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Abstract— Wavelet networks (WNs) are a new class of networks which have been 

used with great success in a wide range of application. However a general accepted 
framework for applying WNs is missing from the literature. In this study, we present a 
complete statistical model identification framework in order to apply WNs in various 
applications. The following subjects were thorough examined: the structure of a WN, 
methods to train a WN, initialization algorithms, variable significance and variable 
selection algorithms, a model selection method and finally methods to construct 
confidence and prediction intervals. Our proposed framework was tested in two 
simulated cases and in one real dataset consisting of daily temperatures in Berlin. Our 
results have shown that the proposed algorithms produce stable and robust results 
indicating that our proposed framework can be applied in various applications. 
 
Index Terms—Wavelet networks, model identification, variable selection, model 
selection, confidence intervals, prediction intervals 
 
1. Introduction 

  
Wavelet networks are a new class of networks that combine the classic sigmoid neural 
networks (NNs) and the wavelet analysis (WA). WNs have been used with great 
success in a wide range of applications. However a general accepted framework for 
applying WNs is missing from the literature. In this study, we present a complete 
statistical model identification framework in order to apply WNs in various 
applications. To our knowledge we are the first to do so. Although a vast literature 
about WNs exists, to our knowledge this is the first study that presents a step by step 
guide for model identification for WNs. Model identification can be separated in two 
parts, model selection and variable significance testing. In this study a framework 
similar to the one proposed by (A. Zapranis & Refenes, 1999) for the classical 
sigmoid NNs is adapted. More precisely, the following subjects were thorough 
examined: the structure of a WN, methods to train a WN, initialization algorithms, 
variable significance and variable selection algorithms, a model selection method and 
finally methods to construct confidence and prediction intervals. Only in (Iyengar, 
Cho, & Phoha, 2002) some of these issues are studied to some limited extend. 

Wavelet analysis (WA) has proved to be a valuable tool for analyzing a wide range 
of time-series and has already been used with success in image processing, signal de-
noising, density estimation, signal and image compression and time-scale 
decomposition. WA is often regarded as a "microscope" in mathematics, (Cao, Hong, 
Fang, & He, 1995), and it is a powerful tool for representing nonlinearities, (Fang & 
Chow, 2006). However WA is limited to applications of small input dimension, since 
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the construction of a wavelet basis, when the dimensionality of the input vector is 
relative high, is computationally expensive, (Q. Zhang, 1997). 

On the other hand NNs have the ability to approximate any deterministic non-
linear process, with little knowledge and no assumptions regarding the nature of the 
process. However the classical sigmoid NNs have a series of drawbacks. Typically, 
the initial values of the NN’s weights are randomly chosen. However, random weights 
initialization is generally accompanied with extended training times. In addition, 
when the transfer function is of sigmoidal type, there is always significant change that 
the training algorithm will converge to local minima. Finally, there is no theoretical 
link between the specific parameterization of a sigmoidal activation function and the 
optimal network architecture, i.e. model complexity (the opposite hold true for WNs). 

In (Pati & Krishnaprasad, 1993) it has been demonstrated that it is possible to 
construct a theoretical formulation of a feedforward NN in terms of wavelet 
decompositions. WNs were proposed by (Q. Zhang & Benveniste, 1992) as an 
alternative to feedforward NNs which would alleviate the aforementioned weaknesses 
associated with each method. The WNs are a generalization of radial basis function 
networks (RBFN). WNs are one hidden layer networks that use a wavelet as an 
activation function, instead of the classic sigmoidal family. It is important to mention 
here that the multidimensional wavelets preserve the “universal approximation” 
property that characterizes NNs. The nodes (or wavelons) of WNs are the wavelet 
coefficients of the function expansion that have a significant value. In (Bernard, 
Mallat, & Slotine, 1998) various reasons were presented in why wavelets should be 
used instead of other transfer functions. In particular, firstly, wavelets have high 
compression abilities, and secondly, computing the value at a single point or updating 
the function estimate from a new local measure, involves only a small subset of 
coefficients. 

WNs have been used in a variety of applications so far, i.e. in short term load 
forecasting, (Bashir & El-Hawary, 2000; Benaouda, Murtagh, Starck, & Renaud, 
2006; Gao & Tsoukalas, 2001; Ulugammai, Venkatesh, Kannan, & Padhy, 2007; S. J. 
Yao, Song, Zhang, & Cheng, 2000), in time series prediction, (Cao, et al., 1995; 
Chen, Yang, & Dong, 2006; Cristea, Tuduce, & Cristea, 2000), signal classification 
and compression, (Kadambe & Srinivasan, 2006; Pittner, Kamarthi, & Gao, 1998; 
Subasi, Alkan, Koklukaya, & Kiymik, 2005), signal denoising, (Z. Zhang, 2007), 
static, dynamic (Allingham, West, & Mees, 1998; Oussar & Dreyfus, 2000; Oussar, 
Rivals, Presonnaz, & Dreyfus, 1998; Pati & Krishnaprasad, 1993; Postalcioglu & 
Becerikli, 2007; Q. Zhang & Benveniste, 1992), and nonlinear modeling, (Billings & 
Wei, 2005), nonlinear static function approximation, (Jiao, Pan, & Fang, 2001; Szu, 
Telfer, & Kadambe, 1992; Wong & Leung, 1998), to mention the most important. In 
(Khayamian, Ensafi, Tabaraki, & Esteki, 2005) WN were even proposed as a 
multivariate calibration method for simultaneous determination of test samples of 
copper, iron, and aluminum. 

In contrast to classical “sigmoid NNs”, WNs allow for constructive procedures that 
efficiently initialize the parameters of the network. Using wavelet decomposition a 
“wavelet library” can be constructed. In turn, each wavelon can be constructed using 
the best wavelet of the wavelet library. The main characteristics of these procedures 
are: i) convergence to the global minimum of the cost function, ii) initial weight 
vector into close proximity of the global minimum, and as a consequence drastically 
reduced training times, (Q. Zhang, 1997; Q. Zhang & Benveniste, 1992). In addition, 
WNs provide information for the relative participation of each wavelon to the 
function approximation and the estimated dynamics of the generating process. Finally, 



efficient initialization methods will approximate the same vector of weights that 
minimize the loss function each time. 

In  (A. Zapranis & Alexandridis, 2008) and  (A. Zapranis & Alexandridis, 2009) 
we give a concise treatment of wavelet theory. For a complete theoretical background 
on wavelets and wavelet analysis we refer to (Daubechies, 1992) and (Mallat, 1999). 
Here the emphasis is in presenting the theory and mathematics of wavelet neural 
networks.  

The rest of the paper is organized as follows. In section 2 we present the WN. 
More precisely in section 2.1 the structure of a WN is described. In section 2.2 
various initialization methods were described. In section 2.3 a training method of the 
WN is presented and in section 2.4 the stopping conditions of the training are 
described. In section 2.5 the various initialization methods are compared and 
evaluated. A model selection algorithm is described in section 3 and is evaluated in 
two cases in section 3.1. Next, various criteria for selecting significant variables are 
presented while a variable selection algorithm is analytically presented in section 4.1. 
In section 4.2 the proposed algorithm is evaluated in two cases. In section 5 methods 
to estimate the model and variance uncertainty are described. In section 5.1 a 
framework for constructing confidence intervals is presented while in section 5.2 a 
framework for constructing prediction intervals is presented. In section 5.3 the 
proposed framework for constructing confidence and prediction intervals is evaluated 
in two cases. In section 6 the proposed framework is applied in real data. Finally, in 
section 7 we conclude. 

 
2. WAVELET NEURAL NETWORKS FOR MULTIVARIATE PROCESS MODELING 
 

2.1.  Structure of a Wavelet Network 
 

A WN usually has the form of a three layer network. The lower layer represents 
the input layer, the middle layer is the hidden layer and the upper layer is the output 
layer. 

In the input layer the explanatory variables are introduced to the WN. The hidden 
layer consists of the hidden units (HUs). The HUs are often referred as wavelons, 
similar to neurons in the classical sigmoid NNs. In the hidden layer the input variables 
are transformed to dilated and translated version of the mother wavelet. Finally, in the 
output layer the approximation of the target values is estimated. 

The idea of a WN is to adapt the wavelet basis to the training data. Hence, the 
wavelet estimator is expected to be more efficient than a sigmoid NN, (Q. Zhang, 
1993). In (Billings & Wei, 2005; Kadambe & Srinivasan, 2006; Mellit, Benghamen, 
& Kalogirou, 2006; Xu & Ho, 1999) an adaptive WN was used. In (Chen, et al., 2006) 
a local linear WN was proposed. The difference is that the connections weights 
between the hidden layer and output layer are replaced by a local linear model. In 
(Fang & Chow, 2006) and (Jiao, et al., 2001) a multiwavelet NN is proposed. In this 
structure, the activation function is a linear combination of wavelet bases instead of 
the wavelet function. During the training phase, the weights of all wavelets are 
updated. The multiwavelet NN is also enhanced by the DWT. Their results indicate 
that the proposed model increases the approximation capability of the network. In 
(Khayamian, et al., 2005) a principal component-wavelet NN was introduced. In this 
context, first principal component analysis (PCA) has been applied to the training data 
in order to reduce the dimensionality. Then a WN was used for function 



approximation. In (Zhao, Chen, & Shen, 1998) a multidimensional wavelet-basis 
function NN was used. More precisely (Zhao, et al., 1998) use a multidimensional 
wavelet function as the activation function in the hidden layer. Then the sigmoid 
function was used as an activation function in the output layer. (Becerikli, 2004) 
proposes a network with unconstrained connectivity and with dynamic elements (lag 
dynamics) in its wavelet processing units called dynamic WN. 

In this study, we implement a multidimensional WN with a linear connection 
between the wavelons and the output. Moreover, in order for the model to perform 
well in the presence of linearity, we use direct connections from the input layer to the 
output layer. Hence, a network with zero HUs is reduced to the linear model. 

The structure of a single hidden-layer feedforward WN is given in Fig. 1. The 
network output is given by the following expression: 
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In that expression, Ψj(x) is a multidimensional wavelet which is constructed by the 
product of m scalar wavelets, x is the input vector, m is the number of network inputs, 
λ is the number of HUs and w stands for a network weight. The multidimensional 
wavelets are computed as follows: 
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where ψ is the mother wavelet and 
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In the above expression, i = 1, …, m,  j = 1, …, λ+1 and the weights w correspond to 
the translation  ( [1]

( )ijw ξ ) and the dilation ( [1]
( )ijw ζ ) factors. The complete vector of the 

network parameters comprises: ( )[0] [2] [2] [1] [1]
1 ( ) ( ), , , ,i j ij ijw w w w w wλ ξ ζ+= . These parameters are 

adjusted during the training phase. 
In bibliography three mother wavelets are usually suggested, the Gaussian 

derivative, the second derivative of the Gaussian, the so-called “Mexican Hat” and the 
Morlet wavelet.   

The selection of the mother wavelet depends on the application and is not limited 
to the above choices. The activation function can be a wavenet (orthogonal wavelets) 
or a wave frame (continuous wavelets). Following (Becerikli, Oysal, & Konar, 2003; 
Billings & Wei, 2005; Q. Zhang, 1994) we use as a mother wavelet the Mexican Hat 
function which proved to be useful and to work satisfactorily in various applications 
and is given by:  
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2.2.Initialization of the Parameters of the Network  

 
In WNs, in contrast to NNs that use sigmoid functions, selecting initial values of 

the dilation and translation parameters randomly may not be suitable, (Oussar, et al., 



1998). A wavelet is a waveform of effectively limited duration that has an average 
value of zero and localized properties hence a random initialization may lead to 
wavelons with a value of zero. Training algorithms like gradient descent with random 
initialization are inefficient, (Q. Zhang, 1993), since random initialization affects the 
speed of training and may lead to a local minimum of the loss function, (Postalcioglu 
& Becerikli, 2007). Also, in sigmoid NNs, although a minimization of the loss 
function can be replicated with random initialization the values of the weights will be 
vary each time, (Anders & Korn, 1999). 

Utilizing the information that can be extracted by the WA from the input dataset 
the initial values of the parameters w  of the network can be selected in an efficient 
way. Efficient initialization will result to less iterations in the training phase of the 
network and training algorithms that will avoid local minimums of the loss function in 
the training phase. Finally, efficient initialization methods will approximate the same 
vector of weights that minimize the loss function each time. 

Various methods have been proposed for an optimized initialization of the wavelet 
parameters. In (Q. Zhang & Benveniste, 1992) the following initialization for the 
translation and dilation parameters is introduced: 
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( ) ( )[1] 0.2 i iijw M Nζ = −                                                                                               (6) 
 
where Mi and Ni are defined as the maximum and minimum of input xi. 
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In the above framework, the initialization of the parameters is based on the input 

domains defined by the examples of the training sample, (Oussar, et al., 1998). 
The initialization of the direct connections [0]

iw  and the weights [2]
jw  is less 

important and they are initialized in small random values between 0 and 1. 
The previous heuristic method is simple but not efficient as it is shown on the next 

section. The heuristic method does not guarantee that the training will find the global 
minimum. Moreover this method does not use any information that the wavelet 
decomposition can provide. 

Recent studies proposed more complex methods that utilize the information 
extracted by the WA, (Kan & Wong, 1998; Oussar & Dreyfus, 2000; Oussar, et al., 
1998; Wong & Leung, 1998; Xu & Ho, 2002; Q. Zhang, 1997). These methods are 
not optimal but a trade-off between optimality and efficiency, (He, Chu, & Zhong, 
2002). 

The implementation of these methods can be summed in the following three steps. 
1. Construct a library W of wavelets 
2. Remove the wavelets that their support does not contain any sample points of 

the training data. 
3. Rank the remaining wavelets and select the best wavelet regressors. 



In the first step, the wavelet library can be constructed either by an orthogonal 
wavelet or a wavelet frame, (He, et al., 2002; Postalcioglu & Becerikli, 2007). By 
determining an orthogonal wavelet basis the WN is simultaneously constructed. 
However, in order to generate an orthogonal wavelet basis, the wavelet function has 
to satisfy strong restrictions, (Daubechies, 1992; Mallat, 1999). In addition the fact 
that orthogonal wavelets cannot be expressed in closed form constitutes them 
inappropriate for applications of function approximation or process modeling, (Oussar 
& Dreyfus, 2000). 

On the other hand constructing wavelet frames is very easy and can be done by 
translating and dilating the selected mother wavelet. The results from (Gao & 
Tsoukalas, 2001) indicate that a family of compactly supported non-orthogonal 
wavelets is more appropriate for function approximation. Due to the fact that a 
wavelet family can contain a large number of wavelets, it is more convenient to use a 
truncated wavelet family than an orthogonal wavelet basis, (Q. Zhang, 1993).  

However, constructing a WN using wavelet frames is not a straightforward process. 
The wavelet library may contain a large number of wavelets since only the input data 
were considered in the construction of the wavelet frame. In order to construct a WN 
the “best” wavelets must be selected. However, arbitrary truncations may lead to large 
errors, (Xu & Ho, 2005). In the second step, (Q. Zhang, 1993) proposes to remove the 
wavelets that have very few training patterns in their support. Alternatively, in 
(Cannon & Slotine, 1995) magnitude based methods were used to eliminate wavelets 
with small coefficients. 

In the third step, the remaining wavelets are ranked and the wavelets with the 
highest rank are used for the construction of the WN.  

In (Q. Zhang, 1994) and (Q. Zhang, 1997) three alternative methods were proposed 
in order to reduce and rank the wavelets in the wavelet library: Residual Based 
Selection (RBS), Stepwise Selection by Orthogonalization (SSO) and Backward 
Elimination (BE).  

In the framework of RBS, first the wavelet that best fits the output data is selected. 
Then the wavelet that best fits the residual of the fitting of the previous stage is 
repeatedly selected. RBS is considered as a very simple method but not an effective 
one, (Juditsky, Zhang, Delyon, Glorennec, & Benveniste, 1994). However if the 
wavelet candidates reach a very large number, computational efficiency is essential 
and the RBS method may be used, (Juditsky, et al., 1994). In (Kan & Wong, 1998) 
and  (Wong & Leung, 1998) the RBS algorithm was used for the synthesis of a WN. 
In (Xu & Ho, 2002) a modified version of the RBS algorithm was used. More 
precisely an Orthogonalized Residual Based Selection (ORBS) algorithm is proposed 
for the initialization of the WN. The ORBS method combines both the RBS and the 
Ortogonalized Least Squares (OLS) method. In this way high efficiency is obtained 
while relatively low computational burden is maintained.  

The SSO method is an extension of the RBS first proposed by (Chen, Billings, & 
Luo, 1989; Chen, Cowan, & Grant, 1991). In order to initialize the WN the following 
procedure is followed: First the wavelet which best fits the output data is selected. 
Then the wavelet that best fits the residual of the fitting of the previous stage together 
with the previous selected wavelet is repeatedly selected. In other words the SSO 
considers the interaction or the non-orthogonality of the wavelets. The selection of the 
wavelets is performed using the modified Gram-Schmidt algorithm that has better 
numerical properties and is computationally less expensive than the ordinary Gram-
Schmidt algorithm, (Q. Zhang, 1997). SSO is considered to have good efficiency 



while it is not computationally expensive. In (Oussar & Dreyfus, 2000) an algorithm 
similar to SSO was proposed. 

In contrast to previous methods, the BE starts the regression by selecting all the 
available wavelets from the wavelet library. Then the wavelet that contributes the 
least in the fitting of the training data is repeatedly eliminated. The drawback of BE is 
that it is computationally expensive but it is considered to have good efficiency. 

All methods described above are used just for the initialization of the dilation and 
translation parameters. Then the network is further trained in order to obtain the 
vector of the parameters ˆ nw = w  which minimizes the cost function. 

It is clear that additional computational burden is added in order to initialize 
efficiently the WN. However the efficient initialization significantly reduces the 
training phase hence the total amount of computations is significantly smaller than in 
a network with random initialization. 

 
2.3.Training a Wavelet Network with Back-Propagation 

 

After the initialization phase, the network is further trained in order to find the 
weights which minimize the cost function. 

In (Cristea, et al., 2000) genetic algorithms were used to train a WN while in (Li & 
Chen, 2002) a learning algorithm by applying least trimmed squares was proposed. 
(He, et al., 2002) suggest an hierarchical evolutionary algorithm. In (Xu & Ho, 2005) 
the Levenberg-Marquardt algorithm was applied. (Chen, et al., 2006) combine an 
adaptive diversity learning particle swarm optimization and gradient descent 
algorithms in order to train a WN. However, most evolutionary algorithms including 
particle swarm optimization, are inefficient and cannot avoid certain degeneracy and 
local minimum completely, (Z. Zhang, 2009). Also evolutionary algorithms suffer 
from fine-tuning inefficiency, (Chen, et al., 2006; X. Yao, 1999). On the other hand 
the Levenberg-Marquardt is one of the fastest algorithms for training NNs. The main 
drawback of this algorithm is that it requires the storage and the inversion of some 
matrices that can be quite large.  

The above algorithms originate from classical sigmoid NNs, as they do not take 
advantage of the properties of wavelets, (Z. Zhang, 2007, 2009). Since a wavelet is a 
function whose energy is well localized in time-frequency, (Z. Zhang, 2007) and (Z. 
Zhang, 2009) use sampling theory in order to train a WN in both uniform and non-
uniform data. Their results indicate that their proposed algorithm has global 
convergence. 

In our implementation the ordinary back-propagation (BP) was used. BP is 
probably the most popular algorithm used for training WNs, (Fang & Chow, 2006; 
Jiao, et al., 2001; Oussar & Dreyfus, 2000; Oussar, et al., 1998; Postalcioglu & 
Becerikli, 2007; Q. Zhang, 1997; Q. Zhang & Benveniste, 1992; Z. Zhang, 2007). 
Ordinary BP is less fast but also less prone to sensitivity to initial conditions than 
higher order alternatives, (A. Zapranis & Refenes, 1999).

 

The basic idea of BP is to find the percentage of contribution of each weight to the 
error. The error pe  for pattern p  is simply the difference between the target ( py ) and 
the network output ( ˆ py ). By squaring and multiplying by ½ we take the pairwise error 

pE  which is used in network training: 
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The weights of the network were trained to minimize the mean quadratic cost function 
(or loss function): 
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Other functions can be used instead of (10) however the mean quadratic cost 

function is the most commonly used. The network is trained until a vector of weights 
ˆ nw = w  that minimizes the proposed cost function is found. The previous solution 

corresponds to a training sample of size n . Computing the parameter vector ˆ nw  is 
always done by iterative methods. At each iteration t  the derivative of the loss 
function with respect to the network weights is calculated. Then, the updating of the 
parameters is performed by the following (delta) learning rule: 
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where η  is the learning rate and it is constant. The complete vector of the network 
parameters comprises: ( )[0] [1] [1] [2] [2]

( ) ( ) 1, , , ,i ij ij jw w w w w wξ ζ λ+= . 
A constant momentum term, defined by κ , is induced which increases the training 

speed and helps the algorithm to avoid oscillations. The learning rate and momentum 
speed take values between 0 and 1. The choice of the learning rate and the momentum 
depends on the application and the training sample. Usually, values between 0.1 and 
0.4 are used. 

The partial derivative of the cost function with respect to a weight w is given by: 
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The partial derivatives with respect to each parameter, 
ˆ py
w

∂

∂
, and with respect to 

each input variable, 
ˆ p

i

y
x

∂

∂
, are presented in appendix. 

 
2.4.Stopping Conditions for Training 

 

 After the initialization phase of the network parameters w , the weights [0]
iw , [2]

jw  
and parameters [1]

( )ijw ξ  and [1]
( )ijw ζ  are trained during the learning phase for 



approximating the target function. A key decision related to the training of a WN is 
when the weight adjustment should end. Under the assumption that the WN contains 
the number of wavelets that minimizes the prediction risk the training is stopped when 
one of the following criteria is met – the cost function reaches a fixed lower bound or 
the variations of the gradient or the variations of the parameters reaches a lower 
bound or the number of iterations reaches a fixed maximum, whichever is satisfied 
first. In our implementation the fixed lower bound of the cost function, of the 
variations of the gradient and of the variations of the parameters were set to 510− . 

 
2.5. Evaluating the Initialization Methods 

 
As it was mentioned in the previous section the initialization phase is a very 

important on the construction and training of a WN. In this section we compare four 
different initialization methods. The heuristic, the SSO, the RBS and the BE methods, 
that constitute the bases for alternative algorithms and can be used with the BP 
training algorithm, will be tested.  

The four initialization methods will be compared in three stages. First the distance 
between the initialization and the underlying function as well as the training data will 
be measured. Second the number of iterations needed to train the WN will be 
compared. Finally, the difference of the final approximation of the trained WN and 
the underlying function and the training data will be examined. The four initialization 
methods will be tested in two cases. First on a simple underlying function and second 
on a more complex function that incorporates large outliers. 

 
2.5.1. Example 1 

 
In the first case the underlying function f(x) is given by: 

 
[ ]1( ) 0.5 0.4sin(2 ) ( )  0,1f x x x xπ ε= + + ∈                                                          (13) 

                                                                     
where x is equally spaced in [0,1] and the noise 1( )xε  follows a normal distribution 
with mean zero and a decreasing variance: 
 

2 2 2( ) 0.05 0.1(1 ) .x xεσ = + −                                                                              (14) 
 

The four initialization methods will be examined using a WN with 2 HUs with 
learning rate 0.1 and momentum 0. The choice of the proposed structure of network 
will be justified in the next section. The training sample consists of 1.000 patterns. 

Fig. 2 shows the initialization of the four algorithms for the first training sample. It 
is clear that the heuristic algorithm produces the worst initialization. However, even 
the heuristic approximation is still better than a random initialization. On the other 
hand the initialization of the RBS algorithm gives a better approximation of the data 
however the approximation of the target function ( )f x  is still not very good. Finally, 
both the SSO and the BE algorithms start very close to the target function ( )f x .  

The Mean Square Error (MSE) between the initialization of the network and the 
training data confirms the above results. More precisely the MSE between the 
initialization of the network and the training data is 0.630809, 0.040453, 0.031331 
and 0.031331 for the heuristic, the RBS, the SSO and the BE respectively. Next we 



will test how close the initialization is to the underlying function. The MSE between 
the initialization of the network and the underlying function is 0.59868, 0.302782, 
0.000121 and 0.000121 for the heuristic, the RBS, the SSO and the BE respectively. 
The results above indicate that both the SSO and the BE produce the best initialization 
for the parameters of the WN.  

Another way to compare the initialization methods is to compare the number of 
iterations needed in the training phase until the solution ˆ nw  is found. Also if the 
proposed initialization methods allow the training procedure to find the global 
minimum of the loss function will be examined.  

First the heuristic method was used to train 100 networks with different initial 
conditions of the direct connections [0]

iw  and weights [2]
jw . Training 100 networks 

with perturbed initial conditions is expected to be sufficient to avoid any possible 
local minimums of the loss function (10). It was found that the smallest MSE between 
the target function ( )f x  and the final approximation of the WN was 0.031331.  

Using the RBS the training phase stopped after 617 iterations. The overall fit was 
very good and the MSE between the network output and the training data was 
0.031401 indicating that the network was stopped before the minimum of the loss 
function was achieved. Finally, the MSE between the network output and the target 
function was 0.000676. 

On the other hand, when initializing the WN with the SSO algorithm only 1 
iteration was needed in the training phase and the MSE was 0.031331 while the MSE 
between the underlying function ( )f x  and the network approximation was only 
0.000121. The same results were achieved by the BE method.  Finally, one 
implementation of the heuristic method needed 1501 iterations. All results are 
presented in Table 1.  
The results above indicate that the SSO and the BE algorithms give the same results 
and significantly outperform both the heuristic and the RBS algorithms. Moreover the 
above results indicate that having a very good initialization not only significantly 
reduces the needed training iterations and as a result the needed training time but also 
a vector of weights ˆ nw  that minimizes the loss function can be found. 
 
2.5.2. Example 2 
 

Next a more complex case is introduced where the function ( )g x is given by: 
 

[ ]2
2( ) 0.5 sin( ) cos ( ) ( )  6,6g x x x x x xε= + + ∈ −                                                           (15) 

 
and 2 ( )xε  follows a Cauchy distribution with location 0 and scale 0.05 and x is 
equally spaced in [-6,6]. The training sample consists of 1.000 training patterns. 
While the first function is very simple the second one, proposed by (Li & Chen, 
2002), incorporates large outliers in the output space. The sensitivity to the presence 
of outliers of the proposed WN will be tested. To approximate function ( )g x  a WN 
with 8 HUs with learning rate 0.1 and momentum 0 is used. The choice of the 
proposed topology of the WN will be justified in the next section. 

The results obtained in the second case are similar. A closer inspection of Fig. 3 
reveals that the heuristic algorithm produces the worst initialization in approximating 



the underlying function ( )g x . The RBS algorithm produces a significantly better 
initialization than the heuristic method however the initial approximation still differs 
from the training target values. Finally, both the BE and the SSO algorithms produce 
a very good initialization. It is clear that the first approximation of the WN is very 
close to the underlying function ( )g x . 

The MSE between the initialization of the network and the training data was 
7.87472, 0.041256, 0.012813 and 0.008304 for the heuristic, the RBS, the SSO and 
the BE algorithms respectively. Also the MSE between the initialization of the 
network and the underlying function ( )g x  was 7.872084, 0.037844, 0.008394 and 
0.004015 for the heuristic, the RBS, the SSO and the BE respectively. The previous 
results indicate that the training phase using the BE algorithm starts very close to the 
target function ( )g x . 

Next the number of iterations needed in the training phase of each method was 
compared. Also, if the proposed initialization methods allow the training procedure to 
find the global minimum of the loss function was examined. The RBS algorithm 
stopped after 3097 iterations and the MSE of the final approximation of the WN and 
the training patterns was 0.004730. The MSE between the underlying function ( )f x  
and the network approximation was 0.000558. When initializing the WN with the 
SSO algorithm only 741 iterations were needed in the training phase and the MSE 
was 0.004752 while the MSE between the underlying function ( )g x  and the network 
approximation was 0.000490. The BE needed 1107 iterations in the training phase and 
the MSE was 0.004364 while the MSE between the underlying function ( )g x  and the 
network approximation was only 0.000074. Finally, one implementation of the 
heuristic method needed 4433 iterations and the MSE was 0.106238 while the MSE 
between the underlying function ( )g x  and the network approximation was 0.102569. 
All results are presented in the second part of Table 1. In the second case the BE was 
slower than the SSO however the final approximation was significantly closer to the 
target function than any other method. 

The previous examples indicate that SSO and BE perform similarly and outperform 
the other two methods whereas BE outperforms SSO in complex problems. Previous 
studies suggest that the BE is more efficient than the SSO algorithm however it is 
more computationally expensive. On the other hand in the BE algorithm the 
calculation of the inverse of the wavelet matrix is needed whose columns might be 
linear dependent, (Q. Zhang, 1997). In that case the SSO must be used. However 
since the wavelets come from a wavelet frame this is very rare to happen, (Q. Zhang, 
1997). 

 
3. Model Selection 

 
In this section we describe the model selection procedure. One of the most crucial 

steps is to identify the correct topology of the network. A desired WN architecture 
should contain as few HUs as necessary while at the same time it should explain as 
much variability of the training data as possible. A network with less HUs than 
needed would not be able to learn the underlying function while selecting more HUs 
than needed will result to an over-fitted model. Therefore, an algorithm to select the 
appropriate WN model for a given problem is necessary to be derived. 

The usual approaches proposed in the literature are the early stopping, 
regularization and pruning. However all these methods have serious drawbacks. In 
early stopping method a more complex model than needed is used. Hence, a large 



number of weights must be trained. As a result large training times are expected. 
More over the network incorporates a large number of connections most of them with 
small weights. In addition, a validation sample should be used however usually there 
is only a small amount of data available and splitting the data is not useful. 
Furthermore, growing validation errors indicate the reduction of network’s 
complexity, (Anders & Korn, 1999). Finally, the solution ˆ nw  of the network is highly 
dependent on the dividing of the data and the initial conditions, (Dimopoulos, 
Bourret, & Lek, 1995). 

In regularization the penalty terms usually are chosen arbitrary without any 
theoretical justification, (Anders & Korn, 1999). Moreover a bad regularization 
parameter, δ , can severely restrict the growth of weights and as result the network 
will be under-fitted, (Samarasinghe, 2006). Finally in pruning methods the 
significance of each weight usually is not measured in a statistical way, (Anders & 
Korn, 1999). (Reed, 1993) presents an extensive survey on pruning methods. One of 
the disadvantages of pruning methods is that most of them do not take into account 
correlated weights. Two weights that cancel out each other do not have any effect at 
the output of the network however each weight may have a large effect, (Reed, 1993). 
Also the time when the pruning should stop is usually arbitrary, (Reed, 1993). 

In contrast to previous constructive methods, on-line approaches do not require to 
determine the number of wavelets before the start of the training, (Wong & Leung, 
1998). On-line training methods allow the parameters to be updated after the 
presentation of each training pattern. New wavelets are added to the network when it 
is needed while wavelets that do not contribute to the performance of the network 
anymore are removed. In (Cannon & Slotine, 1995) and (Wong & Leung, 1998) 
online synthesis in the construction of the WN was used. However the results from 
(Wong & Leung, 1998) indicate that this method is very prone to the initialization of 
the WN. Their results indicate that the suggested topology of a particular function 
approximation was varying from 4 to 10 HUs. 

The previous methods do not use an optimal architecture of a WN. A very large 
WN is used and then various methods were developed to avoid over-fitting. Smaller 
networks usually are faster to train and need less computational power to build, 
(Reed, 1993). 

Alternative the Minimum Prediction Risk (MPR) principle can be applied, (Efron 
& Tibshirani, 1993; A. Zapranis & Refenes, 1999). The idea behind MPR is to 
estimate the out-of-sample performance of incrementally growing networks. 
Assuming that the explanatory variables x  were correctly selected and remain fixed, 
then the model selection procedure is the following: the procedure starts with a fully 
connected network with 0 HUs. The WN is trained and then the prediction risk is 
estimated. Then, iteratively a new HU is added to the network. The new WNs are 
trained and the new prediction risk is estimated at each step. The number of HUs that 
minimizes the prediction risk is the appropriate number of HUs that should be used 
for the construction of the WN. 

The prediction risk measures the generalization ability of the network. More 
precisely, the prediction risk of a network ˆ( ; )ngλ x w  is the expected performance of 
the network on new data that were not introduced during the training phase and is 
given by: 
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where ( )* *,p pyx  are the new observations that have not been used in the construction 

of the network ˆ( ; )ngλ x w  and *ˆ py  is the network output using the new observations, 
*( ; )gλ x w .  

However finding a statistical measure that estimates the prediction risk is not a 
straightforward procedure. Since there is a linear relationship between the wavelons 
and the output of the WN, (Q. Zhang, 1993, 1994, 1997; Q. Zhang & Benveniste, 
1992) propose the use of information criteria previously widely applied in linear 
models. More precisely, (Q. Zhang, 1994) suggested that the Akaike’s Final 
Prediction Error (FPE) can be used in various applications. More recently, (Q. Zhang, 
1997) suggested that the Generalized Cross-Validation (GCV) is an accurate tool for 
selecting the number of wavelets that constitutes the WN topology. In order to 
estimate the GCV the noise variance must be identified. In practice the noise variance 

2σ  is not known. In that case it has to be estimated. An estimate is given by the MSE 
between the network output and the target data, (Q. Zhang, 1997).  

Because we do not have an a priori knowledge of the correct number of HUs or 
parameters of the WN we estimate the above criteria iteratively.  

The criteria described above for the estimation of the prediction risk are derived 
from linear models. Usually these models are based on assumptions that are not 
necessarily true in the framework of nonlinear nonparametric estimation. The 
hypothesis behind these information criteria is the asymptotic normality of the 
maximum likelihood estimators hence the information criteria are not theoretically 
justified for over-parameterized networks, (Anders & Korn, 1999). 

Moreover, in fitting problems more complex than the least squares the number of 
parameters k  is not known, (Efron & Tibshirani, 1993) and it is unclear how to 
compute the degrees of freedom, (Curry & Morgan, 2006), or the effective number of 
parameters described in (Moody, 1992). 

 In (A. Zapranis & Refenes, 1999)  a different approach  is presented. An analytical 
form of the prediction risk (16) was presented for the sigmoid NNs. However the 
assumptions made by (A. Zapranis & Refenes, 1999) are not necessarily true in the 
framework of WNs and analytical forms are not available for estimating the 
prediction risk for WNs. Alternatively the use of sampling methods such as bootstrap 
and cross-validation can be employed since they do not depend on any assumptions 
regarding the model, (Efron & Tibshirani, 1993). The only assumption made by 
sampling methods is that the data are a sequence of independent and identically 
distributed variables. Another advantage of bootstrap and cross-validation is their 
robustness. In contrast to sampling methods both GCV and FPE require a roughly 
correct model to obtain the estimate of the noise variance.  

The bootstrap and the ν-fold cross-validation approaches are analytically described 
in (Efron & Tibshirani, 1993). It is known that the simple estimation of the bootstrap 
approach is not very accurate, (Efron & Tibshirani, 1993). Hence, we estimate the 
improved estimation of the prediction risk following the suggestion of (Efron & 
Tibshirani, 1993). The number of new samples B  is usually over 30, (Aczel, 1993; 
Efron & Tibshirani, 1993). It is clear that as the number of new samples B  increases 
the bootstrap method becomes more accurate but also more computationally 
expensive. Cross-validation is an another standard tool for estimating the prediction 
error  that makes an efficient use of the available information, (Efron & Tibshirani, 
1993). The ν-fold cross-validation is applied as described in (Efron & Tibshirani, 



1993). 
 

3.1.Evaluating the Model Selection Algorithm 
 

In order to find an algorithm that will work well with WNs and will lead to a good 
estimation of prediction risk we will compare, in this section, the various criteria as 
well as the sampling techniques discussed earlier. 

More precisely, in this study we will compare the sampling techniques that are 
extensively used in various studies with sigmoid NNs and two information criteria 
previously proposed in the construction of a WN. More precisely, the FPE proposed 
by (Q. Zhang, 1994), the GCV proposed by (Q. Zhang, 1997), the bootstrap (BS) and 
the v-fold cross-validation (CV) methods proposed by (Efron & Tibshirani, 1993) and 
(A. Zapranis & Refenes, 1999) will be tested. 

In order to evaluate each method the following procedure will be followed. First 
the prediction risk according to each method will be estimated for a large number of 
HUs. Then the number of HUs that minimizes the prediction risk will be selected for 
the construction of the WN. The WN will be fully trained. Finally the MSE between 
the WN output and the target function will be estimated. The best network topology 
will be considered the one that produces the smallest MSE and shows no signs of 
over-fitting. 

The four methods are evaluated using the functions ( )f x  and ( )g x  given by (13) 
and (15) respectively. Both training samples consist of 1.000 training patterns as in to 
the previous section. The WNs are trained with the BP algorithm with learning rate 
0.1 and zero momentum. In order to estimate the prediction risk using the BS 
approach 50 new networks were created for each HU ( 50)B = . Similarly, the 
prediction risk using the CV method was estimated using 50 subsamples for each HU. 
In other words the 50-fold cross validation was used, ( 50)v = . All WNs were 
initialized using the BE algorithm since our results in the previous sections indicate 
that the BE outperforms the alternative algorithms. 

 
3.1.1. Example 1 
 

Table 2 presents the prediction risk and the suggested HUs for each information 
criterion for the two functions described previously. In the first case we estimate the 
prediction risk for a WN with zero HUs and iteratively one HU is added until a 
maximum number of 15 HUs. Three of the four criteria, the FPE the BS and the CV 
suggest that a WN with only 2 HUs is sufficient to model function ( )f x . On the other 
hand, using the GCV, the prediction risk is minimized when a WN with 3 HUs is 
used. Fig. 4 shows the approximation of the WN to the training data using (a) 1 HU 
(b) 2 HUs and (c) 3 HUs. Part (d) of Fig. 4 shows the training data and the target 
function ( )f x . It is clear that a WN with only 1 HU cannot learn the underlying 
function. On the other hand the WNs with 2 and 3 HUs approximate the underlying 
function very well. However when 3 HUs are used the network approximation is 
affected by the large variation of the noise in the interval [0, 0.25]. In order to confirm 
the above results the MSE between the output of the WN and the underlying target 
function ( )f x  is estimated. The MSE is 0.001825 when a WN with only one HU is 
used. Adding one more HU, two in total, the MSE is reduced to only 0.000121. 



Finally, when 3 HUs are used the MSE increased to 0.000267. Hence, 2 wavelets 
should be used to construct a WN to approximate function ( )f x . The results above 
indicate that the GCV suggested a more complex model than needed. Moreover a WN 
with 3 HUs shows signs of over-fitting.  

From Table 2 it is shown that the FPE criterion suggests 2 HUs however the 
prediction risk is only 0.02088 in contrast to GCV, BS and CV which is 0.03966, 
0.04002 and 0.03991 respectively. In order to find the correct magnitude of the 
prediction risk a validation sample is used to measure the performance of the WN 
with 2 HUs in out-of-sample data. The validation sample consists of 300 patterns 
randomly generated by (13). These patterns were not used for the training of the WN. 
The MSE between the network forecasts and the validation targets is 0.048751 
indicating that the FPE criterion is too optimistic on the estimation of the prediction 
risk. 

 
3.1.2. Example 2 
 

In the second part of Table 2 the results for the second example are presented. As 
in the first case, the prediction risk for a WN with zero HUs is estimated and 
iteratively one HUs is added to the WN until a maximum number of 15 HUs is 
reached. The FPE criterion suggests that 7 HUs is appropriate for modeling the 
function ( )g x . On the other hand, using the GCV, the prediction risk is minimized 
when a WN with 14 HUs is used. Finally using the BS and the CV criteria the 
prediction risk is minimized when a WN with 8 HUs is used. In Fig. 5 the 
approximation of the WN to the training data using (a) 7, (b) 8 and (c) 14 HUs is 
presented. Part (d) of Fig. 5 shows the target function ( )g x  and the training data. It is 
clear that all networks produce similar results. In order to compare the above results, 
the MSE between the output of the WN and the underlying target function ( )g x  was 
estimated. The MSE is 0.000239 when a WN with only 7 HUs is used. Adding one 
more HU, 8 in total, the MSE is reduced to only 0.000074. Finally, when 14 HUs are 
used the MSE increased to 0.000154. Hence, the optimum number of wavelet to 
approximate function ( )g x  is 8. The results above indicate that the GCV suggests a 
more complex model while FPE suggest a simpler model than needed. Our results 
indicate that the sampling techniques outperform the information criteria again. 

As reported in Table 2, the estimated prediction risk proposed by the FPE criterion 
is 0.00041 in contrast to GCV, BS and CV which is 0.00077, 0.00081 and 0.00078 
respectively. In order to find the correct magnitude of the prediction risk a validation 
sample is used to measure the performance of the WN with 8 HUs in out-of-sample 
data. The validation sample consists of 300 patterns randomly generated by (15). 
These patterns were not used for the training of the WN. Our results indicate again 
that the FPE criterion is too optimistic on the estimation of the prediction risk.  

A closer inspection of Fig. 5 reveals that the WN approximation was not affected 
by the presence of large outliers in contrast to the findings of (Li & Chen, 2002). In 
this study 8 HUs were used to construct the WN as it was proposed by ν-fold cross-
validation and the BS while in (Li & Chen, 2002) the architecture of the WN had 10 
HUs as it was proposed by the FPE criterion. Our results indicate that the FPE 
criterion does not perform as well as sampling techniques (bootstrap or ν-fold cross-
validation). 

 



3.1.3. Model Selection without Training 
 

In (Q. Zhang, 1997) the estimation of the preferred information criteria is 
performed  after the initialization stage of the network. More precisely in the SSO and 
RBS the preferred information criteria is evaluated after the selection of each wavelet 
in the initialization stage. Similarly, when the BE algorithm is used, the preferred 
information criteria is evaluated after the elimination of each wavelet in the 
initialization stage. Since the initialization of the WN is very good, as presented in the 
previous section, the initial approximation is expected to be very close to the target 
function. Hence, a good approximation of the prediction risk is expected to be 
obtained. The same idea can also be applied when the BS or the CV are used. The 
above procedure is significantly less computational expensive. 

However, the above procedure is similar to early stopping techniques. Usually 
early stopping techniques suggest a network with more HUs than necessary, though 
the network is not fully trained to avoid over-fitting, (Samarasinghe, 2006), while 
they do not work satisfactorily in complex problems, (Samarasinghe, 2006). 

In the first case the results were similar to the case where the WNs were fully 
trained. More precisely, the FPE, the BS and the CV methods suggested that a WN 
with 2 HUs is sufficient to model ( )f x  while GCV suggested a WN with 3 HUs. In 
the second case both the information criteria and the sampling techniques suggested 
that a WN with more than 14 HUs is needed to model function ( )g x . The results 
above indicate that when more complex problems are introduced, as in the second 
case, this method does not work satisfactorily. 

Since sampling techniques are computationally expensive methods, the FPE 
criterion can be used initially. Then the BS or the CV methods can be used in +/-5 HU 
around the HUs proposed by FPE in order to define the best network topology. 

 
4. Variable Selection 

 
In real problems it is important to determine correctly the independent variables. In 

most problems there is a little information about the relationship of any explanatory 
variable with the dependent variable. As a result unnecessary independent variables 
are included in the model reducing its predictive power. In this section various 
methods for testing the significance of each explanatory variable will be presented 
and tested. The purpose of this section is to find an algorithm that constantly gives 
stable and correct results when it is used with WNs.  

In linear models in order to determine if a coefficient, and as a result an input 
variable, is significant the t-stats or the p-values of each coefficient are examined. 
Applying the previous method in WNs is not a straightforward process since the 
coefficients (weights) are estimated iteratively and each variable contribute to the 
output of the WN linearly through the direct connections and nonlinearly through the 
HUs. 

Instead of removing the irrelevant variables one can reduce the dimensionality of 
the input space. An effective procedure for performing this operation is the PCA. 
PCA have been applied in many application with great success, (Khayamian, et al., 
2005). In applications where WNs are used for prediction of future values of a target 
variable PCA can be proved very useful. On the other hand in applications where 
WNs are used for function approximation or sensitivity analysis PCA can be proved 



cumbersome. Extra care must be taken when linking the information resulted from 
principal components to the original variables. 

PCA cannot always be used since a linear transformation among the explanatory 
variables is not always able to reduce the dimension of the dataset. Another 
disadvantage of the PCA is the fact that the directions maximizing variance do not 
always maximize information.   

Alternatively one can quantify the average effect of each input variable, jx , on the 
output variable, y . Estimating the sensitivity of the WN output according to small 
input perturbations of variable jx  can be done either by applying the average 
derivative (AvgD) or the average elasticity (AvgL) where the effect is presented as a 
percentage and are given by the following equations: 
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Although AvgL conveys more information, in both criterions cancellations between 

negative and positive values are possible. A natural extension of the above criterions 
is the average derivative magnitude (AvgDM) and the average elasticity magnitude 
(AvgLM) given by 
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Equation (17)-(20) utilizes the average derivative of the output of the WN with 
respect to each explanatory variable. As in averaging procedure a lot of information is 
lost additional criteria are introduced. 

The maximum and minimum derivative (MaxD, MinD) or the maximum and 
minimum derivative magnitude (MaxDM, MinDM) give additional insight of the 
sensitivity of the WN output to each explanatory variable. However, these criteria 
usually cannot be used on their own since they are appropriate only for some 
applications and are sensitive to inflection points, (A. Zapranis & Refenes, 1999). The 
mathematical expressions of the above criteria can be found in (A. Zapranis & 
Refenes, 1999). 

Alternatively to sensitivity criteria, model fitness criteria such as the Sensitivity 
Based Pruning (SBP) proposed by (Moody & Utans, 1992) can be used. The SBP 
method quantifies a variable’s relevance to the model by the effect on the empirical 
loss of the replacement of that variable by its mean. The SBP is given by: 
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Additional criteria can be used like the ones presented in (Dimopoulos, et al., 1995). 

For additional information on the criteria presented above we refer to (A. Zapranis & 
Refenes, 1999). 

 
4.1.An Algorithm for Selecting the Significant Variables 

 

In order to statistically test whether a variable is insignificant and can be removed 
for the training dataset or not the distributions of the criteria presented in the previous 
section are needed. Without the distribution of the preferred measure of relevance it is 
not clear if the effects of the variable ix  on y  are statistically significant, (A. 
Zapranis & Refenes, 1999). More precisely, the only information obtained by criteria 
described in the previous section is how sensitive is the dependent variable to small 
perturbations of the independent variable. It is clear that the smaller the value of the 
preferred criterion the less significant is the corresponding variable. However there is 
no information if this variable should be removed from the model or not.  

In order to approximate asymptotically the distribution of the measures of relevance 
we use the bootstrap method. More precisely, a number of bootstrapped training 
samples can be created by the original training dataset. The idea is to estimate the 
preferred criterion on each bootstrapped sample. If the number of the bootstrapped 
samples is large then a good approximation of the empirical distribution of the 
criterion is expected to be achieved. Obtaining an approximation of the empirical 
distributions, confidence intervals and hypothesis tests can be constructed for the 
value of the criterion. The variable selection algorithm is analytically explained 
bellow and is illustrated in Fig. 6. 

The procedure is the following: The algorithm starts with the training sample that 
consists of all available explanatory variables.  

The first step is to create B  bootstrapped training samples from the original 
dataset.  

The second step is to identify the correct topology of the WN following the 
procedure described in the previous section and estimate the prediction risk.  

The third step is to estimate the preferred measure of relevance for each 
explanatory variable for each one of the B  bootstrapped training samples.  

The fourth step is to calculate the p-values of the measure of relevance.  
The fifth step is to test if any explanatory variables have a p-value greater than 0.1 

If variables with a p-value greater than 0.1 exist then the variable with the largest p-
value is removed from the training dataset else the algorithm stops.  

The sixth step is to estimate the prediction risk and the new p-values of the reduced 
model. If the new estimated prediction risk is smaller than the prediction risk 



multiplied by a threshold (usually 1.05) then the decision of removing the variable 
was correct and we return to the fifth step.  

If the new prediction risk is greater than the new prediction risk multiplied by a 
threshold (usually 1.05) then the decision of removing the variable was wrong and the 
variable must be reintroduced to the model. In this case the variable with the next 
largest p-value which is also greater than 0.1 is removed from the training sample and 
we return to step six. If the remaining variables have p-values smaller than 0.1 then 
the algorithm stops. 

In order to have a good estimation of the prediction risk as well as an 
approximation of the distribution of the measure of relevance, a large number of 
bootstrapped samples B  is needed. As B  increases the accuracy of the algorithm also 
increases but also increases the computational burden. In (A. Zapranis & Refenes, 
1999) two different bootstrap methods were presented, the local bootstrap and the 
parametric sampling, that are significantly less computationally expensive. However, 
the bootstrapped samples may significantly differ from the original sample. Hence, 
applying local bootstrap or parametric sampling may lead to wavelets outside their 
effective support, i.e. wavelets with value of zero, since wavelets are local functions 
with limited duration. In addition, in contrast to the case of NNs, the asymptotic 
distribution of the weights of a WN is not known. These observations constitute both 
local bootstrap and parametric sampling inappropriate for WNs.  

Alternatively new samples from training patterns can be constructed. This can be 
done by applying bootstrap from pairs and train a WN for each sample. Since, the 
initialization of a WN is very good this procedure is not of a prohibited computational 
cost. 

 
4.2.Evaluating the Variable Significance Criteria 

 

In this section the algorithm proposed in the previous section for selecting the 
significant explanatory variables will be evaluated. More precisely, the eight 
sensitivity criteria and the model fitness sensitivity criterion will be evaluated in the 
two functions, ( )f x  and ( )g x given by (13) and (15) respectively. 
 

4.2.1. Example 1 
 

First a second variable is created which was randomly drawn from the uniform 
distribution within the range (0,1). Both variables are considered significant and 
constitute the training patterns ( ),i iyx  of the training dataset where { }1, 2,,i i ix x=x and 

iy  are the target values. A WN is trained in order to learn the target function ( )f x  
were both 1x  and 2x  are introduced to the WN as inputs patterns. The BE algorithm 
was used for the initialization of the WN. Using CV and BS the prediction risk is 
minimized when 3 HUs are used and it is 0.04194. The network converges after 3502 
iterations. Comparing the results with the findings in previous section it is clear that 
including an irrelevant variable to our model increases the model complexity and the 
training time while the predictive power of the model is reduced. 

Next, the algorithm described in the previous section will be applied in order to 
estimate the p-values of each criterion. More precisely, the BS method will be applied 



in order to estimate the asymptotic distributions of the various criteria. In order to 
approximate the empirical distributions of the various criteria 50 new bootstrapped 
samples were created and their corresponding p-values are presented in Table 3 .  A 
closer inspection of Table 3 reveals that the MaxD, MinD, MaxDM, MinDM, 
AvgDM and AvgLM suggest that both variables are significant and must remain on 
the model. On the other hand, the p-values obtained using the AvgL criterion wrongly 
suggests that the variable 1x  must be removed from the model. Finally, the SBP and 
AvgD correctly suggest that 2x  must be removed from the model. More precisely the 
p-values obtained using the AvgD are 0.0614 and 0.3158 for 1x  and 2x  respectively 
while the p-values obtained using the SBP are 0 and 0.9434 for 1x  and 2x  
respectively. Finally, the p-value of 1x  using the SBP in the reduced model is 0 
indicating that 1x  is still very significant. However, while the average value of SBP is 
almost the same in the full and the reduced model, the average value of AvgD is 
completely different in magnitude and sign. 

The correctness of removing a variable from the model should always be further 
tested. As it was discussed in the previous section this can be done either by 
estimating the prediction risk or the 2R of the reduced model. The prediction risk in 
the reduced model was reduced to 0.0396 while it was 0.0419 in the full model. 
Moreover the 2R  increased to 70.8% in the reduced model while it was 69.8% in the 
full model. The results indicate that the decision to remove 2x  was correct. 

 
4.2.2. Example 2 
 

The same procedure is repeated for the second case where a WN is used to learn 
the function ( )g x  from noisy data. First a second variable is created which was 
randomly drawn from the uniform distribution within the range (0,1). Both variables 
are considered significant and constitute the training patterns. A WN is trained in 
order to learn the target function ( )g x  were both 1x  and 2x  are introduced to the WN 
as inputs patterns. The BE algorithm was used for the initialization of the WN. Using 
CV and BS the prediction risk is minimized when 10 HUs are used and it is 0.00336. 
The network approximation converges after 18811 iterations. Again the inclusion of 
an irrelevant variable to our model increased the model complexity and the training 
time while the predictive power of the model was reduced. 

Next, we estimate the p-values of the various criteria for the second case. The 
standard deviation and the p-values for all sensitivity and model fitness measures for 
the two variables of the second case are presented Table 4 

In Table 4 the analysis for the second case is presented. A closer inspection of 
Table 4 reveals that MaxD, MinD, AvgDM, and AvgLM suggest that both variables 
are significant and must remain in the model. On the other hand, the p-values obtained 
using the AvgL and AvgD criteria wrongly suggest that the variable 1x  must be 
removed from the model. Finally, the SBP, MaxD and Min DM correctly suggest that 

2x  is not a significant variable and can be removed from the model. More precisely 
the p-values obtained using the MaxDM are 0 and 0.1597 for 1x  and 2x  respectively 
while the p-values obtained using the MinDM are 0.2867 and 0.4158 for 1x  and 2x  
respectively. Finally, the the p-values obtained using the SBP are 0 and 0.8433 for 1x  



and 2x  respectively. Examining the reduced model, where only 1x  is used for the 
training of the WN, the p-values are 0 for 1x  when the MaxDM or the SBP criteria are 
used. On the other hand the p-value for 1x  is 0.1795, when the MinDM is used, 
indicating that 1x  is insignificant and should be also removed from the model. 

Next, the correctness of removing a variable from the model is further tested. As it 
was discussed in the previous section this can be done either by estimating the 
prediction risk or the 2R of the reduced model. The prediction risk in the reduced 
model was reduced to 0.0008 while it was 0.0033 in the full model. Moreover the 2R  
increased to 99.7% in the reduced model while it was 99.2% in the full model. 

The results from the previous simulated experiments indicate that the SBP gives 
constantly correct and robust results. In every case the SBP criterion correctly 
indentified the irrelevant variable. Moreover the SBP criterion was stable and had the 
same magnitude and sign in both the full and reduced model.  

The results of the previous cases indicate that when our algorithm is applied and 
the p-values are estimated, the performance of the remaining sensitivity criteria is 
unstable. In general the sensitivity criteria were not able to identify the insignificant 
variable. Moreover, they often suggested the removal of the significant variable 1x . 
The sensitivity criteria are application dependent and extra care must be taken when 
used, (A. Zapranis & Refenes, 1999). As their name suggest they are more 
appropriate for use in sensitivity analysis rather in variable significance testing. 

 
5. Modeling The Uncertainty 

 
In the previous sections a framework were a WN can efficiently be constructed, 

initialized and trained was presented. In this section this framework is expanded by 
presenting two methods for estimating confidence and prediction intervals. The output 
of the WN is the approximation of the underlying function ( )f x  obtained from the 
noisy data. In many applications and especially in finance, risk managers may be 
more interested in predicting intervals for future movements of the underlying 
function ( )f x  than simply point estimates. 

In real data sets the training patterns usually are inaccurate since they contain noise 
or they are incomplete due to missing observations. Especially financial time series as 
well as temperature time series are dominated by these characteristics. As a result the 
validity of the predictions of our model (as well as of any other model) is questioned. 
The uncertainty that results from the data contributes to the total variance of the 
prediction and it is called the data noise variance, 2

εσ , (Breiman, 1996; Carney, 
Cunningham, & Bhagwan, 1999; Heskes, 1997; Papadopoulos, Edwards, & Murray, 
2000).  

On the other hand presenting to a trained network new data that were not 
introduced to the WN during the training phase, additional uncertainty is introduced 
to the predictions. Since the training set consist of a finite number of training pairs, 
the solution ˆ nw  is likely not to be valid in regions not represented in the training 
sample, (Papadopoulos, et al., 2000). In addition, the iterative algorithm that is 
applied to train a network, often results to local minima of the loss function. This 
source of uncertainty that arises from misspecifications in model or parameter 
selection as well as from limitation of the training algorithm contributes also to the 



total variance of the prediction and it is called the model variance, 2
mσ , 

(Papadopoulos, et al., 2000). 
The model variance and the data noise variance are assumed to be independent. 

The total variance of the prediction is given by the sum of two variances: 
 

2 2 2  .p m εσ σ σ= +                                                                                                   (24) 
 

If the total variance of a prediction can be estimated then it is possible to construct 
confidence and prediction intervals. The rest of the section is dedicated to this 
purpose. 

In the framework of classical sigmoid NNs the proposed methods for constructing 
confidence and prediction intervals falls into 3 major categories: the analytical the 
Bayesian and the ensemble networks methods. 

Analytical methods provide good prediction intervals, only if the training set is 
very large, (De Veaux, Schumi, Schweinsberg, & Ungar, 1998). They are based on 
the assumptions that the noise in the data is independent and identically distributed 
with mean zero and constant standard deviation. In real problems the above 
hypothesis usually does not hold. As a result there will be intervals where the 
analytical method either overestimates or underestimates the total variance. Finally, 
on analytical methods the effective number of parameters must be identified although 
pruning schemes like the Irrelevant Connection Elimination scheme can be used to 
solve this problem. On the other hand, Bayesian methods are computationally 
expensive methods that need to be tested further, (A. Zapranis & Refenes, 1999; 
Ζαπράνης, 2005). Results from (Papadopoulos, et al., 2000) indicate that the use of 
Bayesian methods and the increase in the computational burden is not justified by 
their performance. Finally, analytical and Bayesian methods are computationally 
complex since the inverse of the Hessian matrix must be estimated which under 
certain circumstances can be very unstable. 

 Finally, ensemble network methods create different versions of the initial network 
and then they combine the outputs to provide constancy to the predictor by stabilizing 
the high variance of a NN. In ensemble network methods the new versions of the 
network usually are created using bootstrap. The only assumption needed is that the 
NN provides an unbiased estimation of the true regression. Moreover, ensemble 
networks can handle non-constant variance. We suppose that the total variance of the 
prediction is not constant and is given by: 

 
2 2 2( ) ( ) ( ) .p m εσ σ σ= +x x x                                                                                        (25) 
 
Two of the most often cited methods is the bagging, (Breiman, 1996), and 

balancing method, (Carney, et al., 1999; Heskes, 1997). In this section we adapt these 
two methods in order to construct confidence and prediction intervals under the 
framework of WNs. A framework similar to the one presented in (Carney, et al., 
1999) to estimate the total prediction variance, 2

pσ  and construct confidence and 
prediction intervals is adapted.  

 
5.1.Confidence Intervals 

 



To generate confidence intervals the distribution of the accuracy of the network 
prediction to the true underlying function is needed. In other words the variance of the 
distribution of  
 

( )ˆ ˆ( ) ( ) ,  .nf y f gλ− ≡ −x x x w                                                                                  (26) 
 

must be estimated. 
The model variance 2

mσ  will be estimated using two different bootstrap methods, 
the bagging method proposed by (Breiman, 1996) and the balancing method proposed 
by (Heskes, 1997) and (Carney, et al., 1999). Both methods are variation of the 
bootstrap method. 

First B=200 new random samples with replacement are created from the original 
training sample. Each new sample is used to train a new WN with the same topology 
as the original one, (* ) (* )ˆ( ; )i igλ x w , where (* )i  indicates the thi  bootstrapped sample 
and (* )ˆ iw  is the solution of the thi  bootstrapped sample. Then each new network is 
evaluated using the original training sample x . Next the average output of the B  
networks is estimated by: 

 

( )(* )
,

1

1 ˆ( ) ;  .
B

i
avg

i
g g

Bλ λ
=

= ∑x x w                                                                                   (27) 

 
It is assumed that the WN produces an unbiased estimate of the underlying 

function ( )f x . This means that the distribution of ( ),( ) | ( )avgP f gλx x  is centered on 

the estimate , ( )avggλ x , (Carney, et al., 1999; Heskes, 1997; A. D. Zapranis & Livanis, 
2005). Since, the WN is not an unbiased estimator (as any other model) it assumed 
that the bias component arising from the WN is negligible in comparison to the 
variance component, (Carney, et al., 1999; A. D. Zapranis & Livanis, 2005). Finally, 
if we assume that the distribution of ( ),( ) | ( )avgP f gλx x  is normal then the model 
variance can be estimated by: 
 

( ) ( ) ( )( )
2

2 (* )
,

1

1ˆ ˆ;  .
1

B
i

m avg
i

g g
B λ λσ

=

= −
− ∑x x w x                                                             (28) 

 
In order to construct confidence intervals the distribution of ( ), ( ) | ( )avgP g fλ x x  is 

needed. Since the distribution of ( ),( ) | ( )avgP f gλx x  is assumed to be normal then the 

“inverse” distribution ( ), ( ) | ( )avgP g fλ x x  is also normal. However this distribution is 
unknown. Alternatively it is empirically estimated by the distribution of 
( ),( ) | ( )avgP g gλ λx x , (Carney, et al., 1999; A. D. Zapranis & Livanis, 2005). Then the 

confidence intervals are given by: 
 

( ) ( )
2 2, ,ˆ ˆ( )a aavg m avg mg t f g tλ λσ σ− ≤ ≤ +x x x                                                                 (29) 

 
where 

2
at  can be found in a Student’s t table and 1 a−  is the desired confidence level. 



However the estimator of the model variance, 2ˆmσ , given by (28) is known to be 
biased, (Carney, et al., 1999), as a result wider confidence intervals will be produced. 
(Carney, et al., 1999) proposed a balancing method to improve the model variance 
estimator.  

The B  bootstrapped samples are divided in M  groups. More precisely the 200 
ensemble samples are divided in 8 groups of 25 samples each. Next the average 
output of each group is estimated:  
 

( ){ }( )
, 1

 .
Mi

avg i
gλζ

=
= x                                                                                               (30) 

 
The model variance is not estimated just by the M ensemble output since this 

estimation will be highly volatile, (Carney, et al., 1999). In order to overcome this, a 
set of 1000P =  bootstraps of the values of ζ are created: 
 

{ }*

1

P

j j
Y ζ

=
=                                                                                                        (31) 

                                                                                                      
where 
 

( ) ( ) ( ){ }* (* 1) (* 2) (* )
, , ,, ,...,j j jM

j avg avg avgg g gλ λ λζ = x x x                                                                     (32) 
                                                                
is a bootstrapped sample of ζ. Then the model variance is estimated on each one of 
these sets by 
 

( ) ( ) ( )( )22* (* )
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1

1ˆ
M

jk j
j avg avg

k
g g

M λ λσ
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= −∑x x x                                                                      (33) 

 
where 
 

( ) ( )(* )
, ,

1

1  .
M

j jk
avg avg

k
g g

Mλ λ
=

= ∑x x                                                                                    (34) 

 
Then the average model variance is estimated by taking the average of all ( )2*ˆ jσ x : 
 

( ) ( )2 2*

1

1ˆ ˆ  .
P

m j
jP

σ σ
=

= ∑x x                                                                                           (35) 

 
This procedure is not computationally expensive since there is no need to train new 

networks.  
Following the same assumptions as in the bagging method, confidence intervals 

can be constructed. Since a good estimator of the model variance is obtained the 
improved confidence intervals using the balancing methods are given by: 
 

( ) ( )
2 2, ,ˆ ˆ( )  .a aavg m avg mg z f g zλ λσ σ− ≤ ≤ +x x x                                                             (36) 

 
where 

2
az  can be found in a standard Gaussian distribution table and 1 a−  is the 



desired confidence level. 
 
5.2.Prediction intervals 

 

To generate prediction intervals the distribution of the accuracy of the network 
prediction to target values is needed. In other words the variance of the distribution of 
 

( )ˆ ˆ, ny y y gλ− ≡ − x w                                                                                                 (37) 
 
must be estimated. 

In order to construct prediction intervals the total variance of the prediction, 2
pσ , 

must be estimated. As it was presented earlier the total variance of the prediction is 
the sum of the model variance and the data noise variance. In the previous section a 
method for estimating the model variance was presented. Here we emphasize on a 
method for estimating the data noise variance. 

In order to estimate the noise variance 2
εσ  maximum likelihood methods are used. 

First, the initial WN, ˆ( ; )ngλ x w , is estimated and the solution ˆ nw  of the loss function 
is found. Since it is assumed that the estimated WN is a good approximation of the 
unknown underlying function, the vector ˆ nw  is expected to be very close to the true 
vector 0w  that minimizes the loss function. Hence, the noise variance can be 
approximated by a second WN, ( )ˆ; nfν x u , where the squared residuals of the initial 

WN are used as target values, (Satchwell, 1994). In the second WN, ( )ˆ; nfν x u , v  is 
the number of HUs and ˆ nu  is the estimated vector of parameters that minimizes the 
loss function of the second WN. Since it is assumed that the estimated WN is a good 
approximation of the unknown underlying function, the vector ˆ nu  is expected to be 
very close to the true vector 0u  that minimizes the loss function. Hence the following 
cost function is minimized in the second network: 

 

( )( ) ( ){ }22
0 0

1
; ;

n

i i i
i

g y fλ ν
=

− −∑ x w x u                                                                         (38) 

 
and for a new set of observations, *x  that were not used in the training: 
 

( )2 * *
0ˆ ( ) ;  .fε νσ ≈x x u                                                                                           (39) 

 
This technique assumes that the residuals errors are caused by variance alone, 

(Carney, et al., 1999). In order to estimate the noise variance, data that were not used 
in the training of the bootstrapped sample should be used. One way to do this is to 
divide the dataset in training and a validation set. However, leaving out these test 
patterns is a waste of data, (Heskes, 1997). Alternatively an unbiased estimation of the 
output of the WN, ˆ ( )uby x , can be approximated by: 

 



ˆ ˆ( ) ( )
B B

m m
ub i i i

i i i i
y q y q

= =

=∑ ∑x x                                                                                   (40) 

 
where m

iq  is 0 if pattern m appears on the thi  bootstrap sample and 1 otherwise. 
Constructing the new network ( );fν x u  we face the problem of model selection again. 
Using the methodology described in the previous section, the correct number of v  
HUs is selected. Usually 1 or 2 HUs are enough to model the residuals. Finding the 
estimator of the noise variance the prediction intervals can be constructed: 
 

2 2

* * * * *
, ,ˆ ˆ( ) ( ) ( ) ( ) ( )a aavg p avg pg t f g tλ λσ σ− ≤ ≤ +x x x x x                                                 (41) 

 
where 

2
at  can be found in a Student’s t distribution table and 1 a−  is the desired 

confidence level. If the balancing method is used then the prediction intervals are 
given by: 
 

2 2

* * * * *
, ,ˆ ˆ( ) ( ) ( ) ( ) ( )a aavg p avg pg z f g zλ λσ σ− ≤ ≤ +x x x x x                                                (42) 

 
where 

2
az  can be found in a standard Gaussian distribution table and 1 a−  is the 

desired confidence level. 
 
5.3.Evaluating the confidence and prediction intervals 

 

In this section the bagging and balancing methods are evaluated in constructing 
confidence and prediction intervals. The two methods will be tested in the two 
function ( )f x  and ( )g x  given by (13) and (15) respectively. 

In Fig. 7 the confidence intervals are presented for the first function. The first part 
of the Fig. 7 presents the confidence intervals using the bagging method while the 
second part presents the confidence intervals using the balancing method. Similarly, 
Fig. 8 presents the confidence intervals for the second function where the first part 
refers to the bagging method while the second part refers to the balancing method. It 
is clear that the confidence intervals using the balancing method are significantly 
narrower. This is due to the biased model variance estimator of the bagging method 
which results in overestimation of the confidence intervals, (Carney, et al., 1999). 

The 95% prediction intervals of the first function, ( )f x , are presented in Fig. 9. 
Again, the first part refers to the bagging method while the second part refers to the 
balancing. It is clear that both methods were able to capture the change in the variance 
of the noise. In both cases a WN with 2 HUs were used to approximate function ( )f x  
and a WN with 1 HUs to approximate the residuals in order to estimate the noise 
variance. In order to compare the two methods the Prediction Interval Correct 
Percentage (PICP) is used. PICP is the percentage of data points contained in the 
prediction intervals. Since the 95% prediction intervals were estimated, a value of 
PICP close to 95 is expected. The bagging prediction intervals contain 98% of the 
data points (PICP) while in the case of the balancing method the PICP=95% and 
equal to the nominal value of 95%. 



Next, the same analysis is repeated for the second function, ( )g x . The 95% 
prediction intervals of ( )g x  are presented in Fig. 10. The first part refers to the 
bagging method while the second part refers to the balancing. In both cases a WN 
with 8 HUs were used to approximate function ( )g x  and a WN with 2 HUs to 
approximate the residuals in order to estimate the noise variance. As in the previous 
case the two methods are compared using the PICP. For the bagging method the 
PICP=98.33% while for the balancing method PICP=97.33%. 

It is clear that the balancing method produce an improved estimator of the model 
variance. Our results are consistent with those of (Breiman, 1996; Carney, et al., 
1999; Heskes, 1997; Papadopoulos, et al., 2000; A. D. Zapranis & Livanis, 2005; 
Ζαπράνης, 2005). In all cases the intervals produced by the balancing method were 
significantly smaller while the PICP were considerable improved and closer to its 
nominal value. 

 
6. Case Study: Modeling The Daily Average Temperature In Berlin 

 
In this section a real dataset is used to demonstrate the application of our proposed 

framework. More precisely using data from detrended and deseasonalized daily 
average temperatures (DATs) a WN will be constructed, initialized and trained. Also, 
at the same time the significant variables will be selected, in this case the correct 
number of lags. Finally, the trained WN will be used to construct confidence and 
prediction intervals. 

The dataset consists of 3650 values, corresponding to the detrended and 
deseasonalized DATs of 10 years (1991-2000) in Berlin. In order for each year to 
have equal observations the 29th of February was removed from the data.  

Using WNs the generalized version of detrended and deseasonalized is estimated 
nonlinearly and non-parametrically, that is: 
 

( )( 1) ( ), ( 1),... ( ) .T t T t T t e tφ+ = − +                                                                             (43) 

where  T  is the detrended and deseasonalized DAT and ( )e t are the residuals of the 
WN. 

For a concise treatment on modeling the temperature process we refer (A. Zapranis 
& Alexandridis, 2008) and (A. Zapranis & Alexandridis, 2009). In the above 
expression, the length of the lag series must be selected. 

 
6.1.Variable Selection 

 

The target values of the WN are the DATs. The explanatory variables are lagged 
versions of the target variable. Choosing the length of a lag distribution in linear 
models can be done by minimizing an information criterion like Akaike or Schwarz 
criteria. Alternatively the ACF and the PACF can be studied. The ACF suggests that 
the first 35 lags are significant. On the other hand the PACF suggests that the 6 first 
lags as well as the 8th and the 11th lag must be included on the model. However results 
from these methods are not necessarily true in nonlinear nonparametric models.  

Alternatively, in order to select only the significant lags the variable selection 
algorithm presented in the previous section will be applied. Initially, the training set 
contains the dependent variable and 7 lags. Hence, the training set consists of 7 
inputs, 1 output and 3643 training pairs. 



In this study the relevance of a variable to the model is quantified by the SBP 
criterion which was introduced in the previous section 

Table 5 summarizes the results of the model identification algorithm for Berlin. 
Both the model selection and variable selection algorithms are included in Table 5. 
The algorithm concluded in 4 steps and the final model contains only 3 variables. The 
prediction risk for the reduced model is 3.1914 while for the original model was 
3.2004. On the other hand the empirical loss slightly increased from 1.5928 for the 
initial model to 1.5969 for the reduced model indicating that the explained variability 
(unadjusted) slightly decreased. However, the explained variability (adjusted for 
degrees of freedom) was increased for the reduced model to 64.61% while it was 
63.98 initially. Finally, the number of parameters is significantly reduced in the final 
model. The initial model needed 5 HUs and 7 inputs. Hence, 83 parameters were 
adjusted during the training phase. Hence the ratio of the number of training pairs n  
to the number of parameters p  was 43.9. In the final model only 1 HU and 3 inputs 
were used. Hence only 11 parameters were adjusted during the training phase and the 
ratio of the number of training pairs n  to the number of parameters p  was 331.2. 

In Table 6 the statistics for the WN model at each step can be found. More 
precisely the first part of  Table 6 reports the value of the SBP and its p-value. In the 
second part of Table 6 various fitting criteria are reported. More precisely the Mean 
Absolute Error, the Maximum Absolute Error (Max AE), the Normalized Mean 
Square Error (NMSE), the Mean Absolute Percentage Error (MAPE), the 2R , the 
empirical loss and the prediction risk. 

In the full model, it is clear that the value of the SBP for the last three variables is 
very small in contrast to the first two variables. Observing the p-values, we conclude 
that the last four variables have p-value greater than 0.1 while the 6th lag has a p-value 
of 0.8826 strongly indicating a “not significant” variable. The WN was converged 
after 43 iterations. In general a very good fit was obtained. The empirical loss is 
1.5928 and the prediction risk is 3.2004. The Max AE is 11.1823 while the MAE is 
1.8080 and the NMSE is 0.3521. The MAPE is 3.7336. Finally the 2 63.98%R = .  

The statistics for the WN at step 1 are also presented in Table 6. The network had 6 
inputs, 2 wavelets were used to construct the WN and 33 weights adjusted during the 
training phase. The WN converged after 17 iterations. By removing 6X  from the 
model, we observe from Table 6 that the p-value of 5X  became 0 while for 7X  and 

4X  the p-values became 0.5700 and 0.1403 respectively. The empirical loss was 
slightly decreased to 1.5922. However the MAE and NMSE were slightly increased to 
1.8085 and 0.3529 respectively. On the other hand the Max AE and the MAPE were 
decreased to 11.1446 and 3.7127 respectively. Next the decision of removing 6X  is 
tested. The new prediction risk was reduced to 3.1812 while the explained variability 
adjusted for degrees of freedom increased to 64.40%. Hence, the removal of 6X  
reduced the complexity of the model while its predictive power was increased. 

At step 2, 7X , which had the largest p-value=0.5700 at the previous step, was 
removed from the model. Table 6 shows the statistics for the WN at step 2. The new 
WN had 5 inputs, 1 HU was used and 17 weights adjusted during the training phase. 
The WN converged after 19 iterations. A closer inspection of  Table 6 reveals that the 
removal of 7X  resulted to an increase in the error measures and a worse fit were 
obtained. The new 2R  is 64.59%. The new prediction risk increased to 3.1902 which 
is smaller than the threshold. In other words, by removing 7X  the total predictive 



power of our model was slightly decreased; however, adding the variable 7X  on the 
model only 0.28% additional variability of our model was explained while the 
computational burden was significantly increased. 

Examining the values of the SBP on Table 6 it is observed that the first two 
variables still have significantly larger values than the remaining variables. The p-
values reveal that at in the third step the 5X  must be removed from the model since 
its p-value is 0.1907. 

At step 3 the network had 4 inputs, 1 HU was used and 14 weights adjusted during 
the training phase. The WN converged after 4 iterations. When removing 5X  from the 
model we observe from Table 6 that only 4X  has a p-value greater than 0.1. Again 
the empirical loss and the prediction risk were increased. More precisely the empirical 
loss is 1.6004 and the prediction risk increased 0.48% to 3.2056. The new prediction 
risk is greater than the estimated prediction risk of the initial model about 0.16%. 
Again the increase in the prediction risk was significantly smaller than the threshold. 
On the other hand, the 2R  was increased to 64.61% indicating an improved fit. 
Hence, the decision of removing 5X  was accepted. 

In the final step the variable 4X  had p-value=0.4701 and it was removed from the 
model. The network had 3 inputs, 1 wavelet was used for the construction of the WN 
and only 11 weights adjusted during the training phase. The WN converged after 19 
iterations. After the removal of 4X  a new WN was trained with only one wavelet. The 
new empirical loss was decreased to 1.5969. The MAE and NMSE are 1.8095 and 
0.3530 respectively while the Max AE and the MAPE are 11.0925 and 3.7171 
respectively. Next the decision of removing 4X  was tested. The new prediction risk 
was reduced to 3.1914 while the explained variability adjusted for degrees of freedom 
was 64.61%. Hence, the removal of 4X  reduced the complexity of the model while its 
performance was increased. The p-values of the remaining variables are zero 
indicating that the remaining variables are characterized as very significant variables. 
Hence, the algorithm stops. Our proposed algorithm indicates that only the 3 most 
recent lags should be used while PACF suggested the first 6 lags as well as the 8th and 
the 11th lag. 

Concluding, in the final model only three of the seven variables were used. The 
complexity of the model was significantly reduced since from 83 parameters in the 
initial model only 11 parameters have to be trained in the final model. In addition, in 
the reduced model the prediction risk minimized when only one HU was used while 5 
HUs were needed initially. Our results indicate that the in-sample fit was slightly 
decreased in the reduced model. However when an adjustment for the degrees of 
freedom is made we observe that the 2R  was increased to 64.61% from 63.98% in the 
initial model. Finally, the prediction power of the final and less complex proposed 
model was improved since the prediction risk was reduced to 3.1914 from 3.2004. 

 
6.2.Model Selection 

 

In each step the appropriate number of HUs is determined by applying the model 
selection algorithm presented in section III. Table 7 shows the prediction risk for the 
first 5 HUs at each step of the variable selection algorithm for Berlin. Ideally, the 
prediction risk will decrease (almost) monotonically until a minimum is reached and 



then it will start to increase (almost) monotonically. The number of HUs that 
minimizes the prediction risk is selected for the construction of the model.  

In the initial model, where all seven inputs were used, the prediction risk with one 
HU is only 3.2009. When one additional HU is added to the model the prediction risk 
increases. Then, as more HUs are added to the model the prediction risk 
monotonically decreases. The minimum is reached when 5 HUs are used and is 
3.2004. When additional HUs are added in the topology of the model the prediction 
risk increases. Hence, the architecture of the WN contains 5 HUs. In other words, the 
5 higher ranking wavelets should be selected form the wavelet basis in order to 
construct the WN. Observing Table 7 it is clear that the prediction risk at the initial 
model with only one HU is almost the same as in the model with 5 HUs. This due to 
the small number of parameters that were adjusted during the training phase when 
only 1 HU is used and not due to a better fit. 

At the second step, when variable 6X  was removed, the prediction risk is 
minimized when 2 HUs are used. Similarly, at steps two, three and four the prediction 
risk is minimized when only one HU is used. Additional HUs does not improve the 
fitting or the predictive power of the model. 

 
6.3.Initialization and training 

 

After the training set and the correct topology of the WN are selected, the WN can 
be constructed and trained. The BE method is used to initialize the WN. A wavelet 
basis is constructed by scanning the 4 first levels of the wavelet decomposition of the 
DAT in Berlin. 

The wavelet basis consists of 168 wavelets. However, not all wavelets in the 
wavelet basis contribute to the approximation of the original time-series. Following 
(Q. Zhang, 1997) the wavelets that contain less than 5 sample points of the training 
data in their support are removed. 76 wavelets that do not significantly contributed to 
the approximation of the original time-series were indentified. The truncated basis 
contains 92 wavelet candidates. Applying the BE method the wavelet are ranked in 
order of significance. The wavelets in the wavelet library are ranked as follows: the 
BE starts the regression by selecting all the available wavelets from the wavelet 
library. Then the wavelet that contributes the least in the fitting of the training data is 
repeatedly eliminated. Since only one HU is used on the architecture of the model, 
only the wavelet with the highest ranking is used to initialize the WN. Part (a) of Fig. 
11 presents the initialization of the final model using only 1 HU. The initialization is 
very good and the WN converged after only 19 iterations. The training stopped when 
the minimum velocity, 510− , of the training algorithm was reached. The fitting of the 
trained WN can be found in part (b) of Fig. 11.  

Next, various fitness criteria of the WN corresponding to the DAT in Berlin are 
estimated. Our results reveal that the WNs fit the DATs reasonable well. The overall 
fit for Berlin is 2 64.61%R =  while the MSE is 5.4196 and the MAE is only 1.8090. 

Next the Prediction of Sign (POS) as well the Prediction of Change in Direction 
(POCID) and the Independent Prediction of Change in Direction (IPOCID) are also 
estimated. These three criteria examine the ability of the network to predict changes, 
independently of the size of the change and they are referred as percentages. The POS 
measures the ability of the network to predict the sign of the target values, positive or 
negative. For analytical expressions of these criteria we refer to  (A. Zapranis & 



Refenes, 1999). The POS for the detrended and deseasonalized DATs is very high and 
it is 81.49%. The POCID is 60.15% while the IPOCID is 52.30%. 

 
6.4 Confidence and prediction intervals 

 
After the WN is constructed and trained it can be used for prediction. Hence, 

confidence and prediction intervals can be constructed. In this section both confidence 
and prediction intervals will be constructing using the balancing method. Using the 
BS method 200 training sample will be created and then they will be divided in 8 
groups. In each group the average output of the WNs will b estimated. Next new 1000 
bootstrapped samples will be created for the 8 average outputs in order to estimate the 
model variance given by (35). Then the confidence intervals are estimated with level 
of significance 5%a = . 

Fig. 12 presents the confidence intervals for the detrended and deseasonalized 
DAT in Berlin as well as the average WN output obtained from 200 bootstrapped 
samples. Because the intervals are very narrow in order to obtain a clear figure only 
the 5 first values are presented. Next, the prediction intervals are constructed for the 
out-of-sample dataset. The out-of-sample data consists of 365 values of detrended and 
deseasonalized DATs in Berlin for the period 2000-2001. In Table 8 the out-of-
sample performance criteria are presented. The overall fit adjusted for degrees of 
freedom is 2 59.27%R = . The NMSE is 0.3961 while the MAPE is only 2.4108. In 
Fig. 13 the prediction intervals together with the real data and the average forecast of 
the WN for the 200 bootstrapped samples. The PICP=93.46%. 
 
7. Conclusions 

 
In this study a complete statistical framework for constructing and using WNs in 

various applications was presented. Although a vast literature about WNs exists, to 
our knowledge this is the first study that presents a step by step guide for model 
identification for WNs. More precisely, the following subjects were examined: the 
structure of a WN, methods to train a WN, initialization algorithms, model selection 
methods, variable significance and variable selection methods and finally methods to 
construct confidence and prediction intervals. Finally the partial derivatives with 
respect to the weights of the network, to the dilation and translation parameters as 
well as the derivative with respect to each input variable are presented. 

Our proposed framework was tested in two simulated cases and in one real dataset 
consisting of daily temperatures in Berlin. Our results have shown that the proposed 
algorithms produce stable and robust results indicating that our proposed framework 
can be applied in various applications.  

A multidimensional WN with a linear connection of the wavelons to the output and 
direct connections from the input layer to the output layer is proposed. The training is 
performed by the classic back-propagation algorithm.  

One of the advantages of WNs is the allowance of constructive algorithms for the 
initialization of the WN. Four initialization methods were tested. The heuristic, the 
RSO, the SSO and the BE method. Our results indicate that SSO and BE perform 
similarly and outperform the other two methods whereas BE outperforms SSO in 
complex problems. Using the BE and SSO the training times were reduced 
significantly while the network converged to the global minimum of the loss function. 
The BE is more efficient than the SSO algorithm however it is more computationally 
expensive. On the other hand in the BE algorithm the calculation of the inverse of the 



wavelet matrix is needed which columns might be linear dependent. In that case the 
SSO must be used. However since the wavelets come from a wavelet frame this is 
very rare to happen. It is clear that additional computational burden is added in order 
to initialize efficiently the WN. However the efficient initialization significantly 
reduces the training phase hence the amount of computations is significant smaller 
than a network with random initialization. 

Model selection is a very important step. A network with less HUs than needed is 
not able to learn the underlying function while selecting more HUs than needed the 
network will be over-fitted, i.e. the network will start to learn the noise. Four 
techniques were applied to estimate the prediction risk, the FPE, the GCV, and two 
sampling techniques the BS and the CV. Our results indicate that the sampling 
techniques give more stable results than other alternatives. BS and CV found the 
correct network topology in both cases. Although FPE and GCV are extensively used 
in finding the topology of a WN, due to the linear relation of the wavelets and the 
original signal, our results indicate that both criteria should not be used in complex 
problems. Moreover our results indicate that early stopping techniques in complex 
problems tend to propose more complex problems than needed. 

In order to indentify the significance of each explanatory variable 9 criteria were 
presented. These are the weights of the direct connections between the input and the 
output variable, 8 sensitivity criteria and one model fitness criterion. In order to 
statistically test whether a variable is insignificant and can be removed for the training 
dataset or not the distributions of these criteria were estimated. Our results indicate 
that only SBP correctly indentifies the insignificant variable and produce correct and 
robust results in all cases. On the other hand using the AvgDM or the AvgLM the 
resulting p-values are inconclusive and very volatile on the bootstrapped samples. 
After each variable is removed it is very important to test the correctness of this 
decision. This can be done by checking the prediction risk or the 2R  of the reduced 
model. In all cases, when the irrelevant variable was removed the prediction risk 
decreased while the 2R increased. 

Next, a framework for constructing confidence and prediction intervals was 
presented. Two methods originating from the sigmoid NNs were adapted, the bagging 
and the balancing method. Our results indicate that the bagging method overestimates 
the model variance and as a result wider intervals are constructed. On the other hand 
the balancing method produces an unbiased estimator of the model variance. Our 
results are consistent with previous studies. 

Although a framework for selecting an appropriate model was presented the 
adequacy of the final model must be further tested. This is usually done by examining 
the residuals by various criteria. However the selection of these criteria depends on 
the nature of the underlying function and the assumptions made while building the 
model. 
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A. Partial derivatives w.r.t. the bias term 
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C. Partial derivatives w.r.t. the linear connections between the wavelets and the 
output 
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D.  Partial derivatives w.r.t. the translation parameters 
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E. Partial derivatives w.r.t. the dilation parameters 
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F. Partial derivatives w.r.t. the input variables 
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Fig. 1. A feedforward wavelet neural network 
 

 
Fig. 2. Four different initialization methods of the first case 

 



 
Fig. 3. Four initialization methods for the second case 

 
 
 

 
(a)                                                                                (b) 

 
(c)                                                                                (d) 

Fig. 4. Training a wavelet network with 1 (part a), 2 (part b) and 3 (part c) hidden units. In part (d) the target function is 
presented 

 
 



 
(a)                                                                                (b) 

 
(a)                                                                                (b) 

Fig. 5. Training a wavelet network with 7 (part a), 8 (part b) and 14 (part c) hidden units. In part (d) the target function is 
presented 



 
 

Fig. 6. Model Identification. Model Selection and Variable Selection algorithms. 
 
 
 



 
(a)                                                               (b) 

Fig. 7. Confidence intervals for the first case using the bagging (a) and balancing (b) method 
 
 

 
(a)                                                               (b) 

Fig. 8. Confidence intervals for the second case using the bagging (a) and balancing (b) method 
 

 
(a)                                                                (b) 

Fig. 9. Prediction intervals for the first case using the (a) bagging (PICP=98%) and (b) balancing (PICP=95%) method 
  



 
(a)                                                               (b) 

Fig. 10. Prediction intervals for the second case using the (a) bagging (PICP=98.33%) and (b) balancing  (PICP=97.33%) 
method 
 

 
(a)                                                             (b) 

Fig. 11.  Initialization of the final model using the BE method (a) and the fit of the trained network with 1 HU (b). The WN 
converged after 19 iterations 

 

 
Fig. 12. Confidence intervals and the average WN output using the balancing method and 200 bootstrapped samples. The figure 
presents only the 5 first values for simplicity. 



 
Fig. 13. Prediction intervals, the real data (dotted) and the average WN output (solid line) using the balancing method and 200 
bootstrapped samples of the detrended and deseasonalized DATs in Berlin for the period 2000-2001. The PICP=93.42%. 
 
 

TABLE 1.  
INITIALIZATION OF THE FOUR METHODS 

Case 1 Heuristic RBS SSO BE 
MSE 0.031522 0.031401 0.031331 0.031331 
MSE+ 0.000791 0.000626 0.000121 0.000121 
IMSE 0.630807 0.040453 0.031331 0.031331 
IMSE+ 0.598680 0.302782 0.000121 0.000121 
Iterations 1501 617 1 1 
Case 2     
MSE 0.106238 0.004730 0.004752 0.004364 
MSE+ 0.102569 0.000558 0.000490 0.000074 
IMSE 7.877472 0.041256 0.012813 0.008304 
IMSE+ 7.872084 0.037844 0.008394 0.004015 
Iterations 4433 3097 741 1107 

Initialization criteria of the four methods 
for the two cases. Case 1 referes to 
function f(x) and case 2 to function g(x). 
RBS=Residual Based Selection 
SSO=Stepwise Selection by 
Orthogonalization 
BE=Backward Elimination 
MSE=MSE between the training data and 
the network approximation 
MSE+=MSE between the underlying 
function and the network approximation 
IMSE=MSE between the training data and 
the network initialization 
IMSE+=MSE between the underlying 
function and the network initialization 

 
TABLE 2  

PREDICTION RISK AND HIDDEN UNITS FOR THE FOUR INFORMATION CRITERIA 
Case 1 FPE GCV BS CV 
Prediction Risk 0.02088 0.03966 0.04002 0.03991 
Hidden Units 2 3 2 2 
Case 2     
Prediction Risk 0.00041 0.00077 0.00081 0.00078 
Hidden Units 7 14 8 8 

Information criteria for the two cases. Case 1 
refers to function  f(x) and case 2 to function 
g(x). 
FPE=Final Prediction Error 
GCV=Generalized Cross-validation 
BS=Bootstrap 
CV=50-fold Cross-validation 

 
TABLE 3 

VARIABLE SIGNIFICANCE TESTING FOR THE FIRST CASE USING BOOTSTRAP 
  MaxD MinD MaxDM MinDM AvgD AvgDM AvgL AvgLM SBP 
Full model           



(two variables) 
X1  1.6242 -2.1524 2.2707 0.0031 -0.1079 0.6998 -0.0267 1.3498 0.0982 
Std.  1.3929 2.3538 2.4426 0.0029 0.0758 0.0391 0.1651 0.4161 0.0045 
p-value  0.0000 0.0000 0.0000 0.0000 0.0614 0.0000 0.6039 0.0000 0.0000 
X2  1.1038 -1.2013 1.4472 0.0003 0.0402 0.1369 0.1033 0.2488 0.0011 
Std.  1.4173 2.6560 2.8320 0.0003 0.0477 0.0277 0.1010 0.1244 0.0013 
p-value  0.0000 0.0000 0.0000 0.0179 0.3158 0.0000 0.4610 0.0000 0.9434 
Reduced  model 
(one variable) 

          

X1  - - - - 0.0800 - - - 0.0988 
Std.  - - - - 0.0433 - - - 0.0051 
p-value  - - - - 0.0000 - - - 0.0000 

MaxD=Maximum Derivative 
MinD=Minimum Derivative 
MaxDM=Maximum Derivative Magnitude 
MinDM=Minimum Derivative Magnitude 
AvgD=Average Derivative 
AvgDM=Average Derivative Magnitude 
AvgL=Average Elasticity 
AvgLM=Average Elasticity Magnitude 
SBP=Sensitivity Based Pruning 

 
TABLE 4 

VARIABLE SIGNIFICANCE TESTING FOR THE SECOND CASE USING BOOTSTRAP 
  MaxD MinD MaxDM MinDM AvgD AvgDM AvgL AvgLM SBP 
Full model 
(two variables) 

          

X1  1.6485 -1.8391 1.9459 0.0006 0.0225 0.5412 0.2908 8.9262 0.4191 
Std.  0.3555 0.7505 0.7475 0.0008 0.0736 0.0524 7.0110 5.9525 0.0589 
p-value  0.0000 0.0000 0.0000 0.2867 0.9877 0.0000 0.8708 0.0000 0.0000 
X2  10.0490 -7.7106 11.4443 0.0007 0.0269 0.4564 -0.1217 0.6045 0.0024 
Std.  16.2599 9.5366 16.9065 0.0005 0.0923 0.2912 0.5508 0.7338 0.0085 
p-value  0.07838 0.0762 0.1597 0.4158 0.6686 0.0000 0.7864 0.0000 0.8433 
Reduced  model 
(one variable) 

          

X1  - - 1.7261 0.0009 - - - - 0.4779 
Std.  - - 0.0916 0.0008 - - - - 0.0255 
p-value  - - 0.0000 0.1795 - - - - 0.0000 

MaxD=Maximum Derivative 
MinD=Minimum Derivative 
MaxDM=Maximum Derivative Magnitude 
MinDM=Minimum Derivative Magnitude 
AvgD=Average Derivative 
AvgDM=Average Derivative Magnitude 
AvgL=Average Elasticity 
AvgLM=Average Elasticity Magnitude 
SBP=Sensitivity Based Pruning 

 
 
 
 

TABLE 5  
VARIABLE SELECTION WITH BACKWARD ELIMINATION IN BERLIN 

Step 
 

Variable to 
remove (lag) 

Variable to 
enter (lag) 

Variables 
in model 

Hidden Units 
(Parameters) 

n/p 
ratio 

Empirical 
Loss 

Prediction 
Risk 

 
- - 7 5 (83) 43.9 1.5928 3.2004 

1 6X  - 6 2 (33) 110.4 1.5922 3.1812 

2 7X  - 5 1 (17) 214.3 1.5927 3.1902 

3 5X  - 4 1 (14) 260.2 1.6004 3.2056 

4 4X  - 3 1 (11) 331.2 1.5969 3.1914 
The algorithm concluded in 4 steps. In each step the following are presented: 
which variable is removed, the number of hidden units for the particular set of 
input variables and the parameters used in the wavelet network, the empirical 
loss and the prediction risk 

 
 



TABLE 6 
STEP BY STEP VARIABLE SELECTION IN BERLIN 

 
Full model Step 1 Step 2 Step 3 Step 4 

Variable SBP p-value SBP p-value SBP p-value SBP p-value SBP p-value 

7 0.0026 0.7796 0.0031 0.5700 - - - - - - 

6 0.0032 0.8826 - - - - - - - - 

5 0.0053 0.6757 0.0131 0.0000 0.0206 0.1907 - - - - 

4 0.0161 0.3500 0.0149 0.1403 0.0216 0.1493 -0.0052 0.4701 - - 

3 0.2094 0.0000 0.2368 0.0000 0.2285 0.0000 0.1991 0.0000 0.2244 0.0000 

2 1.1123 0.0000 1.0318 0.0000 1.0619 0.0000 0.9961 0.0000 0.9363 0.0000 

1 9.8862 0.0000 10.0160 0.0000 9.9858 0.0000 10.0537 0.0000 10.1933 0.0000 

MAE 1.8080 
 

1.8085 
 

1.8083 
 

1.8093 
 

1.8095 
 

Max AE 11.1823 
 

11.1446 
 

11.1949 
 

11.0800 
 

11.0925 
 

NMSE 0.3521 
 

0.3529 
 

0.3525 
 

0.3526 
 

0.3530 
 

MAPE 3.7336 
 

3.7127 
 

3.7755 
 

3.7348 
 

3.7171 
 2R  63.98% 

 
64.40% 

 
64.59% 

 
64.61% 

 
64.61% 

 Empirical Loss 1.5928 
 

1.5922 
 

1.5927 
 

1.6004 
 

1.5969 
 Prediction Risk 3.2004 

 
3.1812 

 
3.1902 

 
3.2056 

 
3.1914 

 
iterations 43 

 
17 

 
19 

 
4 

 
19 

 The average SBP for each variable of 50 bootstrapped samples, the standard 
deviation and the p-value. 
SBP= Sensitivity Based Pruning 
MAE=Mean Absolute Error 
Max AE= Maximum Absolute Error 
NMSE=Normalized Mean Square Error 
MSE= Mean Square Error 
MAPE=Mean Absolute Percentage Error 

TABLE 7 
PREDICTION RISK AT EACH STEP OF THE VARIABLE SELECTION ALGORITHM FOR THE 5 FIRST HIDDEN UNITS FOR BERLIN 
Step\HU 1 2 3 4 5 

0 3.2009 3.2026 3.2023 3.2019 3.2004 

1 3.1817 3.1812 3.1828 3.1861 3.1860 

2 3.1902 3.1915 3.1927 3.1972 3.1974 

3 3.2056 3.2077 3.2082 3.2168 3.2190 

4 3.1914 3.2020 3.2182 3.2158 3.2169 
 

TABLE 8 
OUT-OF-SAMPLE PERFORMANCE CRITERIA 

MAE 1.7340 

Max AE 9.3330 

NMSE 0.3961 

MAPE 2.4108 

  
2R  59.27% 
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