Adapting Corollary 3.4 therein to the time-homogeneous case yields the following result

Proposition 6. Let X = (X!,..., X%) be an R x R"-valued semimartingale with affine
differential characteristics relative to admissible Lévy-Kintchine triplets (55,7, ¢;), J =
0,...,d. Suppose that for some 1 < i < d the following holds:

i Jym1 €7pi(dr) <00, j=0,...,m,
i, B+ Lyl [ (€% — 1 — hy(x)) pi(dz) =0, j=0,....d,
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Wi [y, -1 TReVpi(dr) < oo, for jk=1,...,m.

Xi

Then the process e is a martingale.
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Closed-form Expansions of the Volatility Smile
in a Mixing Setup

E. Nicolato" and D. Sloth'

T Department of Economics and Business, Aarhus University, Aarhus

Abstract

We derive a closed-form expansion of implied volatility and at-the-money skew. The
expansion is simple, transparent, and easy to implement. It is based on a mixing
representation of the underlying model. We apply the expansion to the Heston
stochastic volatility model as well as the Variance Gamma model and provide a
clear analysis of the at-the-money term structure of implied volatility. However, the
expansion may be used for a broad class of option pricing models displaying both
jumps and stochastic volatility in the underlying dynamics. Finally, we explore
two domains of application of the expansion. One as a control variate to speed up
Fourier option pricing, and another one as a fast, first-order approach for calibration

to at-the-money volatilities and skews.

Introduction

Take it hard to the hoop! This basketball expression beautifully captures what analytical
approximations are all about. They are rough — this is what makes them approximations
— but they often constitute the most lucid and direct approach. In quantitative finance,
good approximations help model handling by speeding up calibration to market-observed
quantities and, even more importantly, they enhance our understanding of the model’s
analytical features. Numerical methods for option pricing are extremely powerful in terms
of accuracy. Nevertheless, they are hermetically closed; they fail to establish a clear link

between the structural properties of the model and its effects on the characteristics of the
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generated volatility surface. For these reasons, analytical approximations have been and
continue to be proposed in the literature.

In the context of stochastic volatility models, Lewis (2000) derives an asymptotic ex-
pansion of implied volatility assuming small volatility of volatility. Corresponding results
are obtained by Lee (2001) assuming slow mean-reversion of volatility, while Fouque et al.
(2000) study the case of fast mean-reverting volatility. Hagan et al. (2002) derive a small-
time expansion in the SABR model using singular pertubation techniques. Medvedev and
Scaillet (2007) develop an asymptotic expansion in a jump-diffusion stochastic volatility
model. Small-time asymptotics of implied volatility in the Heston model are analyzed in
Forde et al. (2012). Similar work can be found in Berestycki et al. (2004), Osajima (2007)
and Forde (2008), whereas Benhamou et al. (2009) and Larsson (2012) suggest implied
volatility expansions based on Malliavin calculus. Common to the proposed expansions
is that they are only valid for either short or long maturities.

In this paper we develop a closed-form expansion of implied volatility and at-the-money
variance skew. The expansion is simple, transparent, and easy to implement. Moreover,
in contrast to the majority of the previous literature, the purpose of this work is not
obtain an asymptotic expansion valid only for extreme maturities or strikes. Instead, our
aim is to develop a general implied volatility expansion useful in the large region of the
volatility surface where options are actually traded. In this respect, the present work is
most closely related to, at least in spirit, the most-likely-path approximation of Gatheral
(2006), the singular expansion of Jéckel (2009) as well as the recent works of Drimus
(2011), Poulsen and Ribeiro (2012).

This paper extends the work outlined in Chapter 1. Most noticeably, the model
framework has been generalized to include classical stochastic volatility models beyond
the pure-jump type models investigated in the previous chapter. Moreover, in this paper
the expansion is derived directly in implied volatility space which provides an explicit
link between the characteristics of the option pricing model and the shape of the implied
volatility surface. Also, while the expansion can be used for a broad class of option pricing
models, we concentrate in this paper on a few models and study the asymptotic behavior
of the at-the-money term structure of implied volatility and volatility skew. Specifically,
we illustrate the use of the implied volatility expansion for the popular Heston (1993)
stochastic volatility model and the Variance Gamma model of Madan and Seneta (1990).

The neat simplicity of the expansion and its broad applicability across various models

is due to the fact that it is based on 'summary statistics’ such as moments and cross-
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moments of the underlying model components. Moreover, the expansion brings about the
key insight that implied volatility can be understood as an expected volatility adjusted for
risks of movements in the underlying asset price or its volatility. The risk correction terms
are governed by higher-order option risks — yet, their magnitudes are purely determined by
the characteristics of the model. This way of interpreting the volatility smile is consistent
with industry practice. Market participants cope with smile effects by hedging not only
classical risks, like Delta risk, but also higher-order risks such as convexity in the volatility

and dependence of the option’s Delta on the level of volatility.

The decomposition of the volatility smile clarifies how the analytical features of the
underlying model are translated into implied volatilities. This is not to be underestimated
since understanding how a model responds to moves of its parameters or underlying quan-
tities is crucial for its introduction and use in market trading. Furthermore, the decompo-
sition allows for systematic comparison of complex option pricing models by quantifying
how option risks affect the volatility smile across different models. For example, in a
simplified model assuming zero correlation between the stock price and its volatility, risks
associated with movements in the stock price do not affect implied volatility, whereas

these risks will have a nonzero effect in models allowing for correlation.

We explore two domains of application of the expansion. First, we propose an expansion-
based control variate for option pricing based on Fourier transform methods to improve
convergence properties of the embedded numerical integration. Andersen and Andreasen
(2002) suggest using the Black-Scholes price as a control. This, unfortunately, constitutes
a Catch-22 as to which volatility one should use in the Black-Scholes pricing formula. In
practice, the choice has usually been more or less arbitrary. We argue that the expansion
of implied volatility gives a consistent choice of the input volatility. Our numerical results
confirm that this approach brings about a significant speed-up reducing the number of
required function evaluations by more than half. Secondly, we propose a fast, first-order
model calibration approach. Specifically, we suggest using the expansion to jointly cali-
brate to at-the-money volatilities and skews. Besides a gain in computational speed, the
advantage of this approach is that it requires fewer data points compared to the usual
procedure of calibrating to the whole surface of option prices.

The paper is organized as follows. In Section 2.2 we outline the model setup. In
Section 2.3 we develop the main theoretical results underlying the expansion. In Section
2.4 we study the numerical accuracy of the expansion and its analytical properties under

different model dynamics. In Section 2.5 we study two different domains of application.
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Finally, in Section 2.6 we make some concluding remarks.

2.2 The Mixing Setup

In this work we consider a general modeling framework which extends classical stochastic
volatility models to allow for jumps and yet it conveniently retains the conditional log-
normality of asset returns. Specifically, we assume that under the pricing measure Q, the

price S of an underlying asset evolves according to the dynamics
1
S, = S exp <—2v;ff + theﬁ) L VT, ST = g, (2.1)

where the process S° is a positive martingale starting at the spot value Sy of the under-
lying, V% is an increasing process, and W is a standard Brownian motion independent of
the pair (S V) which is evaluated at the random time V. Given the independence
between W and (ST V) the process S is a martingale. This means (2.1) describes the
risk-neutral dynamics of the asset price process in a simplified economy with zero interest
rates and dividend yields. Allowing for positive rates is a straightforward extension.
This model construction is, in fact, just a generalization of the seminal Black-Scholes

model
1
Sy = Sy exp (—202t + Wgzt) , o >0,

obtained by randomizing the spot value Sy and the deterministic total variance ot via
their natural stochastic counterparts, i.e., the martingale S°¥ and the increasing process
Vel Hence, adopting the terminology of Lewis (2000), the processes S°f and V¥ are
called the effective spot and the effective variance respectively, while we refer to the model
framework (2.1) as the mizing setup.

Application of this model class depends on the tractability of what we term the effective
Laplace transform. This is the joint Laplace transform of the effective log-price X =

log SAT and the effective variance V%
LT (u,w) =K {euxffuwvfff} : (2.2)

defined in the domain D, = {(u, w) € C2 : B[ |e*X"+vV"|] < +00}. For example, option

prices can be computed by Fourier or other transform methods whenever the effective
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Laplace transform is available in closed form as the characteristic function of the log-

price X1 = log St is given by
A 1
E [e’“Xt} =L (iu, —§(w + u2)) .

In the sequel, the effective Laplace transform £ plays an essential part when computing
the terms of the implied volatility expansion that we develop.
The mixing setup embeds a variety of popular option pricing models. Noticeably, at

one end of the spectrum, it contains stochastic volatility models of the following type

dS, = Siy/ui (VI—p2dW + pdB)

(2.3)
dvy p(ve, t)dt 4+ o(vy, t)d By, vy > 0,

where W and B are independent standard Brownian motions, —1 < p < 1 is the correla-
tion parameter, and the drift p and the diffusion o > 0 coefficients satisfy the usual
regularity conditions to guarantee that the instantaneous variance process v remains
non-negative and enjoys enough integrability. The mixing representation (2.1) follows

immediately by setting
Vet = (1 — p?) [§veds,

. t (2.4)
S = Syexp (—£ f{vids + p Ji \/odB,) |

and from the Dambis-Dubins-Schwarz representation theorem for continuous local mar-
tingales (see, e.g., Revuz and Yor (1999)). In this case, the effective Laplace transform

L (u, w) defined in (2.2) can be reformulated in the following manner

t 1 1
L (u, w) = E | e +(1-p?) (w+ bu—Lu?) [ fusds:| Sy (u, (1= ) (w+ Su- u2)) 7

2

(2.5)

where £XV denotes the joint Laplace transform of the log-price X; and its integrated
variance V; = [ v,ds. Hence, L can be easily computed for all those stochastic volatility
models for which £V is available in closed-form. This includes stochastic volatility
models such as, for instance, the Hull and White (1987) model, the Stein and Stein
(1991) model, the Heston (1993) model, and the 3/2 model popularized in Lewis (2000).
At the other end of the model spectrum, one finds option pricing models where the
asset price S does not display any diffusion component but evolves uniquely due to the

presence of jumps. Within the mixing setup, models of this kind are obtained by specifying
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the effective variance VT as a purely jumping semimartingale without drift and cumulant
process' KV (¢) given by

Kt(Q:/Otﬂs(g)ds with mt(g):/R+ (e = 1) Fy(dz), ¢eC,  (26)

where [ is the differential compensator of the random measure of jumps, i.e., a transition
kernel from (€2 x Ry, P) to (Ry,B) with F({0}) = 0 and [, (1 Az)F (dr) < +oo. To
complete the description, we construct the effective spot by scaling and exponentially

compensating the effective variance as follows
St = Sy exp (—Kt(c) + chﬁ) , (2.7)

where ¢ is a real parameter for which K(c) is well defined. The parameter ¢ allows for
correlation between the price process S and its effective variance V¢, and at the same
time it governs the skewness in the asset-returns distributions. Therefore, we will refer to
it as the skewness parameter.

This modeling approach for purely jumping option pricing models was introduced in
Nicolato and Sloth (2013) where several concrete specifications for V& are considered
in details. For example, exponential Lévy models are obtained by modeling the effective
variance as a drift-less Lévy subordinator Z with Lévy measure v(dz) and deterministic

cumulant process K;(¢) = t k(¢) where & is the Lévy exponent
K(C) = / (€ — 1)w(d). (2.8)
Ry

If the skewness parameter c is chosen so that x(c) < 400, the mixing representation (2.1)

of the exponential Lévy price S is obtained by setting

Vet = Z
. ! (2.9)
St = Spexp (—tk(c)+cZ).
In this case the effective Laplace transform has the following simple expression
L8 (u,w) = Sy etlrluctw)—ur(e)) (2.10)

and it is available in closed-form whenever the Lévy exponent x can be computed ex-

plicitly. Popular exponential Lévy models that can constructed as outlined include the

'For a detailed study of semimartingale characteristics and cumulant processes see, e.g., Kallsen and
Shiryaev (2002).
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Variance Gamma model introduced by Madan and Seneta (1990), the Hyperbolic models
examined by Eberlein and Keller (1995), the Normal Inverse Gaussian model of Barndorff-
Nielsen (1998) as well as the CGMY model proposed by Carr et al. (2002).

In addition, we obtain purely jumping models belonging to the Lévy stochastic volatil-
ity class developed in Carr et al. (2003) by specifying the effective variance process V

as a drift-less subordinator Z evaluated at an absolutely continuous stochastic time V'
t
Vel = Zy, with V= / v, ds, (2.11)
0

where the instantaneous activity rate v is given by some positive process independent of

Z. The differential compensator F' and the cumulant process K of VT are then given by
Fy(dr) = v(dr)y, and K(() = r(() Vi,

where v and k denote the Lévy measure and the Lévy exponent of Z. Once again,
if the skewness parameter c is chosen within the domain of x, we achieve the mixing

representation (2.1) by specifying

Ve = Z
. Vi (2.12)
St = Syexp (=t k(c)V; + cZy,) .
The corresponding effective Laplace transform can be expressed as follows
LM, w) = SR [Vrtmerm @) = SueY(r(ue + w) —un(c))  (2.13)

and can be computed explicitly whenever the the Laplace transform L} of the stochastic

clock and the Levy exponent () of the subordinator Z are available in closed-form.

2.3 Implied Volatility Expansions

In this section we develop the implied volatility expansion for the mixing setup introduced
above. A key feature of this setup is the fact that conditionally on each realization of
(S Ve) | the asset price Sy given by (2.1) is log-normally distributed. Similar to Hull
and White (1987) and Romano and Touzi (1997), it follows that the price C(Sy, K, T)
of a European call option with strike K and expiry 7 > 0 admits the following mixing

representation

C(‘Sﬂv K, T) = E[(ST - K)+] = E[CBS(STEH7 ‘/;—GH)L (2'14)
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where Cpg(S,V) denotes the Black-Scholes price of a call option in terms of the spot
price and total variance of the underlying asset. That is,

Ops(S,V) = S®(dy) — K®(d_), where dy = ———+ ﬂ,

VV 2
with x = log(K/S) denoting the log-moneyness.
Generalizing a technique introduced by Lewis (2000), we consider two different expan-
sions of the true call option price C(Sy, K,T). First, we apply a two-dimensional Taylor
series expansion of the mixing representation (2.14) around the point (Sp, EVT). This

yields the following (S, V')-expansion

9?CpsC

1
C(Sy, K,7) = Cpg(Sy, BV + a1E[(S;fff — SO)Z]W

(So,EV£f)

l eff eff\2 62035
T o (VA A B A

(2.15)

(So 9EVTEH)
9*Cps

eff eff eff
+ R[S~ So) (VT — V] S P

(So 7EVTBH)

where we have used the fact that ESAT = S,.
Next, we note that by definition the call price C'(Sy, K, 7) is equal to the Black-Scholes
price for the same option characteristics evaluated at the implied volatility I = I(Sy, K, 7).

If we denote the implied total variance by ¥, = 712, we have that
C(So, K, 7') = CBS(Sm E.,-)

We then expand this expression in the second variable ¥ around the expected effective
variance EV T using a one-dimensional Taylor series. This step yields the second expan-

sion, termed the (¥)-expansion, as follows

dCps
C(So, K, 7) = Cps(Se, EVE) + (2, — EVeH
( 05 7T) BS( 05 T >+ ( T ) ov (SO,EVTEH)
1 2 82035
Ly R/ el 2.16
+ 2!< T ) OV2 |(syEvefh) ( )

Equating the right-hand sides of (2.15) and (2.16) and solving for ¥, yields a formal
expansion of the total implied variance.
If we truncate the (¥)-expansion (2.16) to the first order and the (S, V')-expansion

(2.15) to the g-th order, we obtain the following simple polynomial expansion
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d k lyyk—1
B~ BV 33 O BT - S (T -V, )

k=2 1=0 D!
where we have employed the following compact notation

-1 m-+n
@vanz<8035> oM (Cpg

n,m=0,

ov aSmovn’

for the Vega-normalized Black-Scholes derivatives. In the sequel, we will refer to these
derivatives as normalized Greeks and to expression (2.17) as the O(q)-order approxima-
tion. Finiteness of the moments E [(‘/;eff)m (Sfﬁ) n} entering the expansion depends on
the regularity and tractability of the effective Laplace transform L defined in (2.2).
Specifically, if the pair (0,n) lies in the interior domain D, of L then we have that
E K\/;eﬁ)m (Sfff> n] < oo and the moments can be computed by the following differentia-
tion

£\ ([ qeff\" 0™ L (u, w
B ()" (517)] = T

see, e.g., Hoffmann-Jgrgensen (1994), Section 4.19.

: (2.18)

u=0,w=n

2.3.1 A Simple Quadratic Approximation

The second order expansion is of particular interest as it yields a simple approximation

of the implied instantaneous variance I%(z,7) which is quadratic in the log-moneyness

x = log K/S. Moreover, it extends the results previously obtained by Ball and Roma

(1994) and Lewis (2000) in the special case of stochastic volatility models restricted to

zero correlation between the asset price and its volatility. We obtain the following

EVA  Var[SH) Var[V. Cov[ S, V]
- — Dy +—

SS
T 2T 2T T

[2(1377)%[%(13,7'): ©8U7

(2.19)

where the normalized Gamma ®,, Volga ©,, and Vanna 3, are given by

2 x? 1 1 T 1
=g PwZgmTgToy Pv Ty as
The approximation (2.19) provides a neat interpretation of how the implied variance is
generated by correcting the rough effective estimate EV.“ /7 with a series of adjustments
accounting for higher-order option risks measured per unit of Vega risk. While the nor-

malized Gamma risk only contributes to the level of volatility in the approximation, the
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normalized Vanna term determines the slope of the smile, while the Volga term introduces

convezity in the surface. Re-arranging the terms in (2.19) yields the following expression
Ié(:f,T) =Jo(7) + Ju(7) z + To(7) 27, (2.20)

where the functionals J (7) describing the at-the-money term structure are given by

EV e Var[S eﬂ] CovlS eff Ve Var[Veff} g 1 ~
~y — T T T T _ T E € - E € 2'21
Jo(7) T + Sgr 25T 41 (EV eff)? ( Vit 4< V) )  ( )
Ji(r) = T S,EV 1 (2.22)
. Var[V 1
JQ(T) = WF . (223)

Jo(T) approximates the at-the-money level of the implied variance as a function of time-
to-expiry 7
I*(0,7) = Jo(7).

We observe that the level is composed of a natural leading term, the annualized average
effective variance, plus some corrections accounting for randomness both in the effective
spot and variance. The at-the-money skewness of the implied variance is approximated

by
RIE

O

The covariance between the effective variance and the effective spot dictates the sign of

=~ 31(7').

=0

the at-the-money skew, producing a symmetric smile in the uncorrelated case. As the

effective spot S is a martingale by definition, we can express the covariance as follows
Cov[ S, VA = S (EY VA — EVAT) (2.24)

where E?' denotes the expectation taken under the probability measure defined by dQ!/dQ
St/ S,. This observation allows us to relate the at-the-money skew to the correlation pa-
rameter p in the classical stochastic volatility models or to the skewness parameter ¢ in
the case of purely jumping asset models.

First, let us consider the stochastic volatility model described by (2.3) for which Q!
is defined by the Radon-Nikodym derivative

dQ*

dQ

2

zg(p/ot\/v_sst) — exp (—g/otvsds+p/0t\/v_sst>.

Fi
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By Girsanov’s theorem, the Q!-dynamics of the instantaneous variance process v are given
by
dvy = (u(v, t) + py/vio (v, 1)) dt + o (v, t)d B},

where B} = B,—p [{ \/Usds is a Q'-Brownian motion. Hence, under sufficient integrability

conditions, which are assumed satisfied, we have
t
E? v, = vot + E {/ (1(vs, 8) + py/vso(vs, s)) ds|
0

and since o > 0, we conclude that E?' [[T v,ds] = E[f7 vids] when p = 0. Therefore,
the quadratic approximation (2.20) explains the well known fact that stochastic volatility
models display a positive or negative at-the-money volatility skew in correspondence to a
positive or negative correlation parameter p.

We can proceed in a similar manner for purely jumping asset models described by
(2.7) for which Q! is defined by the generalized Esscher transform

dQ?
dQ
where ¢ is the skewness parameter. A Girsanov-type theorem for semimartingales (see

e.g. Jacod and Shiryaev (2003), 111.3.24) shows that under Q! the effective variance V

is still driftless with differential compensator of the random measure of jumps given by

L exp (—Kt(c) + theH) :

F¥ (dz) = e F,(dx)

implying that
EQI ‘/Teff . ]EV;_SH —F

/OT:E (e — 1) Fy(dx)ds

Once again, the approximated at-the-money skew is consistent with the behavior of the
true model, yielding a positive or negative skew in correspondence to a positive or negative
sign of the skewness parameter c.

Finally, the implied variance curvature or convexity is approximated by

2
ang ~ 2J2<T>.

The term structure of the curvature term reflects a more pronounced shape for high
values of variance-of-variance, in accordance with typical patterns displayed by stochastic

volatility models as well as purely jumping asset models.
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2.4 Analytics and Numerics for Benchmark Models

In this section we examine the implied volatility expansion (2.17) for two popular option
pricing models. We study both the numerical accuracy of the expansion and its ana-
lytical properties under the different model dynamics, mainly focusing on the quadratic

approximation (2.20) from the previous section.

2.4.1 Heston Dynamics

The most widely known representative of the stochastic volatility model class (2.3) is the
Heston (1993) model. The instantaneous variance is described by the square-root process
of Cox et al. (1985)

dvy = Kk(n — ve)dt + A\\J/vdBy, vy > 0, (2.25)
where k, n and \ are positive parameters representing the speed of mean reversion, the

long-term level, and the so-called volatility-of-volatility parameter (for short, vol-of-vol).

The joint Laplace transform of the log-price and its integrated variance is given by

E%XV(U’ w) _ E[euXt+w j(f vsds] _ SS‘A(U, w, t)eB(u7w’t)U0 (2.26)
where
wt/2 211/ 72
e
A T) =
(u,,T) (Cosh(wt/2) +R/@ sinh(wt/Q))
2w — u+ u?
B T) =
(v, 0, T) <R+wcoth(wt/2)>
with
- . i — JR2 _9)2 2 4 42/2
R =K — up, n—nm, ’w—\/li —22%(w — u/2 + u?/2).

Thus, the effective joint Laplace transform £ defined in (2.2) can be computed an-
alytically via (2.5) with differentiation (2.18) providing the terms of the expansion in

closed-form. The explicit moments entering the quadratic approximation are given as
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follows

1—e7"
B[V = (1 - 7) (m TR S n>> | (2.27)
1 — —TK
Cov[SfH, fof] =5So(1 — p2) (7'77 + Te(vo - 77)) — SOE[VTeﬁ], (2.28)
Var[Sg" =LV (2,p° — 1) — S5, (2.29)
where
N = il and k=K—pA
K — pA

Finally, the variance of the effective variance is given by

(n — 2up) A2

effj 212 UO)\Q 577)\2 277)\2 —TK —27kK
Var[V.4 = (1 — p?) ( e e M g 53 ¢ (2.30)
A2 2(n — vg) N2
+77K2 T+ (0 e 0) Te_m>.

The terms of higher-order approximations are computed along the same lines. Figure
2.1 plots the implied volatilities and their approximations for several times to maturity
T =5,1,1/2,1/4. We use the parameters x = 1.15, n = 0.04, A = 0.2, vy = 0.04, and
p = —0.4 from Forde et al. (2012). The true implied volatilities are computed based
on the Fourier transform approach of Lewis (2001) and Lipton (2002). One observes
from Figure 2.1 that the approximations are fairly accurate across any reasonable strike
range. For example, the mean absolute error is 7 bps for 3-months options and only 5
bps for 6-month options across a relative strike range of [0.8;1.2]. In addition, the plots
visualize how the quality of the approximation increases in the strike dimension as time
to maturity increases. Furthermore, the quadratic approximation is generally superior
around at-the-money compared to the higher-order approximations. In fact, there is
generally no guarantee that higher-orders of our expansion will result in more accurate
approximations. Carr (2000) shows Taylor expansions of Black-Scholes prices in S and V'
have a finite radius of convergence while to obtain the (£, V)-expansion and (X)-expansion
Black-Scholes prices are expanded over the entire domain.

If we substitute the moments (2.27)-(2.30) into expressions (2.21) and (2.22), we obtain
the corresponding closed-form approximations of the at-the-money implied variance Jo(7)

and at-the-money skew J;(7). Simple calculations show that as the maturity shrinks to
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Figure 2.1: Implied volatilities as a function of moneyness K /Sy for the Heston model.

zero the at-the-money implied variance converges to the spot variance v
Jo(1) = vg as 7 —0, (2.31)

while the short-maturity at-the-money skew is independent of x and 7 and converges to

A
3y (7) = % as T — 0. (2.32)

As a result, the term-structure of Heston implied volatilities induced by the quadratic
approximation is consistent with well-known short-maturity asymptotic results derived

by, e.g., Medvedev and Scaillet (2007). However, for extreme maturities far away from

33



zero, the behavior of the quadratic approximation is bound to deteriorate. It is immediate
to verify that the at-the-money implied variance Jy(7) — o0 as 7 — o0, except for the
no-correlation case. In contrast, the true behavior of the Heston volatility smile flattens
to a common asymptotic value independent of moneyness (see Lewis (2000), Chapter 6).

For comparison, Figure 2.2 plots implied volatilities for the quadratic approximation

as well as the most-likely-path approximation of Gatheral (2006) which is given by
~1 1 — e F7
Pla, 1)~ (2, 7) = © + ph— (1 - e) : (2.33)
T

where /
)\ 1 _ —K T
Ku/:/f,—% and w’:n(l—ﬁ)<e>+:n7,

and is valid in the special case vy = 7. Approximation (2.33) is, at least in spirit, similar
to the one developed here as it aims at capturing the overall shape of the volatility surface.
It matches the true term-structure of the at-the-money implied variance and skew both in
the very short-term and for long maturities. In Figure 2.3 at-the-money implied volatilities
and implied variance skews are plotted against the quadratic approximation and the most-

likely-path approximation.
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Figure 2.2: Implied volatility as a function of moneyness for the Heston model. 6-month
options (Left panel) and 1-year options (right panel).

Figure 2.3 shows that the at-the-money volatilities Jo(7) predicted by the quadratic
approximation follow very closely the true term-structure in the short-end and interme-

diate part. Only for extreme maturities and beyond any option liquidity does it start
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Figure 2.3: At-the-money implied volatility (Left panel) and at-the-money implied vari-
ance skew (right panel) as a function of time-to-expiry 7 for the Heston model.

to depart from the true level. While Gatheral’s approximation matches the true term
structure in the short and long ends, the quadratic approximation is clearly superior in
terms of accuracy between these two extremes. Also, the smaller the correlation p, the
more accurate is the approximation and the more extreme are the maturities before it
starts to deviate.

Finally, we observe that both approximations capture the term-structure of the at-the-
money implied variance skew extremely well. The high accuracy offered by the quadratic
approximation, even for long maturities, is anticipated as the variance skew approximation
J1(7) is inversely proportional to the maturity 7 in agreement with the true Heston long-
dated behavior, see e.g. Forde et al. (2010).

2.4.2 VG Dynamics

We now turn to the analysis of expansion (2.17) for the class of exponential Lévy models.
In particular, we examine in details the Variance Gamma (VG) model introduced by
Madan and Seneta (1990) and further developed in Madan et al. (1998). The VG model
is obtained by specifying the effective variance process in (2.9) as a subordinator Z with
unit-time Gamma law. The typical parametrization is in terms of the constants o > 0,
v > 0and § € R where EZ; = 02 and VarZ; = o*v while 0 is related to the skewness

parameter by ¢ = 6/0? + 1/2. The Lévy exponent of Z is then given by
—1/v
k(C) = log (1 — CVO‘Q) / , (2.34)
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which substituted in (2.10) yields an analytical expression of the effective Laplace trans-
form £, From this, the moments of the quadratic approximation (2.20) can be derived

explicitly

E[VE] = o7, Var[VA] = volr,

Cov[S, V] = S, (%) o’T, Var[S4] = S2 ((1:1222); — Sz,

(2.35)

where ¢ = v + %VUQ which becomes ) = cvo? in terms of the skewness parameter c.

Figure 2.4 plots the implied volatilities and their approximations for times to maturity
T =5,1,1/2,1/4. We use the parameters o = 0.25, v = 0.10, § = —0.25 from Jéckel
(2009). Let us first observe from Figure 2.4 that the approximations are fairly accurate
over any reasonable strike range. For instance, for 6 months to maturity, the mean
absolute error across the range of 30% in-the-money to 60% out-of-the-money options
is only 13 volatility basis points. However, Figure 2.4 also makes it clear that the strike
range of validity of the approximations shrinks as time-to-maturity decreases. In addition,
we observe that the quadratic approximation is the most accurate in the at-the-money
region compared to the higher-order approximations.

In terms of the VG model parameters, the term-structure of the at-the-money implied

variance is given by

o [ vo? 1 [ ((1—1)? v 1 vo?
J =04+ — || -+ [ —2L ) -1 -=-= 2.36
ol7) U+2<1—¢ T S 74 (236)
while the at-the-money variance skew and convexity take on the simple expressions
~ 1 ¥ N 1 v
Jl(T) = ; m and JQ(T) = ﬁ Z (237)

This way the approximation links the model-parameters to the key features of the volatil-
ity surface. Specifically, o affects the overall level of volatility, 6 governs the skewness
through v, while the parameter v is the sole responsible for the convexity.

For comparison, in Figure 2.5, implied volatilities of the quadratic approximation
are plotted against the VG approximation of Jéckel (2009) which is based on a singular
expansion of the Gamma density for small values of v. Truncated to the first order,

Jéckel’s approximation yields the following expression for the implied volatility
Iz, 1)~ Iz,7) = (0 + ov)?, (2.38)
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Figure 2.4: Implied volatilities as a function of moneyness K /S, for the VG model.

where

x? ofo? 1 o x c?
n = s\ 5) T (a5

with x denoting as usual the log-moneyness and ¢ being the skewness parameter. Fig-
ure 2.6 illustrates the behavior of the at-the-money term structure of implied volatilities

and implied variance skews over both short and long time-horizons.
From maturities of around two months up to ten years, the at-the-money volatilities
Jo(7) and skews J;(7) capture the true term-structure very accurately. Even for short
maturities the skew approximation J;(7) gives a fairly accurate fit, while Jackel’s approxi-

mation appears to diverge. Nevertheless, the approximation of the at-the-money volatility
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Figure 2.5: Implied volatility as a function of moneyness for the VG model. 6-month
options (Left panel) and 1-year options (right panel).

is ill-behaved for short maturities. Both Jo(7) — —o0 and I%(0,7) — —oc as 7 — 0. In
contrast, the true behavior of exponential Lévy models force the at-the-money implied
volatility to zero at the rate /7 (Tankov (2011)). However, in spite of this theoretical
shortcoming, the approximated curves quite quickly catch up with the true ones.

At the other extreme end of the term-structure a similar issue arises when looking
at long-dated smiles. Tehranchi (2009) shows that the implied volatility of exponential
Lévy models converges to a constant value independent of moneyness, with the long-term
implied variance being approximatively affine in both the log-moneyness x and in the
time-to-maturity 7

rI*(x,7) ~ AT + Bz + C. (2.39)

While the at-the-money variance skew and convexity terms (2.37) of the quadratic ap-
proximation do imply a flattening at long maturities, the approximated level (2.36) is
forced to grow to infinity as 7 — oo whenever the skewness parameter ¢ # 0. This is

due to the contribution of the annualized variance of the effective spot Var[S&] /7 which

i((%:;ﬁf);—l)%m as T — 00. (2.40)

However, calibration of the VG model to market data typically sets ¥ to be a small

gives

negative number which yields a very low rate of growth producing only a sizable effect

at extremely long maturities. This is also confirmed by Figure 2.6. Thus, in practical
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applications the quadratic approximation meets the affine structure (2.39) since the ap-

proximation Var[S4] /7 ~ Var[S{f] is quite accurate for a large interval of long maturities

where the effect of the convexity term Jo(7) fades away rather quickly.

2.5 Applications

We discuss two potential applications of the proposed expansion of implied volatility.

First, the expansion can be used as a control variate in Fourier pricing of options. Sec-

ond, it may be used as a fast, first-order model calibration approach. In particular, we



look at joint calibration to the at-the-money volatility and skew. We will exemplify the
applications using the VG model and the Heston model. However, any option pricing
model embedded in the mixing setup of Section 2.2 admits, in principle, the following

applications.

2.5.1 Control Variate

Fourier transform methods have been introduced to option pricing by several authors, see
e.g. Carr and Madan (1999) or Lewis (2001). Schmelzle (2010) provides a comprehensive
overview of Fourier transform methods with applications to option pricing. The approach
suggested in Lewis (2001) and independently derived in Lipton (2002) stipulates that
given the (normalized) characteristic function ¢,(u) = Ee™1°857 the price of a call option

is

K 400 .
C(S,K,7) =S — —/ iz (—)— B (2.41)

27 Jia—oo 22 — iz
for « = &z € (0,1), assuming zero interest rates and dividends for simplicity. In practice,
one often chooses the integration contour o« = 1/2 and after some rearrangements the

formula becomes

C(S,K,7) =5 — \/S_K/Oooére e, (u—3)] du (2.42)

T 2 u2+i

To improve convergence, Andersen and Andreasen (2002) suggest incorporating a control
variate when computing the inverse Fourier integral in (2.42). This idea has been further
elaborated in Sepp (2003), Itkin (2005), and Andersen and Piterbarg (2011). The common
approach is to use the Black-Scholes price as a control variate. Specifically, using the
Fourier transform, one computes the difference between the model price of the option and
the Black-Scholes price for the same option characteristics and a suitable volatility. The

price of a call option would then be given by

C(S,K,7) = CP%(S,K,T;0) (2.43)
B \/SK/OO 1
m Jo u+1

R [e‘mm <¢T (u — %) — e_%(“%i)”ﬁ)] du.

Effectively, given a certain accuracy or error tolerance, this reduces the number of function
evaluations required in the numerical integration scheme. However, this strategy also

poses a tautological question as to which volatility ¢ to use in the Black-Scholes pricing
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formula. Thus, the choice of volatility has generally been more or less arbitrary; a popular

choice being the at-the-money spot volatility.

Instead, we suggest using the quadratic approximation to compute an approximate
value for the option’s implied volatility. In other words, we set 0 = Ig(z,7) in (2.43)
with I denoting the approximated implied volatility obtained by (2.20). We refer to
this approach as the QA control. As documented in the previous section, the quadratic
approximation is quite accurate for such applications. The QA control will further reduce
the numerical integration error compared to the common case of arbitrarily chosen volatil-
ity, the BS control. The QA approach does not really add more complexity to the problem
as the quadratic approximation is just an elementary function of the option’s moneyness
and expiry. In addition, by appropriate vectorization, the whole implied volatility surface
can be approximated in just one sweep providing us with a surface of suitable control
variates. Finally, the QA control variate may also be used in model calibration based on
Fourier inversion. No extra parameters need to be calibrated as the parameters of the
quadratic approximation are exactly the same as those defining the model’s characteristic

function.

In the numerical experiments, we compare three cases: (i) Fourier pricing without a
control variate, (ii) Fourier pricing with the BS control, and (iii) Fourier pricing with the
QA control. Considering 1-year call options, Table 2.1 reveals the number of function
evaluations required for numerical integration of the inverse Fourier transform across
strikes under both VG and Heston dynamics. In the BS control case the Black-Scholes
volatility is put equal to the o parameter in the VG case or /vy in the Heston case. We use
two adaptive quadratures for the numerical integration, a recursive Simpson’s rule and a
Gauss-Lobatto quadrature rule, and in both schemes we choose an absolute error tolerance
of 1.0e-9. Compared to the case without a control variate, the QA control variate reduces
the average number of function evaluations by 64% (VG) and 63% (Heston) for Simpson’s
rule and more than 59% (VG) and 58% (Heston) for the Gauss-Lobatto quadrature.

Table 2.2 provides further evidence on the numerical performance of the QA control
for 6-month call options. Again, we observe the overall picture is that the QA control
reduces the number of function evaluations by > 60% (Simpson’s) and > 50% (Gauss-
Lobatto), on average, compared to not using a control variate at all, while the average
reductions are > 20% (Simpson’s) and > 30% (Gauss-Lobatto) compared to using the BS

control.
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Table 2.1: Number of function evaluations required for numerical integration of the
inverse Fourier transform for 1-year options

VG model® Heston model?

Strike No Control BS Control QA Control No Control BS Control QA Control
600 397 225 189 429 253 209
[618] [408] [318] [618] [408] [348]

700 397 209 153 421 217 169
[618] [408] [288] [618] [408] [288]

800 397 197 141 413 201 157
[588] [378] [228] [588] [348] [288]

900 401 189 109 413 197 113
[558] [318] [168] [588] [318] [198]

1000 401 189 125 417 197 121
[588] [348] [198] [588] [288] [198]

1100 405 189 141 421 201 145
[618] [348] [228] [618] [318] [198]

1200 393 185 133 405 193 149
[618] [378] [258] [618] [348] [258]

1300 405 197 141 417 201 145
[618] [378] [258] [618] [348] [228]

1400 413 221 161 425 213 173
[618] [378] [288] [618] [378] [318]

Av. change® 50% 64% 50% 63%
[39%] [59%] [42%] [58%]

Remark: 7 = 1 year and Sy = 1000. We consider two adaptive quadrature rules: the recursive Simpson’s
rule (without brackets) and the Gauss-Lobatto quadrature (within brackets). In all cases, we use an
absolute error tolerance of 1.0e-9.

& VG parameters o = 0.25, v = 0.10, § = —0.25. The volatility in BS Control is put equal to o.

b Heston parameters x = 1.15, § = 0.04, n = 0.2, p = —0.40, vy = 0.04. The volatility in BS Control is

put equal to \/vg.
¢ Average reduction in function evaluations compared to the No Control case.

2.5.2 Calibration

We propose a fast, first-order calibration approach. Specifically, we propose to jointly
calibrate the model to the at-the-money volatility and skew using the corresponding ap-
proximations presented in this paper. A series of calibration experiments are conducted
to document the use of the approach. We consider four trials where we calibrate a given

model to data generated from the model itself using known parameters. This allows us
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Table 2.2: Number of function evaluations required for numerical integration of the
inverse Fourier transform for 6-month options

VG model® Heston model?

Strike No Control BS Control QA Control No Control BS Control QA Control
600 449 257 249 457 265 233
[648] [438] [378] [648] [438] [378]
700 437 237 181 445 233 185
[648] [408] [288] [648] [378] [318]
800 421 201 161 433 217 165
[618] [348] [288] [648] [378] [258]
900 421 201 121 425 181 129
[588] [318] [198] [618] [318] [228]
1000 429 201 121 433 185 117
[588] [318] [198] [588] [258] [198]
1100 429 205 145 433 185 125
[618] [318] [198] [618] [288] [198]
1200 421 197 161 433 205 153
[618] [318] [258] [648] [348] [198]
1300 433 205 161 445 213 161
[618] [318] [258] [648] [318] [288]
1400 441 229 169 453 225 177
[618] [378] [258] [648] [378] [318]
Av. change® 50% 62% 52% 65%
[43%] [58%] 46% 58%

Remark: 7 = 1/2 year and Sy = 1000. We consider two adaptive quadrature rules: the recursive

Simpson’s rule (without brackets) and the Gauss-Lobatto quadrature (within brackets). In all cases, we
use an absolute error tolerance of 1.0e-9.

& VG parameters o = 0.25, v = 0.10, § = —0.25. The volatility in BS Control is put equal to o.

b Heston parameters x = 1.15, § = 0.04, n = 0.2, p = —0.40, vy = 0.04. The volatility in BS Control is

put equal to \/vg.
¢ Average reduction in function evaluations compared to the No Control case.

to evaluate how well the calibration procedure captures the true parameters of the data.
In the first two trials, we calibrate the VG model to data on at-the-money volatilities
and skews generated using known parameters from (i) Jackel (2009) and (ii) Madan et al.
(1998). In the last two trials we turn to the Heston model and consider calibration to data
generated based on parameters from (i) Forde et al. (2012) and (ii) Bakshi et al. (1997).

All data for the calibrations were generated using the Fourier transform approach dis-
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cussed in the previous section. First, note that we have the following implicit relationship
between the implied volatility surface and the characteristic function,

[TR [ (0 (u— 4) — i) B g, (2.44)

2 1
u® + 7

allowing us to numerically compute the true implied volatilities. Then, following Gatheral

(2006), we compute the at-the-money implied volatility skew as

gi _ 2 <%)1 /0°° u2u+}1 S [o, (u—1)] du. (2.45)

=0

Next, we use our quadratic approximation to calibrate the models to the generated at-
the-money volatilities and at-the-money skew values jointly. We apply the Levenberg-
Marquardt algorithm to minimize the sum of squared errors. In the calibration we have
option maturities of one month up to five years, i.e., 7 €(1M, 2M, 3M, 6M, 9M, 12M,
18M, 24M, 36M, 48M, 60M). This leaves us with 2 x 11 observation points to calibrate
to.

Table 2.3: Model calibration results

VG model
Jackel (2009) Madan et al. (1998)
o 0.2500 0.2523*  0.1213 0.1226*
v 0.1000 0.1164* 0.1686 0.1725*
0 -0.2500  -0.2399* -0.1436 -0.1393%

Heston model
Forde et al. (2012) Bakshi et al. (1997)

1.1500 1.2155*  1.1500 1.5321*
0.0400 0.0402*  0.0348 0.0337*
0.2000 0.2142*  0.3900 -0.4142*
-0.4000  -0.3796* -0.6400 -0.6313*
Up 0.0400 0.0401*  0.0348 0.0347*

@ Parameters obtained by model calibration.

T >3 X

Table 2.3 provides the calibrated as well as the true parameters in the four cases. We
see that the suggested expansion-based calibration approach gives parameter values that
are reasonably close to the true parameters from which the data was generated. In the

case of the VG model the 6 seems to be the most troublesome parameter to capture, while
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for the Heston model k appears to be the trickiest. Besides a gain in computational speed,
the advantage of the calibration approach is that fewer data points are required in the
calibration compared to calibrating to an entire option price surface. Consistency with
the observed at-the-money volatilities controls the level of the model implied volatility
surface, while consistency with the at-the-money skews secures that the model volatility

surface has the correct smile/skew shape.
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Figure 2.7: Surfaces of absolute calibration errors in implied volatility. (a) VG model
with Jéckel (2009) parameters. (b) VG model with Madan et al. (1998) parameters. (c)
Heston model with Forde et al. (2012) parameters. (d) Heston model with Bakshi et al.
(1997) parameters.

To further support the calibrated parameters, we look at the absolute errors between
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the true implied volatilities and implied volatilities based on the calibrated parameters for
call options with strikes from 30% out-of-the-money to 30% in-the-money. The calibration
errors are illustrated in Figure 2.7. In all four cases the mean absolute calibration errors
are less than 10 volatility basis points. Even for liquid equity options, the bid-ask spread
is often not much less than 100 volatility basis points. In other words, the differences

between the true and the calibrated parameters appear economically insignificant.

2.6 Conclusion

In this paper we derive a closed-form expansion of the implied volatility surface. The
expansion is simple and easy to interpret and implement. In addition, it decomposes the
volatility surface into meaningful quantities that directly relate its smile/skew shape to
higher-order option risks and analytical features of the underlying model. We apply the
expansion to, for example, the Heston stochastic volatility model and the pure-jump Vari-
ance Gamma model. However, the expansion is largely generic in the sense that it may
be used for a broad class of option pricing models displaying both jumps and stochastic
volatility in the underlying dynamics. Finally, we explore two domains of potential appli-
cation. First, we suggest using the expansion as a control variate in Fourier option pricing.
Our numerical experiments show that this effectively reduces the number of function eval-
uations required in the numerical integration procedure. Secondly, we propose a speedy,
expansion-based approach for model calibration to at-the-money implied volatilities and

skews.
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Abstract

We consider a tractable affine stochastic volatility model that generalizes the seminal
Heston (1993) by augmenting it with jumps in the instantaneous variance. In this
framework, we consider options written on the realized variance and we examine the
impact of the distribution of jumps on the associated implied volatility smile. The
model allows us to isolate the unique impact of the jump distribution. We provide
sufficient conditions for the asymptotic behavior of the volatility of variance for
small and large strikes. In particular, we show that by selecting alternative jump
distributions, one obtains fundamentally different shapes of the implied volatility
of variance smile — some clearly at odds with the upward-sloping volatility skew

observed in variance markets.

3.1 Introduction

The empirical literature offers ample evidence on the presence of jumps in volatility.
From a derivatives perspective, Duffie et al. (2000) were among the first to address the
issue of random volatility jumps. The authors proposed a double-jump model within
the affine diffusion class which presumes jumps in both asset prices and their variances.
Since then, this model has been applied empirically in a number of studies including
Broadie et al. (2007), Chernov et al. (2003), Eraker et al. (2003), and Eraker (2004)
among others. These studies generally find evidence for jumps both in the price level and

its volatility. Also, several authors have considered the pricing of volatility derivatives in
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models with variance jumps. Among them Sepp (2008a), Sepp (2008b), and Lian and Zhu
(2011) proposed augmenting the popular square-root dynamics of Heston (1993) to allow
for exponential jumps in the instantaneous variance. Nevertheless, despite the common
notion to include jumps in the variance dynamics, an examination of the distribution of
jumps and its financial implications appear — to the best of our knowledge — curiously
absent from the literature. Here we show that the particular distribution of jumps does,

in fact, have a profound impact on the behavior of the implied volatility smile of variance.

In contrast to the downward-sloping skew of implied volatilities in equity markets, the
volatility of variance has an upward-sloping skew. The financial explanation of this comes
from the empirical fact that large losses in the price of the underlying are usually followed
by high levels of volatility (Sepp (2008b)). This means that out-of-the-money call options
on variance provide protection against market crashes. To compensate for the insurance
risk, the call option writer will charge a premium accordingly, very much like the writer of
put options on the stock or index itself. This market behavior cannot be captured by any
kind of distribution of the jumps in the instantaneous variance dynamics. In fact, some
jump distributions imply a shape of the volatility of variance that is clearly at odds with
the upward-sloping volatility smile. Evidently, correctly grasping the true distribution of
variance jumps is of paramount importance for trading and risk management of variance

and volatility derivatives. This paper attempts to fill this gap.

We consider a tractable affine stochastic volatility model that generalizes the seminal
model of Heston (1993) by allowing for jumps in the instantaneous variance. This model
can also be seen as a particular instance of the double-jump model of Duffie et al. (2000).
In this framework, we consider options written on the realized variance and we examine
the impact of the distribution of jumps on the associated implied volatility smile. Existing
studies on pricing of realized variance options include Carr et al. (2005), Drimus (2012),
and Sepp (2008a), while Cont and Kokholm (2011) develop a flexible market model for

consistent valuation of realized variance derivatives, index options, and VIX derivatives.

Our model allows for an enormous variety of distributions for the jumps in the instan-
taneous variance dynamics, predicting completely different shapes and characteristics of
the implied volatility of variance surface. Furthermore, a particularly neat subclass of
the model includes the case when the instantaneous variance is driven by a pure-jump
Ornstein-Uhlenbeck (OU) type process (Barndorff-Nielsen and Shephard (2001)). In this
case, the realized variance is driven solely by jumps, which allows us to isolate the unique

impact of the jump distribution.
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Based on the classical Tauberian theorems and more recent results of Lee (2004) and
Gulisashvili (2012) on implied volatility asymptotics, we provide a direct link between
the tail behavior of the jump distribution, the distribution of realized variance, and the
impact on the implied volatility smile of variance. We derive easy-to-check sufficient
conditions for the asymptotic behavior of volatility of variance for small as well as large
strikes, given the particular distribution of variance jumps. In particular, we show that
for a number of specific jump distributions one obtains fundamentally different shapes
of the implied volatility of variance. For example, we find that the Gamma distribution
leads to a downward-sloping volatility skew, the Inverse Gamma distribution predicts
an upward-sloping skew, while the Inverse Gaussian distribution leads to a frown of the
implied volatility surface.

The rest of the paper is organized as follows: In Section 3.2 we give the necessary back-
ground on realized variance options and a description of our affine stochastic volatility
model with jumps in the instantaneous variance. In Section 3.3 we provide some prelim-
inary results on wing asymptotics for a general distribution of the realized variance. In
Section 3.4 we consider pure-jump OU model specifications and derive sufficient conditions
for the asymptotic behavior of the volatility of variance. Section 3.5 describes a number
of alternative jump distributions and we provide numerical results for selected cases. In
Section 3.6 we provide analogous results on the wing asymptotics for full specifications of

our affine stochastic volatility model. Finally, Section 3.7 concludes the paper.

3.2 Options on Realized Variance

The realized variance of a given asset is a measure of the variation in the price realized
over some period of time. More precisely, assume we observe the asset price S; on some
regular grid 0 =ty <t; < --- <t, =T fixed to the time interval [0, 7], then the realized

variance is defined as

N N
RVN = Z log(Stn/Stn71)2 = Z(th - thil)Q,
n=0 n=0

where X; = log(.S;) denotes the log-price. Common practice is to approximate realized

variance by the quadratic variation [X]r of the log-price
N
: 2
[X]r = lim T;](th — X, )"
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This is justified by the fact that realized variance converges to [X|r as the mesh-size of
the time-grid, II = sup,_; _ n(t, — tn-1), goes to zero. As a result, when we talk about
options on realized variance we really mean the continuous-time limit of the realized
variance which is the quadratic variation of the log-price. In practice, Broadie and Jain
(2008) show that the approximation works well for daily data.

We adopt the simplifying assumption of zero interest rates and dividend yields as they
have no impact on the realized variance distribution. Furthermore, we assume that under
the pricing measure QQ the log-price X and its instantaneous variance v evolve according

to the following risk-neutral dynamics
dXt = —%Ut dt + \/’U_tth

(3.1)
dvy, = An—v)dt +e/odB+dJ; .

The processes W and B are standard Brownian motions with correlation parameter p.
The jump process J is an increasing and driftless Lévy process independent of (W, B)
with finite first moment and Lévy measure v;(dx). That is, the cumulant exponent x; is
given by

ky(u) = logEle "] = /Ooo(e“x — 1Dy, (dx), (3.2)

where v;(dz) is a measure on the positive real line satisfying [5° zv;(dz) < oco. Finally,
the parameters A, n and € are non-negative constants.

The stochastic volatility model (3.1) generalizes the seminal Heston (1993) model
by augmenting the square root process describing the instantaneous variance to allow for
jumps. It can also be seen as a particular instance of the double-jump stochastic volatility
(SVJJ) model introduced by Duffie et al. (2000) where both the instantaneous variance
v and the log-price process X are affected by jumps. To emphasize the fact that in (3.1)
jumps are allowed only at the variance level, we refer to the model as SVJ-v.

The main advantage of the SVJ-v model specification is that the quadratic variation
coincides with the integrated variance of X. Thus, the annualized realized variance —

denoted by V' hereafter — is given by

1 T
VT = T/O Utdt.

This means that, on one hand, the SVJ-v model allows us to deal with the integrated
variance, a quantity which in affine models is particularly simple and mathematically
tractable. On the other hand, it also allows us to explore alternative distributions for the

jump process J and to analyze their impact on the price of realized variance derivatives.
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In this work, we focus on call options on the annualized realized variance. For a given

maturity 7', the price C(K) of a call striking at K is given by
C(K)=E(Vr - K)*

while its implied volatility is obtained by matching the call price with the Black-Scholes
formula. More precisely, the implied volatility of variance I(K) is defined as the solution

of the following equation

_|_

I(K)VT 2

I(K)VT 2

where Vy = E[Vr] is the fair annualized variance seen at the present time, x = log(Vy/K)

c(K>=Vo<I>< v I<K)ﬁ>+K<I>< : i [<K)ﬁ>,

is the log-moneyness of variance and ®(-) denotes the cumulative distribution function of

a standard normal law.

3.3 Preliminary Results on Wing Asymptotics

While the main purpose of this study is to show how the distribution of variance jumps
can lead to different behavior of the implied volatility of variance across strikes, we first
provide a number of preliminary results on the wing asymptotics of the variance smile for
a general distribution of the realized variance V.

The asymptotic behavior of the wings of the implied volatility smile has attracted
considerable attention during the last decade. In a ground-breaking paper, Lee (2004)
relates the wings of the smile to the number of moments of the underlying distribution
and a large part of the literature since then has been devoted to provide refinements and
extensions of Lee’s moment formulas. Among others, we refer to the studies of Benaim
and Friz (2009), Benaim and Friz (2008), Gulisashvili (2009), Gulisashvili (2012) and the
references therein.

However, the focus has been on implied volatility smiles for equity options. So, most
of the results are formulated in terms of distribution functions or moment generating
functions related to the distribution of log Vi as the natural building block in that context
is the log-price. In contrast, for variance options the relevant and tractable element is
the variance V7 itself, which implies that a lot of the previous results available for equity

options cannot be directly transferred to the case of variance smiles.
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Still, Lee’s moment formulas as well as the work of Gulisashvili (2012) play a crucial
role in the subsequent analysis. We summarize the results relevant for our applications

in Theorem 3 below. The function v appearing in the formulation is given by
Y(r)=2—4(Va?+z—x),

and g(z) ~ h(x) means that g(z)/h(x) — 1 as either + — 0 or  — oo depending on the
context. To keep matters simple, we assume that [(K) is well defined for all K > 0 and
we implicitly postulate the existence of all the involved limits. We refer to Benaim et al.

(2008) for a discussion on this issue for equity smiles.
Theorem 3. The following statements hold for the implied volatility of variance I(K)
1. Let py = sup {p E[V2H] < oo}, then

I*(K) ~¥(p)log(K/Vy)/T as K — oc. (3.3)

2. Let gy = sup {q KBV < oo}, then

I*(K) ~ ¥(§) log(Vo/K)/T as K — 0. (3.4)

3. In the case of py = oo, then

—1/2
1 1
I(K) ~ \/ﬁlog(K) <log C(K)) as K — oo. (3.5)
4. In the case of Gy = oo, then
1 1 —1/2

where P(K) denotes the pricing function of a put option on Vi with strike K and
maturity T'.

Formulas (3.3) and (3.4) are derived in Theorem 3.2 and Theorem 3.4 in Lee (2004).
While being undoubtedly powerful, they are not informative when p = oo or § = oo. In
those cases, formulas (3.5) and (3.6), which we refer to as Gulisashvili’s criterions, turn

out to be very useful. Criterion (3.5) for large strikes corresponds to formula (2.8) in
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Gulisashvili (2012) while the corresponding criterion (3.6) for small strikes can be derived
following analogous techniques.

As in the case of equity smiles, Karamata’s theory of regular variation proves to be a
powerful tool in connection with Theorem 3. Recall that a positive, measurable function

f is reqularly varying at oo with index a € [0, 00) if the following holds
t
lim J(t)
In this case we write f € R,. When f € Ry, then we say that f is slowly varying at oco.
It can be shown that f € R, if and only if it takes the following form

=t°, t>0. (3.7)

f(2) = 2*((x) (3.8)

where ¢ € Rj.
Karamata’s Tauberian theorem relates the regular variation of a function to that of
its Laplace transform. More precisely, it can be formulated as follows. Consider right-

continuous, non-decreasing function f on R, and let
L(x) = /OOO e “df (u), x>0,
denote its Laplace transform. Then, for o > 0 it holds that
f(z) € R, ifandonlyif L;(1/z)€ R,,

and in this case L;(1/z) ~ (1 + «)f(x) as * — oo, where I' is the Gamma function. It
can be found, e.g., in Embrechts et al. (1997), Theorem A3.9 on p. 569. For our purposes,
it turns out to be more useful to deal with a dual formulation of the above result which

instead relates the regular variation of f(1/z) to that of Ls(z).

Theorem 4 (Karamata’s Tauberian Theorem). For a right-continuous, non-decreasing
function f on Ry and for a > 0 it holds that

f(l/x) € R_, if and only if Ls(z) € R_,,
and in this case L¢(x) ~ (1 + a)f(1/z) as x — oco.

The proof of this alternative formulation follows along the same lines as that of the
classic Karamata’s Tauberian theorem and it is reported in the Appendix for complete-

ness. In what follows, we will also make use of rapidly varying functions. A positive,
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measurable function f is said to be rapidly varying with index —oco (f € R_) if

v’vl—>n@°10f(x)_ 00 if0<t<l.

y f(tx)_{o ift>1

Specifically, we will refer to the fact that if f € R_,, and o € R then

lim v ()

S W = 00, (39)

which can be found in, e.g., Embrechts et al. (1997), p. 570.

Let us now turn to our analysis of the asymptotic behavior of volatility of variance at
large strikes and at small strikes. We provide sufficient conditions for the right and left
wings of the variance smile to be upward or downward-sloping. Here, we denote by Fy
and Fy the distribution function and the distribution tail of Vi,

Fy(z) =Q(Vp <z) and Fy(x)=1- Fy(x),
while we write Ly for its Laplace transform
ﬁv(u) = E[B_UVT] .

A straightforward application of the regular variation theory yields the following sufficient

condition for the right wing of the variance smile to be upward-sloping.

Proposition 7 (Upward-sloping right wing). Suppose that Fyy € R_o_, for a > 0. Then
Lee’s formula (3.3) for large strikes holds with py = c.

Proof. This follows immediately from the definition of regular variation. O]
Next, we provide a sufficient condition for the right wing to be downward-sloping.

Proposition 8 (Downward-sloping right wing). Suppose that the distribution tail Fy is
dominated by a Weibull-type tail function, i.e. there exist positive constants o, 3, v > 0
such that

Fy(x) < ve " for we€ (29, 00) with zo > 0. (3.10)

Then py = oo and I(K) — 0 as K — oo.
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Proof. 1t is sufficient to consider the case 0 < g < 1. For K large enough, it holds that

C(K)= / Fy(r)dr < A , e " x/P 7 dy = ATy 5(aK?)
K aK

where A = 7(11% is a positive constant and I's(x) denotes the lower incomplete Gamma

function. Recall that ['y(z) ~ 25 e as * — oo (see e.g. Abramowitz and Stegun (1987),

p. 263). The result now follows from Gulisashivili’s criterion (3.5) for large strikes, which

can be applied as condition (3.10) entails that p = oo. ]

If the tail condition (3.10) is satisfied with 5 = 1, then one says that the distribution
of Vi has a thin tail. This is in fact equivalent to zero being in the interior domain of the

Laplace transform Ly, i.e.

Fy(z) <~e™®® forx >z, iff 0e€Dy (3.11)

where Dy = {zx € R: Ly < 00}.

Let us now consider the left wing of the variance smile. In this case, it is possible
to obtain a formulation of Lee’s formula (3.4) for small strikes in terms of the Laplace
transform Ly. This is feasible thanks to Karamata’s Tauberian Theorem as given in

Theorem (4) if we consider distributions enjoying some regular variation property.

Proposition 9 (Upward-sloping left wing). Assume that Fy is a continuous function.
Suppose that for an o > 0, Fy(1/x) € R_, or equivalently Ly (x) € R_,. Then Lee’s
formula (3.4) for small strikes holds with index Gy = .

Proof. The statement follows immediately by observing that the tail distribution function
of V=1 is given by
Fya(z)=Q (V™' > ) = Fy(1/x)

and therefore Fy,-1 € R_,,. O

We conclude our collection of preliminary results with a sufficient condition for the left
wing to be downward-sloping to zero. In this final case, de Bruijn’s Tauberian theorem is
the key result which allows for a convenient formulation in terms of the Laplace transform
Ly. Here we report a simplified version as stated in Voss (2009) which is sufficient for

our purposes.
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Theorem 5 (de Bruijn’s Tauberian Theorem). Let o € (0,1) and > 0 be constants
satisfying é — % = 1. Then the limit

lim 27 log Fy(z) =5 <0 (3.12)
exists if and only if the limit
1
i 08 £v(@) _ r<0 (3.13)
T—>00 T

exists. In this case |or|'/® = |Bs|"/5.
The left-wing result goes as follows.

Proposition 10 (Downward-sloping left wing). Assume that Fy is a continuous function.
Suppose that there exist o € (0,1) and >0 wzth ~ — = =1 such that Fy satisfies (3. 12)
with s < 0 or equivalently Ly satisfies (3.13) with r < O. Then the left-wing index Gy =
and I(K) — 0 as K — 0.

Proof. Since (3.12) holds with s < 0, it is possible to find ¢ > 0 and z¢ > 0 s.t. Fy (z) <

e~ for & > x. As Vi has a positive distribution, for a given ¢ > 0 we can proceed as

follows

+oo o
E[vy ] = /0 Q(VT_q > z)dz < x +/ Fv(:v_l/q)d;p

< z9 +/ r) g~ dr < 2 —|—/ m qu_q_ldx < 00.

So Gy = oo and Gulisashvili’s criterion (3.6) applies. Notice that, for K small enough,
the following holds

K oo -2 —caf —cK—#
P(K):/O Fv(x)dxg/l/Kx e ““dr<Ke ,

where the last inequality follows by applying the property (3.9) to the rapidly varying
function f(z) = e, The result follows now immediately from (3.6). O

3.4 Ornstein-Uhlenbeck Specifications

We now proceed to the analysis of the volatility of variance in the SVJ-v model. The

realized variance Vr inherits the distributional properties of the jump process J in an
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essentially unaltered manner. We consider the non-Gaussian Ornstein-Uhlenbeck (OU)
specification which is obtained by setting n = ¢ = 0 in the full SVJ-v specification (3.1).
Hence, the instantaneous variance v moves uniquely by jumps according to the following
dynamics

d'Ut = —)\Utdt + th (314)

Stochastic volatility models of the OU type were first proposed by Barndorff-Nielsen and
Shephard (2001) and have since then been studied extensively (see, e.g., Barndorff-Nielsen
and Shephard (2003), Nicolato and Venardos (2003)). Besides possessing the capability
of capturing stylized features of financial time series, OU type processes are extremely
tractable from a mathematical viewpoint. For example, it is immediate to verify that the

instantaneous variance process is given by
At b
v = e "y +/ e M=) L.
0

A further integration yields the following explicit expression for the annualized realized
variance

1 /T T
V= / vdt = ve(0, T) + / e(t, T)dJ,, (3.15)
0 0
where we have employed the compact notation

1— 6—/\(T—t)

e(t,T) = ST

(3.16)

Since €(t,T) is a positive and decreasing function, we see immediately from expression
(3.15) that for any 0 < T} < T the realized variance Vr satisfies the following bounds

voM + mJT1 < Vp <voM + MJT> (317)

where m and M are positive constants given by m = €(71,7) and M = ¢(0,7"). The

corresponding Laplace transform of realized variance takes the explicit form
T
Ly (u) = exp (—ue(O,T)vo +/ Ky (ue(t,T)) dt) , (3.18)
0

where £, is the cumulant function of J; as defined in (3.2).
For further details on OU type processes as well as the original derivation of the
expressions reported above, we refer to Barndorff-Nielsen and Shephard (2001). A less

well-known result yields the explicit calculation of the Lévy measure vy (dz) of the realized
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variance in terms of the Lévy measure v;(dz) of the driving subordinator J. Assume for
simplicity that v;(dx) is absolutely continuous, and let n; denote its density. Then,
Barndorff-Nielsen and Shephard (2003) show that also vy (dx) is absolutely continuous
with density ny given by
00 T

ny(x) = /m/e(O,T) nJ(y)mdy. (3.19)
Let us now look at the jump impact on the asymptotic behavior of the implied volatility of
variance for large strikes. Consistent with the adopted notation, the distribution function,

the distribution tail, and the Laplace transform of the unit time law J; will be denoted
by

Fi(z) =Q(J; < x), Fy(z) =1— Fy(x), L;(z) = Ele™™""] = exp k().

Our first result states that the realized variance V7 has the same number of finite
positive moments of the unit time law J;. Moreover, if J; has a regularly varying tail, this

property is transferred to the realized variance and the index of variation is maintained.
Proposition 11 (OU upward-sloping right wing). The following statements hold:

(i) Let p; = sup {p B[] < oo}. Then Lee’s formula (3.3) for large strikes holds
with index py = py.

(17) Assume furthermore that Fj is absolutely continuous with density f; € R_o_o for
a > 0. Then also Fj is absolutely continuous with density fyy € R_o_o. In this case

the right-wing index is given by py = «.
Proof. The chain of inequalities (3.17) implies that for any p > 0
E[(’U()M + mJTl)p] < E[va)] < E[(U()M + MJT)p]

Statement (i) now follows by recalling that the finiteness of moments of a Lévy process is
a time independent property. See Theorem 25.3, p. 159 in Sato (1999). As for statement
(1), it follows from Remark 25.14., p. 164 in Sato (1999) that an infinitely divisible
distribution is regularly varying if and only if its Lévy density is regularly varying with
the same index. Hence, to conclude that f,, € R_,_o, it suffices to show that vy, € R_,_».

Since v; € R_,_9, from representation (3.8) it follows that vy given in (3.19) takes the

—a—2
oo y
w(z) /x/e(O,T) ) (y — ATx) Y

form
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where ¢ € Ry. For t > 0 the change of variable z := y/t yields
- a2
vy (tor) =172 /x/e(o,T) E(tz)mdz.
As ¢ € Ry then for a given ¢t > 0 and € > 0 we can find z, s.t.
a2 —a-2 —a—2

(1 _g)g(z)(zz_w < E(tz)(zz_)\Tx) < (1+5)€(z)m

holds for all z > z,. Since ¢ is arbitrary we conclude that

vy (tx)

St as x— 0.
vy ()

Finally py = « since fiy € R_,_o implies that Fyy € R_,_; and in virtue of Proposition 7.
O

Next, we provide sufficient conditions for J; to guarantee a right wing which for large
strikes is downward-sloping and vanishing to zero. In essence, we require that the tail of

J1 is either thin or Weibull equivalent.

Proposition 12 (OU downward-sloping right wing). Let a, 5, v > 0, and suppose that

one of following statements holds.

a. The tail condition
Fi(z) <ve " for € (zg,00) (3.20)

is satisfied with 3 > 1.

b. The tail condition
Fji(z) ~ ve " as oz — 00 (3.21)

is satisfied with 0 < 8 < 1.
Then py = o0 and I(K) — 0 as K — o

Proof. In either case, the distribution tail of J; is dominated by a Weibull type tail.
Hence, py = p; = oo in virtue of Proposition 8. Suppose that the thin-tail condition
(3.20) is satisfied. The equivalence (3.11) implies that zero lies in the interior D of the

Laplace transform £;(u) of the unit time law J;. Then we see from expression (3.18)
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that 0 € f)v as well and therefore the statement holds. Assume now that J; is tail-
equivalent to a Weibull distribution with 0 < § < 1 as stated in (3.21). Then J; is a
sub-exponential® distribution and in virtue of Remark 25.14, p.164 in Sato (1999) the

following tail equivalence
Q(J, > z) ~ tvy(x, 00) ~ tFy(z) ~ tve‘mﬁ

holds at any time ¢ > 0 and in particular at ¢ = T. Then the upper bound in (3.17)
implies that there exist positive constants & and 4 such that for x large enough it holds
that

r — Vg

Fy(z) =Q(Vy >2) <Q (JT > i ) < ”Ayefdxﬁ

and therefore the statement follows from Proposition 10. O

Let us now analyze the volatility of variance behavior for small strikes. First, we
notice from expression (3.15) that in models of the OU type, the realized variance Vi is
bounded from below by vge(0,T'). As a consequence, unless vy = 0, the implied volatility
I(K) is not well-defined for small K rendering the investigation of asymptotic properties
of the left wing a nonsensical task. Therefore, we will carry out the remaining part of our
asymptotic analysis of the OU model under the assumption that vy = 0.

Once again, we start by providing sufficient conditions on the jump distribution .J; for
the left wing of the volatility of variance to be upward-sloping to infinity for small strikes,
ie. I(K) — oo as K — 0. Assume that F} is a continuous function. Suppose that for
an a > 0, Fy € R_, or equivalently Ly (z) € R_,. Then Lee’s formula (3.4) for small
strikes holds with index ¢y = a.

Proposition 13 (OU upward-sloping left wing). Assume Fy is continuous. Suppose that
for an a >0, F;(1/z) € R_, or equivalently L;(x) € R_,. Then Lee’s formula (3.4) for
small strikes holds with index ¢y = oT.

Proof. Recall that for vy = 0 the Laplace transform becomes Ly () = exp [y #y (we(s, T)) ds.
Applying the change of variable z := €(t,T") we have

€(0,T) T
Jim EE‘;((IZ; = lim exp/0 1575 (ky(txz) — kj(x2))dz.

LA distribution F on R, is called sub-exponential if lim, F# = n, for n > 2, where F™* denotes

the nth convolution.
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Moreover, from boundary (2.6) p. 180 in Korevaar (2004) we can apply a dominated

convergence argument to interchange the limit and integral, thus one obtains

Ly (tx) _ €(0,T) T . o
o Ly(r) | s Jim (g (L (ta2)/£s(w2)) dz = 1.

Therefore, Ly, € R_,r and the statement follows from Proposition 9. O

We conclude with a sufficient condition on the jump distribution for the left wing to

be downward-sloping towards zero.

Proposition 14 (OU downward-sloping left wing). Assume that F is a continuous func-
tion. Suppose that there exist o € (0,1) and 5 > 0 with é — % =1 such that Fy satisfies
(3.12) with s < 0 or equivalently L; satisfies (3.13) with r < 0. Then the index Gy = oo

and I(K) — 0 as K — 0.

Proof. As in proof of Proposition 9, we make the change of variable z := €(¢,7) and

exchange limit and integration to obtain

lim ky(zz) 2

g0 (zx) 1— ATz

- T €(0,T) Za d o O
=T /0 1 \T> z=17r <\u.

dz =

1 €(0,T)
i 850 _p [
0

T—00 T

Once again, interchanging integral and limit is possible due to a dominated convergence
argument following from boundary (2.6) p. 180 in Korevaar (2004). Therefore, Ly satisfies

condition (3.13) with # < 0 and the results follows now from Proposition 10. O

To sum up, we have provided sufficient conditions for the wing asymptotics of the
variance smile in the OU specification. In fact, we saw that the distributional properties
of the jump process J were transferred basically unchanged to the distribution of the
realized variance V. Next, we take a closer look at some specific distributional choices

for the jumps.

3.5 A Menagerie of Positive Distributions

In this section we shortly recapitulate a number of positive distributions and some of
their key characteristics. In parallel, we analyze the asymptotic behavior of the volatility

of variance in the OU specification for particular distributions of the jumps J. These
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results are summarized in Table 3.1. Finally, we provide numerical examples for the OU

specification with Gamma, Inverse Gamma, and Inverse Gaussian jumps, respectively.

Gamma Distribution As first case consider a I'(«, ) distribution with density func-

tion

fF (Q?) — F(a) xafle*,ﬁxlxzo

and Laplace transform

B

Lr is a regularly varying function of index —« at infinity since

Lr(u) = <1+ “>_a, u> —f.

lim
U—00 /CF (U)

Leltn) _ ) (111 tg//g)_“ _ 4o

As a special case of the Gamma distribution, we obtain the exponential distribution
when a = 1. Let us consider the OU specification. If we choose J; ~ I'(«, 8) then the
right wing is downward-sloping since 0 € D;. In addition, Proposition 13 is satisfied and

the left wing is upward-sloping.

Inverse Gamma Distribution Consider a IT'(v, ) distribution with density function
fre(e) = a7 L,

and Laplace transform

U v/2
Lir(u) = %;(V))Ku(\/M)

where K, is the modified Bessel function of the second kind. Using the fact that for large
arguments K, (z) ~ \/ge*Z (see Abramowitz and Stegun (1987) p. 378), we obtain

lim log Lr(u) ~ lim vlog(pu) + log(K,(v/4pu)) —logI'(v) VI <0,

U—00 ul/2 U—00 wl/2

Consider the OU specification. If we choose J; ~ IT'(v, ) then p; < oo and the right wing

is upward-sloping. Moreover, Proposition 14 holds and the left wing is downward-sloping.
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Generalized Inverse Gaussian Distribution Consider a GIG(A,a,b) distribution

with density

b/a)* A—1 Loy 2
fora(x) = ;[({(ib)x exp (—2 (a T +b x))

and Laplace transform

b )W K(y/a2(b? + 2u))

Lere(u) = <bz+2u Ky (ab)

It is easy to verify that

1
gy 08 £ere(v)

U—00

< 0.

u?2

As a particular instance of the GIG distribution we consider the case A = —% which
gives us the Inverse Gaussian distribution. In the OU specification, if we choose
Ji ~ GIG()\, a,b) then 0 € D; and therefore the right wing is downward-sloping. Also,

Proposition 14 is satisfied and the left wing is downward-sloping.

Tempered Stable Distribution The T'S(k,a,b) distribution is an infinitely-divisible

distribution characterized by the following Lévy measure

k

vrs(dx) = GQkW

1
" Texp (—le/kx) 1z>0ydx
where a > 0,b > 0,0 < k < 1. The corresponding Laplace transform is
Lrs(u) = exp (ab —a(b* + 2u)k)

which satisfies
I log L1g(u)
im ——=——
U—00 u

If we consider the OU specification with J; ~ T'S(k, a,b), then 0 € D, and the right wing

is downward-sloping. For the left wing, Proposition 14 implies a downward-sloping skew.

< 0.

Weibull Distribution Consider a W(c, 3) distribution with density

and survival function



It can be shown that a Weibull random variable has just ¢ negative moments. Deriving
an explicit expression for the Laplace transform of a Weibull r.v. is a topic of ongoing
research, see for instance Nadarajah and Kotz (2007).

Consider again the OU specification and let J; ~ W (¢, ). Condition (b) in Proposi-
tion 12 holds and the right wing is downward-sloping. In addition, from Proposition 13

we have that the left wing is upward-sloping.

Table 3.1: Asymptotic behavior of implied volatility of variance
for the OU specification

Wing asymptotics

Jump distribution Small strikes Large strikes
Gamma Upward Downward
Exponential Upward Downward
Inverse Gamma Downward Upward
Inverse Gaussian Downward Downward
Generalized Inverse Gaussian =~ Downward Downward
Tempered Stable Downward Downward
Weibull Upward Downward

3.5.1 Numerical Examples

We illustrate the impact of the distribution of jumps in the OU specification by numerical
examples. Specifically, we consider Gamma, Inverse Gamma, and Inverse Gaussian jumps.
The variance call price C(K) and the associated implied volatility (/') can be computed
by means of transform methods whenever the Laplace transform of the realized variance
Ly is available in closed-form. In fact, Carr et al. (2005) show that the Laplace transform

L of the call price C'(K) can be expressed as

,Cv(u)—1+E.

u? U

Lo(u) = / e KO(K) K = (3.22)
0

Applying a Laplace inversion algorithm to (3.22) allows us to obtain prices of options on

realized variance for a sequence of variance strikes. Several numerical Laplace inversion

algorithms have been proposed in the literature. In particular, we refer to the works of
Weeks (1966), Dubner and Abate (1968), Stehfest (1970), Crump (1976), Abate and Whitt
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(1995), and Iseger (2006), while the recent study of Drimus (2012) considers applications

specific to realized variance options.

Figure 3.1 plots implied volatilities against moneyness when the jumps are Gamma,
Inverse-Gamma and IG distributed. We define moneyness as the variance strike K divided
by the mean realized variance Vj and at-the-money options are striked at K = V. We
consider a maturity of three months and we obtain the parameters of the different jump
distributions by matching their mean and variance. In particular, we take o = 18 and
£ = 22.8 for the Gamma specification, v = 20 and p = 15 for the Inverse-Gamma and
a = 3.7697 and b = 4.7749 for the IG distribution. The value of A is the same in all cases
and it is equal to 8. The plots confirm that when the jumps are Gamma distributed, the
volatility surface for realized variance options is downward-sloping, clearly at odds with
the upward-sloping smile observed in variance markets. In contrast, the Inverse Gamma
distribution makes the volatility surface of realized variance upward-sloping and finally,

for the Inverse-Gaussian jumps we observe a frown.

To further support these observations, we investigate in Figures 3.2-3.4 the sensitivity
of the variance implied volatility with respect to the parameters of the jump distribution.
To disclose the ceteris paribus effects on the implied volatility, we change one parameter
while keeping any remaining parameters fixed. For each parameter set, we plot the implied
volatility curve against variance strikes. For the selected jump distributions, we make the
common observation that while altering the parameters of the distribution changes the
levels of implied volatility and the wideness of the smile in variance strikes, the shapes of

the implied volatility curves persist across different parameter values.

3.6 Full SVJ-v Specifications

The Heston stochastic volatility model constitute a popular choice in the equity markets.
Yet, as documented in Drimus (2012), the model leads to a downward-sloping skew for the
volatility of variance. Several authors have tried to amend this shortcoming by augmenting
the Heston model with compound Poisson jumps having exponential jump sizes (see Sepp
(2008a), Sepp (2008b), and Lian and Zhu (2011)). In this final section we consider full
specifications of the SVJ-v model in (3.1), which includes both the Heston model and

the Heston model with exponential jumps as special cases. Recall that the instantaneous
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Figure 3.1: Implied volatilities of variance for the OU-Gamma with parameters a = 18,
g = 22.8 (top), OU-InverseGamma with v = 20, p = 15 (middle), and OU-IG with
a = 3.7697, b = 4.7749 (bottom). In all cases we take A = 8, and vy = 0 and we obtain
the parameters of the different jump specifications by matching the mean and the variance.

variance is given by the CIR dynamics augmented with jumps
dvt = )\(77 — Ut)dt + E\/’U_tdBt + th . (323)
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Here, we specify the jump process J as a compound Poisson process with intensity [ and
jump size distribution 7, i.e.
N(t)

i=1
with N(t) being a Poisson process with intensity /. In this case the cumulant exponent
Ky is given by

ky(z) = I(Ly(x) — 1) (3.25)

where L, denotes the Laplace transform of the jump size.
From Duffie et al. (2000) the Laplace transform of the realized variance is available in
closed-form

Ly (u) = E[e™wVr] = DA T)vo (3.26)

with functions a(u,T") and [(u,T') given by

_ 1—e T
B(U7T)  ci+die T (3 27)
c e T .
a(u,T) = —%log% + ’\ZlT — S k(=B (u, 5))ds
where k;(+) is the cumulant exponent (3.2) of the jump process J, while ¢; = _’\21:7T,

dy = 2/\u_/} and v = /A2 + 2¢%u/T.

Analogous to the simpler OU models, we provide now results on the impact of the
jump distribution for specifications of the full SVJ-v model. First, we consider the right
wing asymptotics. Once again, we link the number of finite positive moments of the jumps
with those of the realized variance. We are, however, not able to attain the same level
of asymptotic precision as in the OU case. Nevertheless, we provide bounds for the Lee
index py which are sufficient for describing the qualitative asymptotic behavior of the

right wing.
Proposition 15 (SVJ-v upward-sloping right wing). The following statements hold

(i) Let py be defined as in Proposition (11). Then Lee’s formula (3.3) for large strikes

(ii) If furthermore Fy € R_o_y then |a] < py < |a] + 1.
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Proof. Statement (i) follows from classical results of probability theory linking the number
of integer moments of a nonnegative random variable X to the regularity of its Laplace
transform Lx at zero. Specifically, X has a finite nth moment if and only if the nth
derivative Eg?) has finite limit at zero (see Feller (1974)). The result then follows from
observing that Ly (u) is differentiable if and only if the Laplace transform of the jump
distribution is differentiable. Statement (ii) is a consequence of the definition of regular

variation. O

Proposition 16 (SVJ-v downward-sloping right wing). If the jump distribution in (3.23)
has a thin tail, i.e.
Fj(x) < ve " for we (g, 00) (3.28)

with 8 > 1, then py = o0 and [(K) — 0 as K — oo.

Proof. From equivalence (3.11) 0 € D,. A simple inspection of (3.26) shows that also
0 € Dy implying that Vr has a thin tail. The result then follows from Proposition 8. [

In the full SVJ-v specifications considered here, jumps have no effect on the asymptotic

behavior of the left wing of the realized variance smile.

Proposition 17 (SVJ-v downward-sloping left wing). For any jump distribution in (3.23)
it holds Gy = oo and limg o [(K) = 0.

Proof. Recall the expression of the Laplace transform in (3.26) and observe that indepen-

dent of the particular choice of the jump size distribution 7,

/OT Lz(—p(u,s))ds -0 as u— oo.

We then obtain
. log Ly (u)
lim ———~2

U—00 u_1/2

<0

and the result follows from Proposition 10. m

Besides the mandatory benchmark of the Heston model, we consider in the sequel
two genuine specifications of the SVJ-v model allowing for both jumps as well as the
diffusion component. Specifically, we let the jump size distribution Z be exponential and
Inverse Gamma. In the Heston model and the SVJ-v model with exponential jumps the

realized variance Vr has a thin tail and from Proposition 16 it follows that the right wing
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is downward-sloping. In contrast, for the SVJ-v model with Inverse Gamma jumps, the

right wing is upward-sloping as a result of Proposition 15.

We now provide numerical examples for the three model cases. We consider 6-months
options and we use the Heston parameters from Bakshi et al. (1997) vy = 0.0348, k = 1.15,
0 = 0.0348, € = 0.39 obtained by calibration to out-of-the-money options on the S&P500
index. Figure 3.5 plots the implied volatilities of variance for the Heston model against
moneyness. One observes that when using parameters fitted to equity option quotes, the
obtained implied volatility skew is downward-sloping. This shows that the domain of

validity of the left wing asymptotics can be rather narrow.

Next, we augment the Heston model with exponential jump sizes Z ~ I'(1,3) with
intensity / = 1.5 and mean jump size 1/8 = 0.12. The resulting implied volatilities
of variance are shown in Figure 3.6. Once again, we obtain a downward-sloping skew.
However, if we substitute the jump size distribution Z with an Inverse Gamma law, we
observe a dramatic change in the shape and level of the volatility of variance. Specifically,
this leads to an upward-sloping skew as in Figure 3.6 where we have used Inverse Gamma
jump parameters v = 3 and pu = 2 x 0.1? obtained by matching the first and the second

moment of the jump size with those in the exponential case.

3.7 Conclusion

We have considered options on realized variance in a tractable affine stochastic volatility
model that generalizes the seminal Heston (1993) by augmenting it with jumps in the
instantaneous variance. The model allowed us to isolate the unique impact of the jump
distribution and we have shown that it has a profound effect on the characteristics and
shape of the implied volatility of variance smile. We provided sufficient conditions for the
asymptotic behavior of the volatility of variance for small and large strikes. In particular,
we showed that by selecting alternative jump distributions, one obtains fundamentally
different shapes of the implied volatility smile. Some distributions of jumps predict implied
volatilities of variance that are clearly at odds with the upward-sloping volatility skew

observed in variance markets.
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3.8 Appendix

Proof of Theorem 4. The proof of this Theorem is the analogous of the proof of Theorem
1.26 p. 16 in Soulier (2009).
Part (a) = (b):

From the definition of regular variation at infinity we have lim,_, % =5 *Vs>N0.
. . . H(z) a=0
Notice that s~ is the Laplace transform of the function g(x) = . where
. . . I >0 L (sy)
H(z) is the heavyside function defined as H (z) = . On the other hand, Eff(y) =
0 =0

JoF° e7s*dg, (z) where g,(x) = % Combining the two equalities yields

1‘ oo —ST d too —ST d

Jim e g, (@) fv—/o e *g(z)dx

which implies the pointwise convergence g,(s) =00 g(5). Therefore

£(s/9) 5
Li(y) T+ a)

and replacing s = 1 we get statement (b) as well as (c).
Part (b) = (a):
Let us denote G(z) = f(1/z). Integrating by parts in the definition of L;(y) and per-

forming the substitution ¢ = yu we get

Lily) _ [ U0 gy [ G0,

F(1/y) f(1/y) G(y)
Moreover, assuming that we can interchange the limit with the integral
Ls(y) G(y/t)

limiz/ooe_tlim =T'a+1).
PGl ~h © MG STt

So all we need in order to conclude the proof is some dominated convergence argument.
We can proceed analyzing the two different cases ¢ < 1 and ¢ > 1. In the first case, by

recalling that f(y) is a non-decreasing function, we have




whereas for £ > 1 we can use equation (2.6) p.180 in Korevaar (2004). Doing so we obtain
t t<1

- € Y — . o0
the bounding et ¥ < D(t) = with [5° D(t)dt < . O
) Lo=tgotl 451
b )
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Abstract

We develop an arbitrage-free framework for consistent valuation of OTC derivative
trades with collateralization, counterparty credit risk, and funding costs. Based
on the risk-neutral pricing principle, we derive a general pricing equation where
CVA, DVA, and FVA are introduced by simply modifying the payout cash-flows
of the deal. Funding risk breaks the bilateral nature of the deal price and makes
the pricing problem a highly non-linear and recursive one. This means that FVA is
not generally an additive adjustment as commonly assumed by market participants.
Our framework addresses common market practices of ISDA governed deals without
restrictive assumptions on collateral margin payments and close-out netting rules.
In particular, we allow for asymmetric collateral and funding rates. The pricing
equation can be cast as a set of iterative equations that can be solved by least-
squares Monte Carlo and we propose such a simulation algorithm. Our numerical

results confirm that funding risk has a non-trivial impact on the deal price.

4.1 Introduction

In the wake of the recent financial crisis, dealers and financial institutions have been forced
to rethink how they value and hedge contingent claims traded in the over-the-counter

(OTC) market. OTC derivatives are bilateral financial contracts negotiated between two
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default-risky entities. Yet, prior to the crisis, institutions tended to ignore the credit
risk of high-quality rated counterparties, but as recent history has shown this was a
particular dangerous assumption. Moreover, as banks became reluctant to lend to each
other with the crisis rumbling through the Western economies, the spread between the

rate on overnight indexed swaps (OISs) and the LIBOR rate blew up.

To keep up with this sudden change of game, dealers today make a number of ad-
justments when they book OTC trades. The credit valuation adjustment (CVA) corrects
the price for the expected costs to the dealer due to the possibility that the counterparty
may default, while the so-called debt valuation adjustment (DVA) is a correction for the
expected benefits to the dealer due to his own default risk. The latter adjustment has
the perverse effect that the dealer can book a profit as his default risk increases. Finally,
dealers often adjust the price for the costs of funding the trade. In the industry, this prac-
tice is known as a funding valuation adjustment (FVA). When a derivatives desk executes
a deal with a client, it backs the trade by hedging it with other dealers in the market.
This involves borrowing or lending money and other assets. Classical derivatives pricing
theory rests on the assumption that one can borrow and lend at a unique risk-free rate of
interest. The seminal work of Black-Scholes-Merton showed that in this case an option
can be replicated by a portfolio of equity and risk-free debt over any short period of time.
Prior to the crisis, this assumption may have been reasonable with banks funding their
hedging strategies at LIBOR. However, with drastically increasing spreads emerging as
the crisis took hold, it became apparent that LIBOR is contaminated by credit risk and

as such is an imperfect proxy of the risk-free rate.

In this paper we develop an arbitrage-free framework for consistent valuation of col-
lateralized as well as uncollateralized OTC trades under counterparty credit and funding
risk. The need to consistently account for the changed trading conditions in the valua-
tion of derivatives is stressed by the sheer size of the OTC market. The market value
of outstanding OTC derivative contracts equaled $24.7 trillion by the end of 2012 with
a whopping $632.6 trillion in notional value (Bank for International Settlements (2013)).
Adopting the risk-neutral valuation principle, we derive a general pricing equation for an
OTC derivative deal where the new types of risks are included simply as modifications
of the payout cash-flows. We address the current market practices in accordance with
the guidelines of the International Swaps and Derivatives Association without assuming
restrictive constraints on the collateral margining procedures and close-out netting rules.

In particular, we allow for asymmetric collateral and funding rates as well as exogenously
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given liquidity policies and hedging strategies.

When dealing with funding costs, one may take a single deal (micro) or homogeneous
(macro) cost view. In the micro view, funding costs are determined at deal level. This
means that the trading desk may borrow funds at a different rate than at which it can
invest funds. In a slightly more aggregate cost view, average funding spreads are applied
to all deals yet the spread on borrowing funds may still be different from that on lending.
Finally, if we turn to the macro view, funding costs of borrowing and lending are assumed
the same and a common funding spread is applied across all deals. Clearly, the treasury
department plays an active part in the micro approach and works as an operational
center, while in the macro approach it takes more the role of a supporting function for
the trading business. In this work we stay as general as possible and adopt a micro cost

view. Naturally, the macro view is just a special case of the micro view.

The introduction of funding risk makes the pricing problem highly recursive. The
price of the deal depends on the trader’s funding strategy, while to determine the optimal
funding strategy we need to know the deal price itself. This recursive structure was also
discovered in the studies of Crépey (2011) and Burgard and Kjaer (2011b), yet the feature
is neglected in the common approach of adding a funding spread to the discount curve.
Valuation under funding risk poses a significantly more complex and computationally
demanding problem than standard CVA and DVA computations since it requires forward
simulation and backward induction at the same time. In addition, FVA does not take the
form of a simple additive term as appears to be commonly assumed by market participants.
More fundamentally, this means that, by its very nature, identifying FVA with DVA is
generally wrong, and only under restrictive assumptions would the two concepts collapse.
We show how the general pricing equation can be cast as a set of iterative equations
that can be conveniently solved by means of least-squares Monte Carlo (see, e.g., Carriere
(1996), Longstaff and Schwartz (2001), Tilley (1993), and Tsitsiklis and Van Roy (2001))
and we propose an efficient simulation algorithm. Also, we derive a continuous-time
approximation of the solution of the pricing equation as well as the associated partial
differential equation (PDE).

Despite its general market acceptance, the practice including an adjustment for fund-
ing costs has stirred quite some controversy among academics and practitioners (see the
debate following Hull and White (2012)). At the center of this controversy is the issue
that funding-contingent pricing becomes subjective due to asymmetric information. The

particular funding policy chosen by the client is not (fully) known to the dealer, and vice
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versa. As a result, the price of the deal may be different to either of the two parties.
Theoretically, this should mean that the parties would never close the deal. However, in
reality, the dealer may not be able to recoup his full funding costs from the client, yet
traders say that funding risk was the key factor driving bid-ask spreads wider during the
crisis.

Several studies have analyzed the various valuation adjustments separately, but few
have tried to build a valuation approach that consistently takes collateralization, counter-
party credit risk, and funding costs into account. Under unilateral default risk, ie. when
only one party is defaultable, Brigo and Masetti (2005) consider valuation of deriva-
tives with CVA, while particular applications of their approach are given in Brigo and
Pallavicini (2007), Brigo and Bakkar (2009), Brigo and Chourdakis (2009), and Brigo
et al. (2011). Bilateral default risk appears in Bielecki and Rutkowski (2002), Brigo and
Capponi (2008), Brigo et al. (2011), and Gregory (2009) who price both the CVA and
DVA of a derivatives deal. The impact of collateralization on default risk has been in-
vestigated in Cherubini (2005) and more recently in Brigo et al. (2011) and Brigo et al.
(2011).

Assuming no default risk, Piterbarg (2010) provides an initial analysis of collateral-
ization and funding risk in a stylized Black-Scholes economy. Yet, the introduction of
collateral in a world without default risk is questionable since its main purpose is to miti-
gate such risk. Morini and Prampolini (2011), Fries (2010) and Castagna (2011) consider
basic implications of funding in presence of default risk. However, these works focus only
on simple financial products, such as zero-coupon bonds or loans, and do not offer the
level of generality needed to include all the required features. Thus, a general framework
for consistent valuation under the new risks is still missing. The most comprehensive at-
tempts are those of Burgard and Kjaer (2011b,a), Crépey (2011, 2012a,b), and Pallavicini
et al. (2011, 2012). Nonetheless, as Burgard and Kjaer (2011b,a) resort to a PDE ap-
proach, their results are unrealistically constrained to low dimensions. Also, they neglect
the hidden complexities of collateralization and mark-to-market discontinuities at default.
The approach of Crépey (2011, 2012a,b) is more general although it does not allow for
credit instruments in the deal portfolio. We extend the work of Pallavicini et al. (2011,
2012) and develop a general pricing framework for OTC deals that fully and consistently
takes collateralization, counterparty credit risk, and funding risk into account. The frame-
work is conceptually simple and intuitive in contrast to previous attempts. It is based on

the celebrated risk-neutral valuation principle and the new risks are included simply by
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adjusting the payout cash-flows of the deal. Finally, by resorting to Monte Carlo methods,
the valuation framework can readily be used for high-dimensional problems.

The paper is organized as follows. Section 4.2 describes the general pricing framework
with collateralized credit, debit, and funding valuation adjustments. Section 4.3 derives
an iterative solution of the pricing equation as well as a continuous-time approximation.
Section 4.4 describes a least-square Monte Carlo algorithm and provides numerical results
on deal positions in European call options. Section 4.5 extends the pricing framework to
cases where the dealer hedges the trade using other derivatives. Finally, Section 4.6

concludes the paper.

4.2 Collateralized Credit and Funding Valuation
Adjustments

In this section we develop a general risk-neutral valuation framework for OTC derivative
deals. The section clarifies how the traditional pre-crisis derivative price is consistently
adjusted to reflect the new market realities of collateralization, counterparty credit risk,
and funding risk. We refer to the two parties of a credit-risky deal as the investor or
dealer ("I") on one side and the counterparty or client ("C") on the other.

Fixing the time horizon T' € R, of the deal, we define our risk-neutral pricing model on
the probability space (€2, G, (Gt)ico,11, Q). Q is the risk-neutral probability measure. The
filtration (G;)icpo,r) models the flow of information of the whole market, including credit,
such that the default times of the investor 7; and the counterparty 7¢ are G-stopping times.
We adopt the notational convention that E; is the risk-neutral expectation conditional
on the information G, while [E; denotes the conditional risk-neutral expectation given
the stopped filtration G,,. Moreover, we exclude the possibility of simultaneous defaults
for simplicity and define the time of the first default event among the two parties as the

stopping time

T2 (11 AT0).
In the sequel we adopt the view of the investor and consider the cash-flows and conse-
quences of the deal from his perspective. In other words, when we price the deal we obtain

the value of the position to the investor. As we will see, with funding risk this price will

often not just be the value of the deal to the counterparty with opposite sign.
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The gist of the valuation framework is conceptually simple and rests neatly on the
classical finance disciplines of risk-neutral pricing and discounting cash-flows. When a
dealer enters into a derivatives deal with a client, a number of cash-flows are exchanged,
and just like valuation of any other financial claim, discounting these cash in- or outflows
gives us a price of the deal. Post-crisis market practice distinguishes four different types
of cash-flow streams occurring once a trading position has been entered: (i) Cash-flows
coming directly from the derivatives contract such as payoffs, coupons, dividends, etc. We
denote by 7 (¢, T) the sum of the discounted payoff happening over the time period (¢, T].
This is where classical derivatives pricing would usually stop and the price of a derivative

contract with maturity 7" would be given by
Vi=E[n(t,T)].

This price assumes no credit risk of the parties involved and no funding risk of the trade.
However, present-day market practice requires the price to be adjusted by taking further
cash-flow transactions into account: (ii) Cash-flows required by collateral margining. If
the deal is collateralized, cash flows happen in order to maintain a collateral account
that in the case of default will be used to cover any losses. (t,T;C) is the sum of the
discounted margining costs over the period (¢, 7] with C' denoting the collateral account.
(iii) Cash-flows exchanged once a default event has occurred. We let 6,.(C,¢) denote
the on-default cash-flow with ¢ being the residual value of the claim traded at default.
Lastly, (iv) cash-flows required for funding the deal. We denote the sum of the discounted
funding costs over the period (¢,T] by ¢(t,T; F') with F' being the cash account needed
for funding the deal. Collecting the terms we obtain a consistent price V of a derivative

deal taking into account counterparty credit risk, margining costs, and funding costs

VI(C,F) =E,[n(t, TAT) +~y{t, T ANT;C)+o(t, T AT, F) (4.1)
+1{t<T<T}D(t7 7—)97'(0’ 6):| )

where D(t,7) is the risk-free discount factor.

By using a risk-neutral valuation approach, we see that only the payout needs to be
adjusted under counterparty credit and funding risk. In the following paragraphs we

expand the terms of (4.1) and carefully discuss how to compute them.
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4.2.1 Trading under Collateralization and Close-out Netting

The ISDA master agreement is the most commonly used framework for full and flexi-
ble documentation of OTC derivative transactions and is published by the International
Swaps and Derivatives Association (ISDA (2009)). Once agreed between two parties, the
master agreement sets out standard terms that apply to all deals entered into between
those parties. The ISDA master agreement lists two tools to mitigate counterparty credit
risk: collateralization and close-out netting. Collateralization of a deal means that the
party which is out-of-the-money is required to post collateral — usually cash, government
securities or highly rated bonds — corresponding to the amount payable by that party
in the case of a default event. The credit support annex (CSA) to the ISDA master
agreement defines the rules under which the collateral is posted or transferred between
counterparties. Close-out netting means that in the case of default all transactions with
the counterparty under the ISDA master agreement are consolidated into a single net

obligation which then forms the basis for any recovery settlements.

Collateralization Collateralization of a deal usually happens according to a margining
procedure. Such a procedure involves that both parties post collateral amounts to or
withdraw amounts from the collateral account C' according to their current exposure on
pre-fixed dates {t¢1,...,t, = T} during the life of the deal, typically daily. The terms
of the margining procedure may, furthermore, include independent amounts, minimum
transfer amounts, thresholds, etc., as described in Brigo et al. (2011). However, here we
adopt a general description of the margining procedure that does not rely on the particular
terms chosen by the parties.

We consider a collateral account C' held by the investor. Moreover, we assume that
the investor is the collateral taker when C}; > 0 and the collateral provider when C; < 0.
The CSA ensures that the collateral taker remunerates the account C' at an accrual rate.
If the investor is collateral taker, he remunerates the collateral account by the accrual rate
¢ (T), while if he is the collateral provider, the counterparty remunerates the account at

the rate ¢; (T')!. The effective accrual collateral rate ¢(T) is defined as

a(T) = ¢, (T)Lici<op + ¢ (T)1{cp>0) (4.2)

"'We stress the slight abuse of notation here: A plus and minus sign does not indicate that the rates
are positive or negative parts of some other rate, but instead it tells which rate is used to accrue interest
on the collateral according to the sign of the collateral account.
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To understand the cash-flows originating from collateralization of the deal, let us consider
the consequences of the margining procedure to the investor. At the first margin date,
say t1, the investor opens the account and posts collateral if he is out-of-the-money, i.e.
if C;, < 0, which means that the counterparty is the collateral taker. On each of the
following margin dates t;, the investor posts collateral according to his exposure as long
as Oy, < 0. As collateral taker, the counterparty pays interest on the collateral at the
accrual rate c;, (tx11) between the following margin dates ¢ and t;,,. We assume that
interest accrued on the collateral is saved into the account and thereby directly included
in the margining procedure and the close-out. Finally, if C;, < 0 on the last margin
date t,,, the investor closes the collateral account given no default event has occurred in
between. Similarly, for positive values of the collateral account, the investor is instead the
collateral taker and the counterparty faces corresponding cash-flows at each margin date.

If we sum up all the discounted margining cash-flows of the investor and the counterparty,

we obtain
n—1
L, TAT;C) = Ly <ry (D(t, tr)Co, — D, trgr ) 1 (ths this)) (4.3)
k=1
n—1
+ Z Litpor <tpo iy D b)) pi(ths togr)
k=1
where
Cy Cii

1% tkvtk 1 £ = + )
(b, fiern) P (th)  PE (th)

denotes the value of the collateral account accrued from date ¢, to date ¢, as required
by the CSA, and the (collateral) zero-coupon bond is defined as P< (T) £ [1 + (T —
t)ct,(T)]~'. We use the short-hand notation X+ = max(X,0) and X~ 2 min(&X,0) for
the positive and negative parts of a random variable X.

From (4.3) the price of the collateral margining cash-flows is obtained by taking the

risk-neutral expectation
EfT(t, TAT;C)] = Et['y(t, TAT;C)+ 1y D(t, 7)Cr- } ,

where the collateral margining costs v(t,7' A 7; C') entering (4.1) are defined as

s B, (t
’Y(t, T A T C) é Z 1{t<tk<(T/\T)}D(ta tk‘)Ctk <1 — tg(k+1>> y (44)
k

k=1
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with the zero-coupon bond P¢(T) = [1+ (T — t)&(T)]™*, and the pre-default value C,-

of the collateral account is given by

-1
% Py (tgy1)

Cr- 2 1yer C,, ——— 4.5
o T T P (fn) )

In accordance with the CSA, this pre-default value of the collateral account is used to
compute the netted exposure at close-out. It may be different from the actual value of
the collateral account at default since part or all of the collateral may be rehypothecated.

We discuss rehypothecation and its inherent liquidity risk in the following.

Rehypothecation Often the CSA grants the collateral taker relatively unrestricted use
of the collateral for his liquidity and trading needs until it is returned to the collateral
provider. Effectively, the practice of rehypocthecation lowers the costs of remuneration of
the provided collateral. However, while without rehypothecation the collateral provider
can expect to get any excess collateral returned after honoring the amount payable on the
deal, if rehypothecation is allowed the collateral provider runs the risk of losing a fraction
or all of the excess collateral in case of default on the collateral taker’s part.

We denote the recovery fraction on the rehypothecated collateral by R; when the
investor is the collateral taker and by R, when the counterparty is the collateral taker.
The general recovery fraction on the market value of the deal that the investor receives in
the case of default of the counterparty is denoted by R, while R; is the recovery fraction
received by the counterparty if the investor defaults. The collateral provider typically has
precedence over other creditors of the defaulting party in getting back any excess capital,
which means R; < R} < 1 and Re < R, < 1. If no rehypothecation is allowed and the

collateral is kept safe in a segregated account, we have that R} = Ry, = 1.

Close-out netting In case of default all terminated transactions under the ISDA master
agreement with a given counterparty are netted and consolidated into a single claim. This
also includes any posted collateral to back the transactions. In this context the close-out
amount plays a central role in calculating the on-default cash-flows. The close-out amount
is the costs or losses that the surviving party incurs when replacing the terminated deal
with an economic equivalent. Clearly, the size of these costs will depend on which party

survives so we define the close-out amount as
Er £ 1{T=Tc<T]}€I,T + 1{T=T]<Tc}EC,T ) (46)
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where €7 - is the close-out amount on the counterparty’s default priced at time 7 by the
investor and e¢ ; is the close-out amount if the investor defaults. Recall that we always
consider the deal from the investor’s viewpoint in terms of the sign of the cash-flows
involved. This means that if the close-out amount €7, as measured by the investor is
positive, the investor is a creditor of the counterpaty, while if it is negative, the investor is
a debtor of the counterparty. Analogously, if the close-out amount e¢ ; to the counterparty
but viewed from the investor is positive, the investor is a creditor of the counterparty,
and if it is negative, the investor is a debtor to the counterparty.

We note that the ISDA documentation is, in fact, not very specific in terms of how to
actually calculate the close-out amount. Since 2009 ISDA has allowed for the possibility
to switch from a risk-free close-out rule to a replacement rule that includes the DVA of the
surviving party in the recoverable amount. Parker and McGarry (2009) and Weeber and
Robson (2009) show how a wide range of values of the close-out amount can be produced
within the terms of ISDA. We refer to Brigo et al. (2011) and the references therein for
further discussions on these issues. Here, we adopt the approach of Brigo et al. (2011)
listing the cash-flows of all the various scenarios that can occur if default happens. We
will net the exposure against the pre-default value of the collateral C._ and treat any
remaining collateral as an unsecured claim. If we aggregate all these cash-flows and the
pre-default value of collateral account, we reach the following expression for the on-default

cash-flow

0-(C,€) & Lir—rocry (21, — Lapo(e], — CL)F = Lavg (e, — C1)") (4.7)

T T

T T

+ Lirer <o (5077 — Lapy(eg, — C-)~ — Lapj(ef, — C’t)‘) .

where we define the loss-given-default as Lapg 2 1 — R¢, and the collateral loss-given-
default as Lap), 2 1— RL,. If both parties agree on the exposure, namely €1+ = ECr = Er,
when we take the risk-neutral expectation in (4.1), we see that the price of the discounted

on-default cash-flow,

is the present value of the close-out amount reduced by the collateralized CVA and DVA

terms

Cva(t,T;C) = K, [1{T:TC<T}D(t, T) (LGDC(e}fT — C)" 4+ Leng(er, — Ci)*)] , (4.8)

T

Dva(t,T;C) £ E, [1{T=T,<T}D(t, ) (LGD[(eaT — C_)” + Lapj(ef, — Ot)‘ﬂ . (4.9)

T T
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Also, observe that if rehypothecation of the collateral is not allowed, the terms multiplied
by Lapg, and Lap) drops out of the CVA and DVA calculations.

4.2.2 Trading under Funding Risk

The hedging strategy that perfectly replicates the no-arbitrage price of a derivative is
formed by a position in cash and a position in a portfolio of hedging instruments. When
we talk about a derivative deal’s funding, we essentially mean the cash position that is
required as part of the hedging strategy, and with funding costs we refer to the costs of
maintaining this cash position. If we denote the cash account by F' and the risky-asset
account by H, we get

V,=F, +H,.

In the classical Black-Scholes-Merton theory, the risky part H of the hedge would be a
delta position in the underlying stock, whereas the risk-less part F' would be a position
in the risk-free bank account. If the deal is collateralized, the margining procedure is
included in the deal definition insuring that funding of the collateral is automatically
taken into account. Moreover, if rehypothecation is allowed for the collateralized deal,
the collateral taker can use the posted collateral as a funding source and thereby reduce
or maybe even eliminate the costs of funding the deal. Thus, we have the following two

definitions of the funding account: If rehypothecation of the posted collateral is allowed,
F,2V,(C,F)-C,— H,, (4.10)

and if such rehypothecation is forbidden, we have
F, 2 V,(C,F) — H,. (4.11)

By implication of (4.10) and (4.11) it is obvious that if the funding account F; > 0, the
dealer needs to borrow cash to establish the hedging strategy at time ¢. Correspondingly,
if the funding account F; < 0, the hedging strategy requires the dealer to invest surplus
cash. Specifically, we assume the dealer enters a funding position on a discrete time-grid
{t1,...,t,} during the life of the deal. Given two adjacent funding times ¢; and ¢;,, for
1 < j <m — 1, the dealer enters a position in cash equal to Fy, at time ¢;. At time ¢;,,
the dealer redeems the position again and either returns the cash to the funder if it was a
long cash position and pays funding costs on the borrowed cash, or he gets the cash back

if it was a short cash position and receives funding benefits as interest on the invested
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cash. We assume that these funding costs and benefits are determined at the start date
of each funding period and charged at the end of the period.

Without any loss of generality, the contracts used by the investor to fund the deal can
be introduced as adapted price processes. Let Ptf +(T) represent the price of a borrowing
contract measurable at ¢ where the dealer pays one unit of cash at maturity 7' > ¢, and
let P/ (T) be the price of a lending contract where the dealer receives one unit of cash

at maturity. Moreover, the corresponding accrual rates are given by

(T 2 Tl—t (Ptfil(T) — 1) )

In other words, if the hedging strategy of the deal requires borrowing cash, this can be

done at the funding frate f*, while surplus cash can be invested at the lending rate f~.

We define the effective funding rate f; faced by the dealer as

F(T) & f7 (D) pcop + 7 (T) 10 - (4.12)

Following this, the sum of discounted cash-flows from funding the hedging strategy during
the life of the deal is equal to

[ P (t;
ot, TNT; F) Z {t<t;<(TAr7) nD(t, 1, )F (1 — t}(]ﬂ)) , (4.13)
P, t; (tj+1)
where the zero-coupon bond corresponding to the effective funding rate is defined as
P/(T) £ [1 + (T — t)f,(T)]"'. This is, strictly speaking, a discounted payout and the

funding cost or benefit at time ¢ is obtained by taking the risk neutral expectation of the

above cash-flows.

The particular positions entered by the dealer to either borrow or invest cash according
to the sign and size of the funding account depend on the bank’s liquidity policy. In the
following we discuss two possible cases: One where the dealer can fund at rates set by the
bank’s treasury department, and another where the dealer goes to the market directly
and funds his trades at the prevailing market rates. As a result, the funding rates and
therefore the funding effect on the price of a derivative deal depends intimately on the

chosen liquidity policy.

Treasury Funding If the dealer funds the hedge through the bank’s treasury depart-

ment, the treasury determines the funding rates f* faced by the dealer, often assuming
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average funding costs and benefits across all deals. This leads to two curves as functions
of maturity; one for borrowing funds f* and one for lending funds f~. After entering a

funding position Fi, at time ¢;, the dealer faces the following discounted cash-flow
Oty tj1; F) & =Ny D(tj, tj41)

with B N
A th Ft]

tj - — *
Pt]; (tj+1) Pt (1)
Under this liquidity policy, the treasury — and not the dealer himself — is in charged of debt

valuation adjustments due to funding-related positions. Also, being entities of the same
institution, both the dealer and the treasury disappear in case of default of the institution
without any further cash-flows being exchanged and we can neglect the effects of funding
in this case. So, when default risk is considered, this leads to following definition of the
funding cash flows

Qj(tj tirs F) £ sy @5ty tys F).

Thus, the risk-neutral price of the cash-flows due to the funding positions entered at time
t;is
= e _ Py(ti) + By(te)
Ky, {q)J (i1 F)} 1oy (th Ptjjf (tio1) + th Ptj;+ (tj+1)) .
If we consider a sequence of such funding operations at each time ¢; during the life of
the deal, we can define the sum of cash-flows coming from all the borrowing and lending
positions opened by the dealer to hedge the trade up to the first-default event

m—1

QD(t,T‘/\T7 F) é 1{t<t < (TAT }D(t t; ) (th +Etj [(i)j(tjytj—i-l;F)})

By, (tj+1) By, (tj41)
= 1{t§tj<(T/\T)}D<t7 t]) (Ft - E 7] - Ft+ J .
j=1 ’ Pt] ( J+1) ’ Ptj;+ (tj+1)

In terms of the effective funding rate, this expression collapses to (4.13).

H

3 m

Market Funding If the dealer funds the hedging strategy in the market — and not
through the bank’s treasury — the funding rates are determined by prevailing market
conditions and are often deal specific. This means that the rate f* the dealer can borrow

funds at may be different from the rate f~ at which funds can be invested. Moreover,
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these rates may differ across deals depending on the deals’ notional, maturity structures,
dealer-client relationship, and so forth. Similar to the liquidity policy of treasury funding,
we assume a deal’s funding operations are closed down in the case of default. Furthermore,
as the dealer now operates directly on the market, he needs to include a DVA due to his
funding positions when he marks-to-market his trading books. For simplicity, we assume
that the funder in the market is default-free so no funding CVA needs to be accounted for.
The discounted cash-flow from the borrowing or lending position between two adjacent

funding times ¢; and ¢, is given by
Oty ti11; F) 2 Vroiy Lm0y @5 (5, b F)
— Lroi ) Lgr <ty (LGDrER,, — €17y ) D(t5, 1),
where ep; is the close-out amount calculated by the funder on the dealer’s default
A
EFm = _thPTI(tj-i-l) :

To price this funding cash-flow, we take the risk-neutral expectation

- _ Py (t51) By, (tj1)

]Etj (I)j(tj,tj+1;F> = —1{7—>t7.} Ftiij +Ft+_37 .
[ } ' " Pl (tj41) ’ Pt];+ (tj+1)

Here, the zero-coupon funding bond ]5tf ’ (T") for borrowing cash is adjusted for the dealer’s

credit risk

B () & P/ (T) |
EY [ Lop/1gs, 7y + Ry |

where the expectation on the right-hand side is taken under the T-forward measure.
Naturally, since the seniority could be different, one might assume a different recovery rate
on the funding position than on the derivatives deal itself (see Crépey (2011)). Extensions
to this case are straightforward.

Next, summing the discounted cash-flows from the sequence of funding operations
through the life the deal, we get

—_

m—

pt, TANT; F) = Lict;<rany D(t, 1) (Ft]- + Ey [(i)j<tj7 tivi; F) ])

—_

<

3

_ Py (i) By, (tjs1)
= 1{t<t-<T/\T}D(t7t'> Ft]- - —F%fi .
= ! YPl () " B ()

<
I
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To avoid cumbersome notation, we will not explicitly write P/ in the sequel, but just
keep in mind that when the dealer funds directly in the market then P/" needs to be
adjusted for funding DVA. Thus, in terms of the effective funding rate, we obtain (4.13).

4.3 General Pricing Equation for OTC Trades

In the previous section we analyzed the discounted cash-flows of a derivative deal and we
developed a framework for consistent valuation of such deals under collateralized coun-
terparty credit and funding risk. The arbitrage-free pricing framework is captured in the

following theorem.

Theorem 6 (General Pricing Equation). The consistent arbitrage-free price V,(C, F)
of collateralized OTC' derivative deals with counterparty credit risk and funding costs takes
the form

VI(C,F)=E, [n(t, TAT)+~vt, TANT;C)+@t, T ANT; F) (4.14)
+1{t<T<T}D(t7 7—)97'(0’ 5):| )

where

1. w(t,T AT) is the discounted cash-flows from the contract’s payoff structure up to the
first-default event.

2. v(t, T N\ 1;C) is the discounted cash-flows from the collateral margining procedure
up to the first-default event and is defined in (4.4).

3. o(t, T NT;F) is the discounted cash-flows from funding the hedging strategy up to
the first-default event and is defined in (4.13).

4. 0-(C,e) is the on-default cash-flow with close-out amount € and is defined in (4.7).

If funding and collateral margining costs are discarded, this pricing equation collapses
to the formula derived in Brigo et al. (2011) for the price of a derivative under bilateral
counterparty credit risk.

While the pricing equation is conceptually clear — we simply take the expectation of the

sum of all discounted cash-flows of the deal under the risk-neutral measure — solving the
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equation poses a highly recursive, non-linear problem. The future paths of the effective
funding rate f depend on the future signs of the funding account F, i.e. whether we
need to borrow or lend cash on each future funding date. At the same time, through
the relations (4.10) and (4.11), the future sign and size of the funding account F' depend
on the adjusted price V of the deal which is the quantity we are trying to compute in
the first place. One crucial implication of this recursive structure of the pricing problem
is the fact that FVA is generally not just an additive adjustment term, in contrast to
CVA and DVA. More importantly, the conjecture identifying the DVA of a deal with its
funding is wrong in general. Only in the unrealistic setting where the dealer can fund an
uncollateralized trade at equal borrowing and lending rates, i.e. f* = f~, do we achieve
the additive structure often assumed by practitioners. If the trade is collateralized, we

need to impose even further restrictions as to how the collateral is linked to price of the

trade V.

On the theoretical side, the pricing equation shakes the foundation of the celebrated
Law of One Price prevailing in classical derivatives pricing. Clearly, if we assume no
funding costs, the dealer and counterparty agree on the price of the deal as both parties
can — at least theoretically — observe the credit risk of each other through CDS contracts
traded in the market and thus agree on the CVA and DVA. In contrast, introducing
funding costs, they will not agree on the FVA for the deal due to asymmetric information.
The parties cannot observe each others’ liquidity policies nor their respective funding costs
associated with a particular deal. As a result, the value of a deal position will not generally
be the same to the counterparty as to the dealer just with opposite sign. In principle,
this should mean that the dealer and the counterparty would never close the trade, but in
practice trades are executed as a simple consequence of the fundamental forces of supply
and demand. Nevertheless, among dealers it is the general belief that funding costs were

one of the main factors driving the bid-ask spreads wider during the recent financial crisis.

Finally, as we adopt a risk-neutral valuation framework, we implicitly assume the
existence of a risk-free interest rate. Indeed, since the valuation adjustments are included
as additional cash-flows and not as ad-hoc spreads, all the cash-flows are discounted by
the risk-free discount factor D(¢,T') in (4.14). Nevertheless, the risk-free rate is merely
an instrumental variable of the general pricing equation. We clearly distinguish market
rates from the theoretical risk-free rate avoiding the false claim that the over-night rates
(e.g., EONIA) are risk free. In fact, as we will show in continuous time, if the dealer

funds the hedging strategy of the trade through cash accounts available to him — whether
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as rehypothecated collateral or funds from the treasury, repo market, etc. — the risk-free

rate vanishes from the pricing equation.

4.3.1 Discrete-time Solution

Our purpose here is to turn the recursive pricing equation (4.14) into a set of iterative
equations that can be solved by least-squares Monte Carlo methods. These methods are
already standard in CVA and DVA calculations (Brigo and Pallavicini (2007)). To this

end, we introduce the auxiliary function
ﬁ'(tj, tj+1; C) = 7T(tj, tj+1 A 7') + ’}/(tj, tj+1 AT, C) + 1{tj<T<tj+1}D(tj7 7')67—(0, Ef) (415)

which defines the cash-flows of the deal occurring between time ¢; and ¢;1; adjusted for
collateral margining costs and default risks. We stress the fact that the close-out amount
used for calculating the on-default cash-flow still refers to a deal with maturity 7. If we
then solve pricing equation (4.14) at each funding date ¢; in the time-grid {¢y,...,t, =T},
we obtain the deal price V at time t; as a function of the deal price on the next consecutive
funding date ¢;1;

Vi, (C3 F) =By [ Vi, (C3 F)D(tj, t31) + 7(t,t541; C) |

S PO (Ft]. . Ft;}w _ Ej%) 7
h (1) P (tj+1)
where, by definition, V; (C; F) £ 0 on the final date ¢,. Recall the definitions of the
funding account in (4.10) if no rehypothecation of collateral is allowed and in (4.11) if
rehypothecation is permitted, we can then solve the above equation for the positive and
negative parts of the funding account. The outcome of this exercise is a discrete-time

iterative solution of the recursive pricing equation, provided in the following theorem.

Theorem 7 (Discrete-time Solution of the General Pricing Equation). We may solve the
full recursive pricing equation in Theorem 6 as a set of backward-iterative equations on
the time-grid {t,,...,t, =T} with V, (C; F) £ 0. For T < t;, we have

V,,(C; F) =0,

while for T > t;, we have
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(i) if re-hypothecation is forbidden:

Y = _ pf | Tt ti:O) — He 1\
(V}],(C’;F) - Htj) = Eﬁ(tﬂl) <E§j+ [V}J.H(C; F)+ (), tj1: C) t D 7
D(tjv tj—H)
(i) if re-hypothecation is allowed:

(Vi (C5F) Gy — Hy) ™ =

Pl(t) (E [m(a Fy+

7_r<tj>tj+1; C) - Ctj - Htj ‘|>i
D(tj,tj11) ’

where the expectations are taken under the QU+ -forward measure.

The =+ sign in the theorem is supposed to stress the fact that the sign of the funding
account, which determines the effective funding rate, depends on the sign of the condi-
tional expectation. Further intuition may be gained by going to continuous time which is

the case we will now turn to.

4.3.2 Continuous-time Solution

Let us consider a continuous-time approximation of the general pricing equation. This
implies that collateral margining, funding, and hedging strategies are executed in contin-
uous time. Moreover, we assume that rehypothecation is allowed, but similar results hold
if this is not the case. By taking the time limit, we have the following expressions for the

discounted cash-flow streams of the deal

TNAT TNAT
7(t, T AT) = / (s, s +ds)D(t,s), AT ATC)= / (ry — &,)CuD(t, 8)ds,
t t

TNAT -
ALTATF) = [ (= F)RD(, )ds,
t

where TI(¢,t 4 dt) is the payoff coupon process of the derivative contract and r; is the
risk-free rate. Then, putting all the above terms together with the on-default cash flow

as in Theorem 6, the recursive pricing equation yields

v F) = | B (ToanT1(s, 5 + ds) + Lrea05(C,2)) D(t,5) ]
+ /tT Et[l{sq}(fs — ¢,)CsD(t, 3)} ds

+ /tTEt[l{s<T}(rs - fs) (VS(C? F) - Hs) D(ta S)} ds.
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We now switch to the market filtration F. This step implicitly assumes a separable
structure of our filtration G. In other words, G is generated by the pure default-free
market filtration F and the filtration generated by all the relevant default times (see for
example Bielecki and Rutkowski (2002)). This allows us to rewrite the previous price

equation as

VI(C, F) =150 /tT Et[(H(s, s+ ds) + \05(C,e)ds) D(t, s;r + )\)’}"}
+ 1{7—>t} /tT Et[(fs - 68)CSD(t> ST+ )‘)‘f} ds

+1{~r>t}/tT Et[(rs_fs) (K(CvF)_HS) D(tas;r+)‘)‘f} ds

where )\, is the first-to-default intensity and the discount factor is defined as D(t, s; &) =
e Ji Gudu, Assuming the conditions are satisfied, the Feynman-Kac theorem now allows us
to formally write down the corresponding pre-default partial differential equation (PDE)
of the pricing problem. The formal proof is the same as that of Feynman-Kac for the
linear case and relies on the stochastic integral term being a martingale and applying It6’s
formula twice. Further, we need to assume that the underlying market risk factors are
Markov processes with infinitesimal generator L£;, that the risk-free rate r; is bounded,
and that we have sufficient smoothness of the price function V. Hence, for 7 > t, we get
the PDE

@ — o = M+ LOVi — (r — FVH, + (fs — &)Cy + My + 8411, = 0 (4.16)
with boundary condition
Vr=0 (4.17)
and where
oI, = lmE, lWH . (4.18)

To keep the notation simple, we have suppressed the dependence of V on (C,F). If we,
furthermore, assume that the underlying risk factors are diffusions and consider delta-
hedging of the deal value V in continuous time, the generator £ can be expanded in

terms of first and second order operators
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As a result, for 7 > t, the pricing PDE reduces to

00— fr = M+ LDV + (fi — &)Cy + M0, + 0,11, = 0,
where Ef V.2 f,H, + L2V,. Observe that the pre-default PDE no longer depends on the
risk-free rate ;. This equation may be solved numerically as in Crépey (2012a). On
the other hand, if we apply the Feynman-Kac theorem again — this time going from the
pre-default PDE to the pricing expectation — and integrate by parts, we arrive at the

following result

Theorem 8 (Continuous-time Solution of the General Pricing Equation). If we
assume collateral rehypothecation and delta-hedging, we can solve the iterative equations

of Theorem 7 in continuous time. We get

VAC:F) =G+ El [11rcry (6:(C.€) = Cro) D(t.7: ) (4.19)

T = -
b [ B [Lper) (@, dC, — 2,C,ds) DI, 5: )]
t

where dll; = T1(s,s + ds) and the expectations are taken under the pricing measure Qf

for which the underlying risk factors grow at the rate f if no dividend is paid.

Theorem 8 decomposes the deal price V' into three intuitive terms. The first term is the
value of the collateral. The second term is the price of the on-default cash-flow in excess
of the collateral, which includes the CVA and DVA of the deal. The last term collects
the price of marked-to-market movements in the derivative not followed by an immediate
reset of the collateral account as well as the margining costs not included in the value of
the collateral. In addition, we see that any dependence on the hedging strategy can be
dropped by taking all expectations under the pricing measure Qf .

Finally, we stress that the pricing equation in the above theorem is completely gov-
erned by market rates; there is no dependence on a risk-free rate. This confirms our
earlier conjecture that the risk-free rate is merely an instrumental variable of our pricing

framework and we do not, in fact, need to know the value of such a rate.

4.4 Numerical Results

This section provides a numerical study of the valuation framework outlined in the previ-

ous sections. We investigate the impact of funding risk on the price of a derivatives deal
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under default risk and collateralization. To this end, we propose a least-squares Monte
Carlo algorithm inspired by the simulation methods of Carriere (1996), Longstaff and
Schwartz (2001), Tilley (1993), and Tsitsiklis and Van Roy (2001) for pricing American-
style options. As the purpose is to understand the fundamental implications of funding
risk, we focus on relatively simple deal positions in European call options. However,
the Monte Carlo method we propose below can be applied to more complex derivative

contracts, including derivativess with bilateral payments.

4.4.1 Monte Carlo Algorithm

Recall the recursive structure of the general pricing equation: The deal price depends on
the funding decisions, while the optimal funding strategy depends on the price itself. The
intimate relationship among the key quantities makes the pricing problem computationally
challenging.

We consider K default scenarios during the life of the deal — either obtained by simula-
tion, bootstrapped from empirical data, or assumed in advance. For each first-to-default
time 7 corresponding to a default scenario, we compute the price of the deal V under col-
lateralization, close-out netting and funding costs. The first step of our simulation method
entails simulating a large number of sample paths N of the underlying risk factors X. We
simulate these paths on the time-grid {t1,... %, = 7%} with step size At = ¢, —¢; from
the assumed dynamics of the risk factors. T™ is equal to the final maturity 7" of the deal or
the consecutive time-grid point following the first-default time 7, whichever occurs first.
For simplicity, we assume the time periods for funding decisions and collateral margin
payments coincide with the simulation time grid.

Given the set of simulated paths, we solve the optimal funding strategy recursively
in a dynamic programming fashion. Starting one period before 7™, we compute for each
simulated path the optimal funding decision F and the deal price V according to the set
of backward-inductive equations of Theorem 7. The algorithm then proceeds recursively
until time zero. Ultimately, the total price of the deal is computed as the probability
weighted average of the individual prices obtained in each of the K default scenarios.

The conditional expectations in the backward-inductive funding equations are approx-
imated by across-path regressions based on least squares estimation similar to Longstaff
and Schwartz (2001). We regress the present value of the deal price at time ¢;,4, the ad-

justed payout cash flow between ¢; and ¢;,, the collateral account and funding account
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at time ¢; on basis functions 1) of realizations of the underlying risk factors at time ¢;
across the simulated paths. To keep notation simple, let us assume that we are exposed
to only one underlying risk factor, e.g. a stock price. Extensions to higher dimensions
are straightforward. Specifically, the conditional expectations in the iterative equations

of Theorem 7, taken under the risk-neutral measure, are equal to
By, |2, (Viy.))| = 0,0 (X0,), (4.20)

) = D<tj7tj+1)‘7;fj+1(c; F) + ﬁ(tjﬁt]”rl;c) - Ctj - Htj'
Note the Cy; term drops out if rehypothecation is not allowed. The usual least-squares

where we have defined = (V,,,,

estimator of 6 is then given by

b, 2 [0(X)0(X,)] 0(X,) Z, (Vo). (4.21)

Orthogonal polynomials such as Chebyshev, Hermite, Laguerre, and Legendre may all
be used as basis functions for evaluating the conditional expectations. We find, however,
that simple power series are quite effective and that the order of the polynomials can be
kept relatively small. In fact, linear or quadratic polynomials, i.e. 1(Xy,) = (1, th,Xth ),
are often enough.

Further complexities are added, as the dealer may — realistically — decide to hedge the
full deal price V. Now, the hedge H itself depends on the funding strategy through V/,
while the optimal funding decision depends on the hedging strategy. This added recursion
requires that we solve the optimal funding and hedging strategies simultaneously. For
example, if the dealer applies a delta-hedging strategy

m, =

J

~ ‘_/t 1 Atj(l + ﬁj)‘_/t]
Xt — Atj(l + ftj)th

X, (4.22)

t; ~

J+1

we obtain, in the case of rehypothecation, the following system of non-linear equations

t (t1+1

;= Pt (tj+1) Et {Ht (Vtﬁl)} =0,

i+ 7)Ve _ 4.23
Hy, — Xt;ii*At]’(lJrth;)X: Xy, =0, ( )

‘Z‘,j = F;ﬁj +Ctj +Htj7

where all matrix operations are on an element-by-element basis. An analogous result

holds when rehypothecation of the posted collateral is forbidden.
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Each period and for each simulated path, we find the funding and hedging decisions
by solving this system of equations, given the optimal funding and hedging strategies
for all future periods until the end of the deal. We apply a simple Newton-Raphson
method to solve the system of non-linear equations numerically, but instead of using
the exact Jacobian, we approximate it by finite differences. As initial guess, we use the

Black-Scholes delta position
HY = APP Xy,

The convergence is quite fast and only a small number of iterations are needed in practice.
Finally, if the dealer for some reason decides to only hedge the risk-free price of the deal,
i.e. the classic derivative price V', the pricing problem collapses to a much simpler one.
The hedge H no longer depends on the funding decision and can be computed separately

and the numerical solution of the non-linear equation system can be avoided altogether.

4.4.2 Simulation Experiments

We now report numerical results on the impact of funding for both a long and a short
position in a European call option. We assume that the underlying stock evolves according
to a geometric Brownian motion. The risk-free interest rate r is 100 bps, the volatility o
is 25%, and the current price of the underlying is Sq = 100. The European call option is
in-the-money and has strike K = 80. The maturity 7" of the deal is 3 years and we assume
that the investor delta-hedges the deal according to (4.22). The usual Black-Scholes price
of the deal is 28.9.

We consider two simple discrete probability distributions of default. Both parties of the
deal are considered default risky but can only default at year 1 or at year 2. The localized
joint default probabilities are provided in the matrices below. The rows denote the default
time of the investor, while the columns denote the default times of the counterparty. For
example, in matrix Do, the event (1 = 2yr,7¢ = lyr) has a 3% probability and the
first-to-default time is 1 year. Simultaneous defaults are introduced and we determine
the close-out amount by a random draw from a uniform distribution. If the random
number is above 0.5, we compute the close-out as if the counterparty defaulted first, and

vice versa.

For the first default distribution, we have a low dependence between the default risk

118



of the counterparty and the default risk of the investor

lyr  2yr n.d.
lyr (0.01 0.01 0.03

Digw = 2yr | 0.03 0.01 0.05 |, T (Diow) = 0.21 (4.24)
n.d. \ 0.07 0.09 0.70

where n.d. means no default and 7x denotes the rank correlation as measured by Kendall’s

tau. In the second case, we have a high dependence between the two parties’ default risk

lyr  2yr n.d.
lyr (0.09 0.01 0.01

Dhigh = 2yr | 0.03 0.11 0.01 |, Tk (Dhign) = 0.83 (4.25)
n.d. \ 0.01 0.03 0.70

Note also that the distributions are skewed in the sense that the counterparty has a higher
default probability than the investor. The loss given default is 50% for both the investor
and the counterparty and the loss on any posted collateral is considered the same. The
collateral rates are chosen to be equal to the risk free rate. We assume that the collateral
account is equal to the risk-free price of the deal at each margin date, i.e. Cy = V;. This
is reasonable as the dealer and client will be able to agree on this price, in contrast to
V, due to asymmetric information. Also, choosing the collateral this way has the added
advantage that the collateral account C' works as a control variate, reducing the variance
of the least-squares Monte Carlo estimator of the deal price.

The recursive structure makes the pricing problem particularly demanding in terms
of computational time, so we are forced to choose a relatively small number of sample
paths. We use 1,000 sample paths but, fortunately, the presence of collateral mitigates
too large errors. In Tables 4.2-4.3 we conduct a ceteris paribus analysis of funding risk
under counterparty credit risk and collateralization. Specifically, we investigate how the
value of a deal changes for different values of the borrowing (lending) rate f* (f~) while
keeping the lending (borrowing) rate fixed to 100 bps. When both funding rates equal
to 100 bps the deal is funded at the risk-free rate and we are in the classical derivatives
pricing setting.

To provide some ball-park figures on the effect of funding risk, we first look at the
case without default risk and without collateralization of the deal. Table 4.1 reports the

results of this preliminary step. In absolute values, one observes a symmetric impact of
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funding — as expected — between the long and short cases when no default risk is present.
Also, notice for symmetric funding rates equal to the risk-free rate, ie. f* = f~ =r, we

obtain a price equal to the Black-Scholes price within Monte Carlo noise.

Table 4.1: Price impact of funding without de-

fault risk
Default-free
Funding?® Long Short
Borrowing rate fT
0 bps 29.92 (0.38) -26.89 (0.29)
100 bps 29.05 (0.25) -29.05 (0.25)
200 bps 28.57 (0.26) -31.46 (0.23)
300 bps 27.94 (0.43) -33.68 (0.25)
400 bps 27.61 (0.51) -35.79 (0.40)
Lending rate f~
0 bps 26.89 (0.29) -29,96 (0.40)
100 bps 29.05 (0.25) -29.05 (0.25)
200 bps 31.47 (0.23) -28.51 (0.29)
300 bps 33.69 (0.26) -27.88 (0.47)
400 bps 35.70 (0.40) -27.50 (0.57)
Standard errors of the price estimates are given in
parentheses.

& Ceteris paribus changes in one funding rate while
keeping the other fixed to 100 bps.

Next, we switch on credit risk and consider collateralized deals. Table 4.2 reports
the impact of changing funding rates for a call position when the posted collateral may
not be used for funding the deal, i.e. rehypothecation is not allowed. First, for the long
position, increasing the lending rate f~ while keeping the borrowing rate f* fixed causes
an increase in the deal value. On the other hand, an increase in the borrowing rate
while fixing the lending rate, decreases the value of the short position, i.e. the negative
exposure of the investor increases. As a call option is just a one-sided contract, increasing
the borrowing rate for a long position only has a minor impact. To hedge a long call, the
investor goes short in a delta position of the underlying asset and invests excess cash in
the treasury at f~. Correspondingly, to hedge the short position, the investor enters a
long delta position in the stock and finances it by borrowing cash from the treasury at

/T, so changing the lending rate only has a small effect on the deal value. Finally, due
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Table 4.2: Price impact of funding with default risk and collater-

alization
Default risk, low® Default risk, high®

Funding?® Long Short Long Short
Borrowing rate f+

0 bps 29.04 (0.14) -26.33 (0.18) 29.33 (0.24) -26.73 (0.35)

100 bps 28.70 (0.15) -28.72 (0.15) 29.06 (0.21) -29.07 (0.21)

200 bps 28.04 (0.26) -31.19 (0.29) 28.50 (0.25) -31.47 (0.23)

300 bps 27.33 (0.43) -33.65 (0.46) 27.88 (0.29) -33.86 (0.38)

400 bps 26.59 (0.64) -36.56 (0.77) 27.26 (0.36) -36.70 (0.71)
Lending rate f~

0 bps 26.50 (0.17) -29.11 (0.12) 26.96 (0.33) -29.37 (0.24)

100 bps 28.70 (0.15) -28.72 (0.15) 29.06 (0.21) -29.07 (0.21)

200 bps 30.98 (0.28) -28.09 (0.28) 31.27 (0.22) -28.51 (0.25)

300 bps 33.17 (0.44) -27.38 (0.45) 33.44 (0.36) -27.90 (0.29)

400 bps 35.67 (0.69) -26.63 (0.66) 35.70 (0.61) -27.27 (0.36)

Standard errors of the price estimates are given in parentheses.

& Ceteris paribus changes in one funding rate while keeping the other fixed to 100
bps.

b Based on the joint default distribution D)y, with low dependence.

¢ Based on the joint default distribution Dysen with high dependence.

to the presence of collateral, we observe an almost similar price impact of funding under
the two different default distributions Digy and Dy;gh.

Finally, assuming cash collateral, we consider the case of rehypothecation and allow
the investor and counterparty to use any posted collateral as a funding source. If the
collateral is posted to the investor, this means it effectively reduces his costs of funding
the delta-hedging strategy. As the payoff of the call is one-sided, the investor only receives
collateral when he holds a long position in the call option. But as he hedges this position by
short-selling the underlying stock and lending the excess cash proceeds, the collateral adds
to his cash lending position and increases the funding benefit of the deal. Analogously,
if the investor has a short position, he posts collateral to the counterparty and a higher
borrowing rate would increase his costs of funding the collateral he has to post as well as
his delta-hedge position. Table 4.3 reports the results for the short and long positions in
the call option.

This shows that funding asymmetry matters even under full collateralization when
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Table 4.3: Price impact of funding with default risk, collateraliza-
tion, and rehypothecation

Default risk, low® Default risk, high®
Funding?® Long Short Long Short
Borrowing rate f+
0 bps 29.39 (0.15) -25.70 (0.24) 29.69 (0.23) -26.09 (0.41)
100 bps 28.72 (0.15) -28.77 (0.15) 29.09 (0.23) -29.11 (0.22)
200 bps 28.33 (0.27) -32.07 (0.32) 28.77 (0.22) -32.35 (0.26)
300 bps 28.16 (0.22) -35.71 (0.62) 28.52 (0.18) -35.92 (0.55)
400 bps 27.67 (0.58) -39.62 (0.94) 28.25 (0.31) -39.77 (0.91)
Lending rate f~
0 bps 25.65 (0.24) -29.43 (0.11) 26.08 (0.41) -29.71 (0.23)
100 bps 28.72 (0.15) -28.77 (0.15) 29.09 (0.23) -29.11 (0.22)
200 bps 32.02 (0.33) -28.37 (0.24) 32.34 (0.26) -28.77 (0.19)
300 bps 35.65 (0.63) -28.04 (0.35) 35.91 (0.55) -28.47 (0.20)
400 bps 39.57 (0.96) -27.64 (0.58) 39.75 (0.92) -28.18 (0.31)

Standard errors of the price estimates are given in parentheses.

& Ceteris paribus changes in one funding rate while keeping the other fixed to 100
bps.

b Based on the joint default distribution D)y, with low dependence.

¢ Based on the joint default distribution Dysen with high dependence.

there is no repo market for the underlying stock. In practice, however, the dealer cannot
hedge a long call by shorting a stock he does not own. Instead, he would first borrow the
stock in a repo transaction and then sell it in the spot market. Similarly, to enter the long
delta position needed to hedge a short call, the dealer could finance the purchase by lending
the stock in a reverse repo transaction. Effectively, the delta position in the underlying
stock would be funded at the prevailing repo rate. Thus, once the delta hedge has to be
executed through the repo market, there is no funding valuation adjustment (meaning
any dependence on the funding rate f drops out) given the deal is fully collateralized,
but the underlying asset still grows at the repo rate. If there is no credit risk, this would
leave us with the result of Piterbarg (2010). However, if the deal is not fully collateralized
or the collateral cannot be rehypothecated, funding costs enter the picture even when
there is a repo market for the underlying stock. In the following section we extend the

theoretical framework to address these real-world issues.
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4.5 Extensions

So far, we have more or less silently made the assumption that the dealer hedges the
derivatives position by trading in the spot market of the underlying asset(s). Nonethe-
less, to be in business, the dealer might decide or even be forced to implement a hedging
strategy that involves trading the underlying assets through stock-lending or repo markets
or by entering other derivatives positions, e.g., (synthetic) forward contracts on the un-
derlying risk factors. As a result, the dealer may incur additional costs or revenues which
we obviously need to include when pricing the deal. To address this issue, we introduce
two general adaptive processes: h; (T') is the rate of hedging revenue for lending risky
assets from time ¢ to 7', while h; (T) is the hedging cost rate for asset borrowing. The

corresponding effective hedging rate is defined as
hi(T) £ by (T)1g,<0y + hi (T) 1,50y -

For example, if the dealer hedges in the stock-lending or repo market, we can apply the
quoted repo rate as the hedging rate. Another example is hedging by trading in collater-
alized markets, i.e. markets where only collateralized financial contracts are quoted. The
money market falls in this category and contracts traded in this market are collateralized
on a daily basis at the over-night rate. So, if the hedging strategy implies trading directly
in the money market, the effective hedging cost is simply given by the collateral rate itself.

If we assume the hedging strategy is implemented on the same time-grid as the funding
procedure of the deal, we can sum both the funding and hedging costs in a single term.
This leads us to redefine ¢ in (4.13) so it explicitly takes the dependence on the hedging

strategy into account
o(t, T A7, F,H) 2 mzl1{t<t ey Dt ) F (1 - w) (4.26)
J=1 a ﬂj;(tjﬂ)
P(tiy)  Py(tin)
P/ (ti41) . Pté(tfrl)) |
where the zero-coupon hedging bond is defined as P(T') £ [1+ (T —t)h(T)]~*. Moreover,

if we take the continuous-time limit, assuming that rehypothecation is allowed, we obtain

m—1

Z {t<t, <(T/\T)}D(t t; )H (

ot T AT F) = /TM( fs)[‘(c,m—os] D(t, 5)ds (4.27)

_ /TAT VH.D(t, s)ds,
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which assumes funding and hedging of the deal takes place in continuous time. For the
case when rehypothecation is forbidden, the result can be obtained analogously. We
can now repeat the calculations of Section 4.3.2 to obtain the pre-default PDE for the

continuous-time pricing problem in the case of hedging costs, which is given by
(at — ft — /\t + Et)‘_/t — (T't — Ht)Ht + (,ft — 6t)0t + )\tQt —|— ath = 0, T > t, (428)

with boundary condition (4.17). Assuming diffusive underlying risk factors and delta-
hedging, this collapses to the PDE

(at_ft )‘t+£ ) (ft—ct)Ct+>\t6’t+8th—0 T>1,

where the generator is defined as E?Vt 2 1, H, +£f‘7t. Again, we could solve this equation
numerically, but we choose to apply the reasoning of Section 4.3.2 to reach a similar result
of Theorem 8 when the dealer needs to implement the hedging strategy by trading in the

derivatives market and not just the spot market.

Corollary 1 (Continuous-time Solution with Hedging Costs). If we assume collat-
eral rehypothecation and delta-hedging, we can solve the iterative equations of Theorem 7
in continuous time when the hedging strateqy is implemented by trading on a derivative

market where the effective hedging rate is h. We obtain
Vi(C; F) =Cy + Eﬁ[l{fm (0-(Ce) = Co-) D(t, 75 f) (4.29)

+ / [Lucry (dIL, + dC, — &, du) D(t,u; ) |

where the expectations are taken under a pricing measure QFL for which the underlying

risk factors grow at the rate h.

Analogous to the case of hedging in the spot market, we incorporate the additional
hedging costs by altering the drift of the price processes of the underlying risk factors.
Moreover, by handling hedging costs via a change of measure, we observe that the explicit

dependence on H, disappears from the pricing equation.

4.6 Conclusion

We have developed an arbitrage-free framework for consistent valuation of OTC derivative

trades with collateralization, counterparty credit risk, and funding costs. Based on the
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risk-neutral pricing principle, we derive a general pricing equation where CVA, DVA, and
FVA are introduced by simply modifying the payout cash-flows of the deal. The pricing
problem is highly non-linear and recursive in line with the recent findings of Crépey
(2011, 2012a,b). The price of the deal depends on the trader’s funding strategy, while
to determine the optimal funding strategy we need to know the deal price itself. This
means that FVA is not generally an additive adjustment, let alone a discounting spread,
as commonly assumed by market participants.

Our valuation framework addresses common market practices of ISDA and CSA gov-
erned deals without restrictive assumptions on collateral margin payments and close-out
netting rules. In particular, we allow for asymmetric collateral and funding rates as ob-
served in practice. The introduction of funding risk breaks the bilateral nature of the
deal price. The particular funding policy chosen by the client is not known to the dealer,
and vice versa. As a result, the price of the deal would be different to the two parties.
Theoretically, this should mean that the parties would never close the deal, but in reality
dealers say this was the key factor driving bid-ask spreads wider during the crisis. Fi-
nally, we show that the general pricing equation can be cast as a set of backward-iterative
equations. These equations can be solved recursively by means of least-squares Monte
Carlo and we propose such a simulation algorithm. Our numerical results confirm that

funding risk does have a non-trivial impact on the deal price.
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