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Abstract

This paper studies information aggregation in dynamic markets with a finite number of par-
tially informed strategic traders. It shows that for a broad class of securities, information in
such markets always gets aggregated. Trading takes place in a bounded time interval, and in
every equilibrium, as time approaches the end of the interval, the market price of a “separable”
security converges in probability to its expected value conditional on the traders’ pooled infor-
mation. If the security is “non-separable,” then there exists a common prior over the states of
the world and an equilibrium such that information does not get aggregated. The class of sepa-
rable securities includes, among others, Arrow-Debreu securities, whose value is one in one state
of the world and zero in all others, and “additive” securities, whose value can be interpreted as

the sum of traders’ signals.
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1 Introduction

The idea that financial markets have the ability to aggregate and reveal dispersed information is
an important part of economic thinking. The intuition behind this idea is arbitrage: if the price
of a security is wrong, an informed trader will have an incentive to buy or sell this security, thus
bringing the price closer to the correct value. This intuition is very compelling when one or more
traders are fully informed and know the value of the security. It is also compelling in many cases
where each trader is small relative to the market and behaves, in essence, non-strategically, ignoring
the effect his trading has on prices and thus revealing all his information. But what happens when
there is a small, finite number of large, strategic players, and none of them is fully informed about
the value of the security? What if one trader has perfect information about one part of a company
and another trader has perfect information about the rest of the company? Will the stock price
reflect the true value of the company that the traders could estimate by pooling their information?
Or is there a chance that the price will be off 7 What happens when information is dispersed among
many agents in the economy and their knowledge structure is more complex?

This paper shows that for a broad class of securities, information in dynamic markets with
partially informed strategic traders always gets aggregated. Trading takes place in a bounded
time interval, and in every equilibrium, as time approaches the end of the interval, the market
price of a “separable” security converges in probability to its expected value conditional on the
traders’ pooled information. A security is “separable” if, roughly, for every non-degenerate prior
belief about the states of the world, there exists a trader who with positive probability receives an
informative signal. If the security is “non-separable,” then there exists a prior and an equilibrium
such that information does not get aggregated.

The question of information revelation and aggregation in markets has attracted the attention of
many economists, beginning with Hayek (1945). Grossman (1976) formally shows that in a market
equilibrium, the resulting price aggregates information dispersed among n-types of informed traders,
each of whom gets a “piece of information.” In his model, individual traders are small relative to
the market, strategic foundations for players’ behavior are lacking, and the results rely on particular
functional forms (e.g., i.i.d. normal errors in signals received by the players; normal prior; etc.).
Radner (1979) introduces the concept of Rational Expectations Equilibrium (REE) and shows that
generically, a fully revealing REE exists, with prices aggregating all information dispersed among
traders. Radner’s paper, however, also lacks strategic foundations. A series of papers explore
the question of convergence to REE in various dynamic processes (see, e.g., Hellwig, 1982, and
Dubey, Geanakoplos, and Shubik, 1987, for the models of centralized trading and Wolinsky, 1990,
and Golosov, Lorenzoni, and Tsyvinski, 2008, for the models of decentralized trading). In all of
these papers, however, it is assumed that each trader is small relative to the market and therefore
ignores the effect of his behavior on the evolution of the trading process, as a result behaving non-
strategically along at least one dimension. Proper strategic foundations for the concept of perfect
competition with differentially informed agents are offered by the stream of literature studying

bidding behavior in single and double auctions (Wilson, 1977; Milgrom, 1981; Pesendorfer and
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Swinkels, 1997; Kremer, 2002; and Reny and Perry, 2006). Information aggregation results in these
papers, however, rely on the assumption that the market is large, i.e., the number of bidders goes
to infinity and individual traders become small relative to the market. They also rely on various
symmetry and independence assumptions. No such assumptions are made in the current paper,
and the number of traders is finite and fixed.

Kyle (1985) offers a model of dynamic, strategic insider trading, in which the single informed
trader takes into account the non-negligible impact of his actions on market prices. In the continuous
version of the model, as time approaches the end of the trading interval, the price of the traded
security converges to its true value known by the insider. Foster and Viswanathan (1996) and
Back, Cao, and Willard (2000) extend the model to the case of multiple, differentially informed
strategic traders. In the continuous case, the price of the traded security converges to its expected
value conditional on the traders’ pooled information. In the discrete case with a finite number of
trading periods, convergence is approximate. These models rely on very special functional form
assumptions (symmetry, normality, etc.), which allow the authors to construct explicit formulas for
particular (“linear”) perfect Bayesian equilibria. Laffont and Maskin (1990) criticize this reliance
of the results of Kyle (1985) on linear trading strategies; argue that such models inherently have
multiple equilibria; present a model of a trading game with a single informed trader and multiple
equilibria, in some of which the informed trader’s information is not revealed; and conclude that
“in a model in which private information is possessed by a trader who is big enough to affect prices,
the information efficiency of prices breaks down” and “the efficient market hypothesis may well
fail if there is imperfect competition.” The results of the current paper show that the conclusions
of Kyle (1985), Foster and Viswanathan (1996), and Back, Cao, and Willard (2000) regarding
the convergence of the price of a security to its expected value conditional on the traders’ pooled
information do not in fact depend on the specific functional form assumptions or on the choice of
equilibrium: if the traded security is separable, its price converges to its expected value conditional
on the pooled information in every perfect Bayesian equilibrium. In the case of a single informed
trader, as in Lafont and Maskin (1990), every security is separable, and so information always gets
aggregated. The conclusions of Laffont and Maskin are driven by their assumption that trading
takes place only once, not by the greater generality of the model they consider. In the case of
multiple partially informed traders, the securities considered in Foster and Viswanathan (1996)
and Back, Cao, and Willard (2000) have payoffs that are linear in traders’ signals, and so as the
results of this paper show, information about such securities always gets aggregated as well.

An alternative way to model (and, in fact, to organize in practice) the dynamic trading process
is offered by Hanson (2003): the market scoring rule (MSR). In MSR games, there are no noise
or liquidity traders and no strategic market makers; the only players are the strategic partially
informed traders. There is also an automated market maker. This market maker, in expectation,
loses money (though at most a finite, ex ante known amount), facilitating trade and price discovery.
(Without a “source” of profits, there would be no trading; see Milgrom and Stokey, 1982, and

Sebenius and Geanakoplos, 1983.) Trading proceeds as follows. The uninformed market maker



makes an initial, publicly observed prediction about the value of a security. The first informed
strategic player can revise that number and make his own prediction, which is also observed by
everyone. Then the second player can further modify the prediction, and so on until the last player,
after which the first player can again modify the prediction, and the cycle repeats an infinite number
of times. The fact that there is an infinite number of trading periods does not mean that the game
never ends. Rather, it is a convenient discrete analogue of continuous trading, with trades taking
place at times fy < t; < ... in a bounded time interval. Sometime after trading is over, the true
value of the security is revealed, and each prediction is evaluated according to a strictly proper
scoring rule s (e.g., under the quadratic scoring rule, each prediction is penalized by the square
of its error; see Section 2.2 for further details). The payoff of a player from each revision is the
difference between the score of his prediction and the score of the previous prediction—in essence,
the player “buys out” the previous prediction and replaces it with his own. The total payoff of
a player in the game is the sum of payoffs from all his revisions. Players are risk-neutral. The
discounted MSR (Dimitrov and Sami, 2008) is very similar, except that the total payoff of a player
is equal to the discounted sum of payoffs from all his revisions, where the payoff from a revision
made in period t; is multiplied by ¥ for some 3 < 1.

MSR games look very different from the typical models of trading studied in Economics and
Finance, so a natural question is why one would want to study information aggregation in such
games, especially since, as I show below, the results are the same as in the more conventional model
of trading based on Kyle (1985). There are several reasons. First, MSR can be reinterpreted as a
trading process in which agents buy and sell shares (see Hanson, 2003; Pennock, 2006; and Chen and
Pennock, 2007), with an automated market maker who continuously adjusts the prices of securities
as traders buy and sell them; the “sponsor” of the market can also be reinterpreted as a liquidity (or
noise, or risk averse) trader who is willing to trade once even though he knows that in expectation,
he will bear some losses. Second, market scoring rules are now widely used in practice to organize
prediction markets (firms like Inkling Markets, Consensus Point, and Crowdcast, among others,
run MSR-based internal prediction markets for a number of large companies), so it is important to
understand whether such mechanisms do in fact aggregate information. Finally, the advantage of
using an MSR, game as a modeling device is its transparency. MSR-based models bring the question
of information aggregation to the forefront, eliminating the need to consider noise traders, strategic
market makers, and other aspects of more typical trading games that obscure the intuition behind
the main result. Of course, it is important to verify that the results do not in fact depend on the
simplifications offered by the MSR, and so this paper contains information aggregation results for
both MSR games and trading processes based on Kyle (1985). While the key ideas behind these
results are similar, the proof for the latter case is more complicated and less transparent than that
for the former.

Two recent papers have studied the equilibrium behavior of traders in MSR games. Chen
et al. (2007) consider undiscounted games based on a particular scoring rule—logarithmic (see

Section 2.2). In their model, the security can take one of two different values, and the number of



revisions is finite. They find that if traders’ signals are independent conditional on the value of
the security, then it is an equilibrium for each trader in each period to behave myopically, i.e., to
make the prediction equal to his posterior belief. They also provide an example of a market in
which signals are not conditionally independent and one of the traders has an incentive to behave
non-myopically; however, they do not study information aggregation and convergence properties
in the cases where myopic behavior is not optimal. Dimitrov and Sami (2008) also consider games
based on the logarithmic scoring rule. In their models, in contrast to Chen et al., traders observe
independent signals. Each realization of the vector of signals corresponds to a particular value of the
security. The number of trading periods is infinite. Dimitrov and Sami find that in that case, in the
MSR game with no discounting, myopic behavior is generically not an equilibrium and, moreover,
there is no equilibrium in which all uncertainty is guaranteed to get resolved after a finite number
of periods. They then introduce a two-player, two-signal MSR, game with discounting, and prove
that in that game, information gets aggregated in the limit, under the additional assumption that
the “complementarity bound” of the security is positive. They report that based on their sample
configurations, the bound is not always zero, but do not provide any sufficient conditions for it to
be positive. In contrast to Chen et al. (2007) and Dimitrov and Sami (2008), the current paper’s
information aggregation results (1) do not rely on the independence or conditional independence of
signals, allowing instead for general information structures with any number of players; (2) do not
depend on discounting; and (3) provide a sharp characterization of securities for which information
always gets aggregated and those for which under some priors, price may not converge to the
expected value conditional on the traders’ pooled information.

The remainder of this paper is organized as follows. Section 2 describes the model of information
in the market, two models of trading, and the definitions of information aggregation and separability.
Section 3 presents the main result. Section 4 discusses the separability assumption. Section 5

concludes.

2 Setup

There are n players, ¢ = 1,...,n. There is a finite set of states of the world, 2, and a random
variable (“security”) X :  — R. As in Aumann (1976), each player i receives information about
the true state of the world, w € 2, according to partition II; of Q (i.e., if the true state is w, player
i observes IT;(w)). For notational convenience, without loss of generality, assume that the join (the
coarsest common refinement) of partitions Iy, ..., II, consists of singleton sets; i.e., for any two
states wy # wo there exists player i such that II;(wy) # II;(w2). II = (I1y,...,I1,,) is the partition

structure. Players have a common prior distribution P over states in ).

2.1 Trading: A Model Based on Kyle (1985)

In this model, trading is organized as follows. At time ty = 0, nature draws a state, w*, according

1

to P, and all strategic players i observe their information IT;(w*). At time ¢; = 3, each strategic



player i chooses his demand di. At the same time, there is demand u; from noise traders, drawn
randomly from the normal distribution with mean zero and variance t;—ty = % Competitive market
makers observe the aggregate demand ), di + uy, form their posterior beliefs about the true state
of the world, and set market price y; equal to the expected value of the security conditional on
that posterior belief. The market clears, and all traders observe price y; and aggregate volume
> di + up. At time ty = %, the next auction takes place, with each strategic player ¢ choosing

demand dé and demand from noise traders ug drawn randomly from N (0, to—t; = %) Subsequently,

=

value of the security, * = X (w*), is revealed at some time t* > 1. Trader i’s payoff is equal to
> di (z* — yx). The resulting game is denoted I'* (Q, 11, X, P).

auctions are held at times ¢ = 1 — = with demand from noise traders drawn from N (0, 2%) The

2.2 Trading: Market Scoring Rules

Under MSR, trading is organized as follows. At time tg = 0, nature takes a random draw and

selects the state, w*

, according to P. The uninformed market maker makes the initial prediction
Yo € R about the value of X (a natural initial value for yg is the unconditional expected value of
X under P, but it could also be equal to any other real number). At time ¢; > to, player 1 makes
a “revised prediction,” y;. At time to > t1, player 2 makes his prediction, 32, and so on. At time
tn+1, player 1 moves again and makes his new forecast, y,+1, and the whole process repeats until
time too = limg_. o tx = 1, with players taking turns revising predictions. All predictions y; are
observed by all players. The action space is bounded, but the bounds are wide enough to allow for
any prediction consistent with random variable X, i.e., each y; is a number in an interval [y, 7],
where y < mingcq X (w) < max,co X (w) <7.

At time t* > 1, the true value z* = X (w*) of the security is revealed. The players’ payoffs
are computed according to a market scoring rule that is based on a strictly proper single-period
scoring rule s. More formally, a single-period scoring rule is a function s(y,z*), where z* is a
realization of a random variable and y is a prediction. The scoring rule is proper if for any random
variable X, the expectation of s is maximized at y = F[X]. It is strictly proper if y = F[X] is
the unique prediction maximizing the expected value of s. Examples of strictly proper scoring
rules include the quadratic scoring rule (s(y,z*) = —(z* — y)?), due to Brier (1950), and, when
random variable X is bounded (which, of course, is the case here), the logarithmic scoring rule
(s(y,2*) = (#* —a)In(y — a) + (b — 2¥) In(b — y), for some a < y and b > ), due to Good (1952).
Assume that s(y,z*) is continuous and bounded on [y, 7] x [min,ecq X (w), max e X (w)].

Under the basic MSR (introduced by Hanson, 2003, though the idea of repeatedly using a
proper scoring rule to help forecasters aggregate information goes back to McKelvey and Page,
1990), players get multiple chances to make predictions, and are paid for each revision. Specifically,
for each revision of the prediction from yi_1 to yx, player i is paid s(yg, *) — s(yk—1, 2*). Of course,
this number can turn out to be negative, but each player can guarantee himself a zero payment
for a revision by simply setting yr = yr_1, i.e., by not revising the forecast. Note also that if each

player behaves myopically in each period, the prediction that he will make is his posterior belief



about the expected value of the security, given his initial information and the history of revisions
up to that point, and thus the “game” turns into the communication process of Geanakoplos and
Polemarchakis (1982).

A slight modification of the game above, introduced by Dimitrov and Sami (2008), is a dis-
counted MSR: it is the same as the basic MSR, except that the payment for the revision from y;_1
to yx is equal to B*(s(yk, ) — s(yp—1,2*)), 0 < B < 1. When 3 = 1, this rule coincides with the
basic MSR. The total payoff of each player is the sum of all payments for revisions. The players
are risk-neutral. The resulting game is denoted TMSE(Q, 11, X, P, Y0, 9,7, 5, 5).

2.3 Information Aggregation

FMSR

Definition 1 In a perfect Bayesian equilibrium of game T'K or , information gets aggregated

if sequence yi converges in probability to random variable X (w*).

Since the number of possible states of the world is finite, this definition is equivalent to saying
that for any € > 0 and § > 0, there exists K such that for any k£ > K, for any realization of the
nature’s draw w* € Q, the probability that |y, — X (w*)| > € is less than 4.

2.4 Separability

Consider the following example from Geanakoplos and Polemarchakis (1982).

Example 1 There are two agents, 1 and 2, and four states of the world, Q = {A, B,C,D}. The
prior is P(w) = 1 for every w € Q. The security is X(A) = X(D) =1 and X(B) = X(C) = —1.
Partitions are Il = {{A, B}, {C,D}} and Iy = {{A,C},{B, D}}.

In the example, by construction, it is common knowledge that each player’s expectation of the
value of the security is zero, even though it is also common knowledge that the actual value of
the security is not zero, and that the traders’ pooled information would be sufficient to determine
the security’s value. Thus, even if the traders repeatedly and truthfully announce their posteriors,
as in Geanakoplos and Polemarchakis (1982), they will never learn the true value of the security.
Dutta and Morris (1997) and DeMarzo and Skiadas (1998, 1999) study competitive equilibria with
information structures similar to that of Example 1 and show that they give rise to the generic
existence of “Common Beliefs Equilibria” / “partially informative REE” in which, in contrast to the
fully revealing REE of Radner (1979), equilibrium prices do not fully aggregate traders’ information.

DeMarzo and Skiadas (1998, 1999) show that competitive equilibrium prices are guaranteed to
fully aggregate information if and only if securities and information structures like that of Example 1
are ruled out, i.e., in their terminology, the function mapping traders’ signals into fully informative
equilibrium prices is “separably oriented.” Adapted to the current paper’s setup, this condition
translates into the following definition of separability, which, as Theorem 1 below shows, plays a

key role in this paper’s results.



Definition 2 Security X is non-separable under partition structure Il if there exist distribution P

on the underlying state space Q0 and value v € R such that:
1. P(w) is positive on at least one state w in which X (w) # v;

2. For every player i and every state w with P(w) > 0,

rett, () P (@) X (W'

Otherwise, security X is separable.

Note that non-separable securities are not degenerate (e.g., for any security with payoffs close to
the ones in Example 1, there is a distribution P that would satisfy the requirements in Definition 2,
and thus all such securities are non-separable). Note also that if there is only one informed trader
in the market, then every security is separable. Section 4 discusses the separability condition in

more detail.

3 Main Result

The main result of this paper is that information about separable securities always gets aggregated,

while for non-separable securities that is not the case.

Theorem 1 Consider state space ), security X, and partition structure II.
1. If security X is separable under 11, then for any prior distribution P:

e in any PBE of the corresponding game T' information gets aggregated;

o for any strictly proper scoring rule s, initial value yo, bounds y and y, and discount

FMSR

factor B € (0,1], in any PBE of the corresponding game information also gets

aggregated.
2. If security X is non-separable under 11, then there exists prior P such that:

e there exists a PBE of the corresponding game ' in which information does not get
aggregated;

o for any s, yo, Y, y, and B3, there exists a PBE of the corresponding game I'MSE in which

information does not get aggregated

Proof. The proof of the second statement, that for non-separable securities information does not

always get aggregated, is straightforward. Consider prior P and value v that satisfy requirements

FMS'R

1 and 2 of Definition 2. Then in game , it is an equilibrium for all traders to make the same

prediction vy = v in every period t;, after any history, and in game I'X| it is an equilibrium for the



traders to always submit zero demand and for the competitive market makers to set price y, = v in
every period t after any history (beliefs in the equilibria of both games are never updated from the
priors). In these equilibria, information does not get aggregated. The proof of the first statement
is in the Appendix. m

The intuition behind the proof of the first statement of Theorem 1 is as follows. In any equi-
librium of game T'™MSE  consider an uninformed outside observer who has the same prior as the
informed traders, receives no direct information about the state of the world, and observes all pre-
dictions made by the traders. Consider the stochastic process that corresponds to the observer’s
vector of posterior beliefs about the likelihoods of the states of the world after each revision. By
construction, this process is a bounded martingale, and therefore, by the martingale convergence
theorem, converges to some vector-valued random variable Q... If Qo puts positive weights on
two states of the world in which the value of the security is different, then separability implies
that there is a player who can, in expectation, make a non-vanishing positive profit by revising the
prediction in any sufficiently late period. This, in turn, can be shown to imply that the player is
not maximizing his payoff (because he never actually makes that deviation), which is impossible
in equilibrium. Thus, with probability 1, (o, has to put all weight on states in which the value
of the security is the same. Since the beliefs have to be on average correct, this is only possible
if this value is the correct one with probability 1. Now, if Q. does put all weight on the states
with the correct value of the security, but the prediction does not converge to the same value,
then even the uninformed observer could make a profitable revision in infinitely many periods, and
thus any informed player could make such revisions as well, again contradicting the assumption of
profit-maximizing behavior. Therefore, the outside observer’s posterior beliefs, in the limit, have
to put all weight on the states with the correct value of the security, and the prediction has to
converge to the same value. In game I'X| the intuition is similar, although the statement that the
lack of information aggregation implies the existence of non-vanishing profitable arbitrage for at

least one trader becomes more delicate and requires a more elaborate proof.

4 Separable Securities

In light of Theorem 1, it is important to understand the restrictions the separability condition places
on securities. This section describes several important classes of separable securities and gives an
alternative “dual” characterization of the condition. Some of these results are equivalent to or are
corollaries of the more general results about the “separably oriented” condition in DeMarzo and
Skiadas (1998, 1999), but in the current paper’s setting they also have short, self-contained proofs,

presented below for completeness.

4.1 Dual Characterization of Separability

While Definition 2 is very intuitive, there is an alternative, “dual” way to characterize separable

securities. This alternative characterization is convenient in applications, as Corollaries 1 and 2



below illustrate.

Theorem 2 Security X is separable under partition structure I1 if and only if for every v € R,
there exist numbers Ay corresponding to the elements w of partitions IL; of all players such that for

every state w with X (w) # v,

(Xw) =) | Y dMyw | >0

i=1,...,n

Proof. The “if” direction of the theorem is proved in Proposition 7 of DeMarzo and Skiadas (1998)
using the following “adding-up” argument, which makes the condition more intuitive. Suppose X is
non-separable and take P and v satisfying the requirements of non-separability. Take numbers A as
in the statement of the theorem. Consider the unconditional expectation E[(X (w) —v) > ; A, (w)]
under P. On the one hand, by the choice of parameters A, the expectation is strictly positive. On
the other hand,

E(X@) -0 Y An) = 3 EIX@) = o)A,
= 3 3 PME(X () — o)l =0,

7 WEHi
where the last equality follows from requirement 2 of Definition 2.
The “only if” direction is proved in the Appendix. =
4.2 Order Statistics

The first corollary of Theorem 2 shows that securities that can be represented as order statistics of

traders’ signals (minimum, maximum, median, etc.) are separable.

Corollary 1 Suppose security X can be expressed as an order statistic of players’ signals: X (w) =
z(;)(w) (i.e., the G lowest signal x), where x;(w) = x;(IL;(w)) is the “signal” observed by player i

in state w. Then X is separable.

Proof. Take any v € R. For every i and w, set A, (,) equal to 1 if 2;(w) > v and to —"j:%gl
if 7j(w) < wv. Then X(w) > v = 2345 > v = ) A = (n—j+1)— %&?(j —1) > 0 and

X(w) <v=234) <v=2AMmw) < (n—j)—@i%glj<0. [

Corollary 1 implies that any Arrow-Debreu security, i.e., random variable X that is equal

to 1 in one state of the world and to 0 in all other states, is separable. Thus, by Theorem 1,
information about Arrow-Debreu securities always gets aggregated. While the analysis of markets
with multiple securities is beyond the scope of this paper, this result suggests that in complete

markets, information also always gets aggregated.
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4.3 Monotone Transformations of Additive Payoffs

The second corollary of Theorem 2 shows that monotone transformations of additive securities
(e.g., additive securities, positive multiplicative securities, call or put options on additive or posi-
tive multiplicative securities, and so on) are separable, where a security is “additive” if it can be
expressed as the sum of traders’ signals. This assumption, of course, also includes a seemingly more
general case of X (w) being a linear function of the signals, such as the average, because signals can

be rescaled, or a stochastically monotone function (Nielsen et al., 1990), for the same reason.

Corollary 2 Suppose security X can be expressed as X (w) = f (>, zi(Il;(w))), where x;(IL;(w))

1s the “signal” observed by player i in state w and f is a monotone function. Then X is separable.

Proof. Assume f is increasing (the other case is completely analogous) and continuous (since X
takes only a finite number of values, this is w.l.o.g.). Take any v € [min,ecq X (w), max,yeq X (w)]
(the case where v is outside this interval is trivial). Take any z such that f(z) = v. Setting
Al () = Ti(llj(w)) — = for every player i and state w and applying Theorem 2 proves the result. =

Thus, information about securities with additive payoffs and their monotone transformations

always gets aggregated, for every distribution of priors, correlation structure of signals, and so on.

4.4 Increasing Payoffs

A generalization of securities with additive payoffs are securities with “increasing” payoffs, which
place only one restriction on the information structure: each player’s signals can be ordered from
better to worse. It turns out that for such securities, separability generally depends on the number

of traders.

Claim 1 Suppose each player’s information I1;(w) can be interpreted as a signal z;(w) = z;(II;(w)) €
R in such a way that X (wy) > X(we) whenever x;(w1) > xi(we) for all i. If there are two traders

in the market, then any such security is separable.

Proof. Suppose the security is non-separable and take P and v that verify its non-separability.
Take the lowest signal x; of player 1 and the corresponding element m; of partition II; such that
there exist states w € m with P(w) > 0 and X (w) # v. Among w in 7 for which P(w) > 0, let w’
be the one with the largest corresponding signal of player 2. Then X (w’) > v and, by construction
and monotonicity, all other states in IIy(w’) that occur with positive probability under P have

associated values of X greater than or equal to v, contradicting requirement 2 of Definition 2. =

With three or more players, it is no longer true that any security with increasing payoffs is

separable. Indeed, consider the following example.

Example 2 There are three players, 1, 2, and 3. Fach player’s signal is equal to —1, 0, or 1. If
the sum of signals is less than 0, then the value of security X is —1. If the sum is greater than 0,

the value is 1. If the sum of signals is equal to 0, then the value of security X is equal to:

11



e —1 if the vector of signals is (—1,0,1), (0,1, —1), or (1,—1,0);
e 1 if the vector of signals is (1,0,—1), (0,—1,1), or (—1,1,0); and
e 0 if the vector of signals is (0,0,0).

It is straightforward to check that value v = 0 and prior probability P that places probability
% on every permutation of (—1,0,1) and 0 on all other states satisfy the requirements for the

non-separability of security X.

5 Concluding Remarks

This paper leaves several important questions for future research. The first one is under what
conditions, perfect Bayesian equilibria exist in the games studied in the paper. A discrete version
of the discounted MSR game, in which players are only allowed to pick predictions from a finite
set of values, is continuous at infinity, and therefore has a perfect Bayesian equilibrium (Fudenberg
and Levine, 1983). In the current paper’s model, however, action spaces are continuous, and so
equilibrium existence is an open question, for both discounted and undiscounted MSR. games. For
the case of game I'X in which the value of the security is drawn from a normal distribution and
the signals are distributed symmetrically and normally, the techniques of Foster and Viswanathan
(1996) can be used to prove the existence of a linear equilibrium, but for the finite-state case
considered in the current paper, equilibrium existence is also an open question.

Another important question is what happens when the traded security is non-separable and the
traders’ common prior is generic. For instance, suppose the security and the partition structure
are as in Example 1, but the prior is a small generic perturbation of the one in the example.
Then if the players simply announced their posterior beliefs truthfully, as in Geanakoplos and
Polemarchakis (1982), information would get aggregated. What happens in the strategic trading
game? Does there exist an equilibrium in which information gets aggregated with probability 17 Is
there an equilibrium in which with positive probability information does not get aggregated, and
instead in the limit, players get “stuck” at (or converge to) a prediction and a profile of beliefs
under which none of them can make a profitable revision? Are the answers the same for all non-
separable securities, scoring rules, and other parameters of the game? Using the techniques of the
current paper, one can show that in general, prices have to converge to a random variable that
is a “common knowledge/common belief” equilibrium of the corresponding economy (Dutta and
Morris, 1997; DeMarzo and Skiadas, 1998, 1999), but it is unclear to which of the multiple equilibria
they will converge.

There are also several interesting questions that go beyond the current paper’s model. First, the
intuition behind the main result of the paper suggests that it is very general and should continue to
hold in many other market microstructure models, with liquidity-driven or noise traders, strategic

market makers, and so on. Nevertheless, the details of the trading process may turn out to matter
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for the results, and so it is important to consider formally other dynamic microstructure models
and to check in which of them similar conclusions hold.

Second, the model in the current paper assumes that traders are risk neutral. What happens if
they are not? What happens if their utility functions are different?

Finally, this paper assumes that traders already possess the information, and the only concern is
whether this information will get aggregated in the market. But markets are also often viewed as an
incentive mechanism for traders to gather costly information, not just as an aggregation mechanism.
What happens when traders can acquire information at a cost? How well is information extracted

and aggregated in that case? Are some mechanisms better than others?

Appendix: Proofs

Proof of the First Statement of Theorem 1 for Game ['M5E

Let w = 1,...,]Q| index the states in Q. Let r = (r',72, ... ,7“'9‘) be a probability distribution over
the states (with ¥ = r(w,,) denoting the probability of state w,,) and let z be any real number.
Define instant opportunity of player ¢ as the highest expected payoff the player can receive from
making only one change to the forecast if the state is drawn according to distribution r and the

current prediction is z. Formally, the instant opportunity of player ¢ given r and z is equal to

D (@) (s(B [X[(w)], X (@) = s(z, X (w))) -

wel
We first make an auxiliary observation. Let A be the set of probability distributions r such that
there are states w, and wy with 7(wg) > 0, r(wp) > 0, and X (w,) # X (wp).

Lemma 1 If security X is separable, then for all r € A there exist ¢ > 0 and i € {1,2,...,n}
such that for any z € [y, 7], the instant opportunity of player i given r and z is greater than ¢.

Proof. Consider separable security X and r € A such that for any trader ¢ and any ¢ > 0, there
exists z € [y, ] such that the instant opportunity of i given r and z is less than ¢. By continuity
of score function s, for every trader i there exists z; € [y,%] such that the instant opportunity of
given r and z; is equal to zero. Since s is strictly proper, this implies that for any w with r(w) > 0,
E.[X|II;(w)] = z;, which in turn implies that every z; is equal to F,[X]. This contradicts the
assumption that security X is separable. m

Now, let ¢f = P(wy), i.e., the prior probability of state w,,. Take a perfect Bayesian equilibrium
of game I' and consider the following stochastic process Y in RIIT1 Y{ is deterministic and is
equal to (yo, q(l), qg, cee q(‘)m). Then nature draws state w at random, according to distribution P,
and each player ¢ observes II;(w). After that, player 1 plays according to his equilibrium strategy
and makes forecast y;. Based on this forecast y;, the equilibrium strategy of player 1, and the
prior P, a Bayesian outside observer, who shares prior P with the traders and observes all forecasts

yr but does not directly observe any information about the realized state w, can form posterior
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beliefs about the probability of each state w,. Denote this probability by ¢}’. Y7 is equal to

(y1,aq1,4%,. .., qllm). The rest of the process is constructed analogously: Yy, = (y, g}, ¢z, - - - ,q,LQl),

where y;, is the forecast made at time ¢;, and g;’ is the posterior belief of the Bayesian outside
observer about the probability of state w,,, given his prior P, equilibrium strategies of players, and
their history of forecasts up to and including time #.

Of course, @ = {(q},. .. ,q,LQl)
proof is that this process is a martingale, by the law of iterated expectations. And by the martingale

. . Q
convergence theorem, it has to converge to a random variable, Qs = (g, . -, q(lm‘).1

}r=0,1,.. is also a stochastic process in RI?I. The key idea of the

Suppose the statement of Theorem 1 does not hold for this equilibrium. Consider the limit
random variable (o, and two possible cases.
Case 1

Suppose there is a positive probability that (., assigns positive likelihoods to two states wyq
and wp with X (w,) # X(wp). This implies that there is a vector of posterior probabilities r =
(r',...,r1®) such that r* > 0, r* > 0, and for any € > 0, the probability that Q. is in the e-
neighborhood of r is positive. Since Qi converges to (Qoo, for any € > 0, there exists K and { > 0
such that for any k£ > K, the probability that Qf is in the e-neighborhood of r is greater than (.

Now, by Lemma 1, for some player ¢ and ¢ > 0, the instant opportunity of player ¢ is greater
than ¢ given 7 and any z € [y,y]. By continuity, this implies that for some e > 0, the instant
opportunity of player i is greater than ¢ for any z € [y,7] and any vector of probabilities 7 in the
e-neighborhood of 7.

Therefore, for some i, tx, and n > 0, the expected (over all realizations of stochastic process
Q) instant opportunity of player ¢ at any time t,,4; > tx is greater than 7.
Case 2

Now suppose there is zero probability that () assigns positive likelihoods to two states w, and
wp with X (wg) # X (wp). In other words, in the limit, the outside observer always believes that with
probability 1, the value of the security is equal to some x*, and places zero likelihood on all other
possible values. Suppose the true state is w, which has a positive prior probability of occurring.
Then by Bayes’ rule, it can only happen with zero probability that the outside observer’s posterior
beliefs Qo place zero likelihood on the value of the security being equal to X (w). (To see this, let H
be the set of histories (y1, y2, ... ) after which the outside observer places zero likelihood on the true
state being w. Then Prob(w|H) = 0. But then Prob(H|w) = Prob(w|H)Prob(H)/Prob(w) = 0.)
Hence, for every realization w of nature’s draw, with probability 1, Qo will place likelihood 1 on
the value of the security being equal to X (w), i.e., in the limit, the outside observer’s belief about
the value of the security converges to its true value (even though his belief about the state of the
world itself does not have to converge to the truth, if there are multiple states in which the security

has the same value).

1Since the process is bounded, and thus uniformly integrable, convergence is both with probability 1 and in L'.
See, e.g., Oksendal (1995, Appendix C) for details.
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Suppose now that process yi does not converge in probability to the true value of the security.
That is, there exist state w and numbers € > 0 and § > 0 such that after state w is drawn by
nature, for any K, there exists k > K such that Prob(|yy — X(w)| > €) > . This, together with
the fact that even for the uninformed outsider the belief about the value of the security converges
to the correct one with probability 1, implies that for some player ¢ and n > 0, for any K, there
exists time t,.4+; > tx at which the expected instant opportunity of player ¢ is greater than 7.

Crucially, in both Case 1 and Case 2, there exist player i* and value n* > 0 such that there is
an infinite number of times ¢,,4+;+ in which the expected instant opportunity of player ¢* is greater
than n*. Fix ¢* and n*.

Now, let Sk be the expected score of prediction y (where the expectation is over all draws of
nature and moves by players). The expected payoff to the player who moves in period ¢ (it is
always the same player) from the forecast revision made in that period is 3*(Sy — Sp_1).

The rest of the proof is split into two parts: 8 < 1 and 8 = 1.

Part “0 < 1”

Take any period t;. Let Wy be the sum of all players’ expected payoffs from the revisions made
in periods #;, and later, divided by 8*: ¥}, = (Sg — Sk_1)+B(Sks1—Sk) +5%(Sks2—Skr1) +.... We
can make two observations about Wy. First, it is non-negative, because each player can guarantee
himself a payoff of zero. Second, for a similar reason, it is greater than or equal to the expected
instant opportunity of the player who makes the forecast at time .

Consider now limg_, oo Zle V. On the one hand, under both Case 1 and Case 2, this limit
has to be infinite, because each term W is non-negative, and an infinite number of them are greater
than n*. On the other hand, for any K, Zszl Uy =

(51 — So) + ,B(SQ — S1) + ﬂQ(Sg — SQ) +

(52 - 51) + ,B(Sg — SQ) + ﬂ2(S4 — S3) +

+
(Sk —Sk-1) + B(Sk+1—Sk) + B*(Ski2— Skt+1) +

=32 o B¥( Sk x — Sk) < %, where M = max e[, 7], weq} |$(y, X (w))|. Hence, both Cases 1 and
2 are impossible, and so y; converges to the true value of security X.
Part “G6 =1

Take any player i. His expected payoff is equal to Z;.;1(Si+nj — Sitnj—1)- In equilibrium, the
players’ expected payoffs exist and are finite, so the infinite sum has to converge. Therefore, for
any € > 0, there exists J such that for any j > J, |35 :(Siynj’ — Sitnj—1)| < €. But in both Case
1 and Case 2, that contradicts the assumption that players are profit-maximizing after any history.
To see that, it is enough to consider player ¢* and some period %,;4;+ such that the expected instant

opportunity of i* is greater than n* and | >

00
J

":j(Si*Jrnj/ - Si*+nj’fl)| is less than 17*.
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Proof of the First Statement of Theorem 1 for Game '’

Step 0. Consider a perfect Bayesian equilibrium of T,

Step 1. Take any k > 0 and let ¥, denote the unconditional expected total payoff of noise traders
arriving after period tz, multiplied by (—v/2"), i.e.,

Z (:L'* — yk/)uk/] .

k'=k+1

U, = (—vV2E

Since each strategic trader’s expected continuation payoff after any period ¢ is non-negative (be-
cause a strategic trader can always guarantee himself a payoff of zero by simply not trading), and
the expected continuation payoff of market makers is zero (by construction), the expected payoff of
noise traders arriving after period t; cannot be positive, and so ¥;, > 0. Moreover, for any k&’ > k,

since yj, is independent of uy and E[yi] = Elz*], we have E[(z* — yi)uw] = 0 and so

v = (—vhE| YD <a:*—yk/>uk/]
:k’:lc—f—l
= (—v"E > @ - yn)uw + (V2B > (yk_yk’)uk’]
L =k+1 k'=k-+1
= (—vV2)E > (yk_yk’)uk’]
Lk'=k+1
= (—\/ik) Z E [(yr — yi ) up]
K =k—+1
< V2" S VEm— w) I El(w)?,

k'=k+1

by the Cauchy-Schwarz inequality. Since process ¥y is a uniformly bounded martingale, by the
martingale convergence theorem, for any € > 0 there exists K such that for any k > K and k' > k,

El(yx — yk’)2] < €2, and so

v, < V2 S VE— )2 E (w7

K =k+1
o
< \/ik Z e/ Var(ug)
k'=k+1
R |
= V2e ) —%
K=hkt1 V2
= (1+V2).
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Therefore, ¥, converges to zero as t; goes to 1. Note that for any strategic trader, the uncon-
ditional expected continuation payoff after period t;, is at most ¥;/v/2", because in expectation, in
the continuation game, noise traders lose Wy/ V2", market makers break even, and other strategic

players do not lose money.

Step 2. Let Q) be the stochastic process in RI2l denoting the posterior belief of an uninformed
outside observer (or, in this case, a competitive market maker) about the true state of the world.
Note that (i) @ is a uniformly bounded martingale and (ii) by construction, for each k > 1, yy is
equal to the expected value of X under Q;. Take the limit random variable Q). If with probability
1, it places all weight on states in which the value of the security is the same, then by the same
argument as in the proof of the theorem for game I'MSF  this value has to be the true one with

probability 1, and we are done.

Step 3. Suppose instead that there is a positive probability that Q. places positive weights on
two states in which the value of security X is different. Then there exist states w and @ and
distribution r over states in Q such that X(w) # X (@), r(w) > 0, r(©) > 0, and for any ¢ > 0
there exist § > 0 and K such that for any & > K, the probability that Q) is in the e-neighborhood
of r is greater than d. (An e-neighborhood of 7 is the set of probability distributions ' on € such
that for every state w € Q, |r(w) — r/(w)| < e.) Fix distribution r for the rest of the proof and let
x, = B [X].

Step 4. Since security X is separable, there exist trader ¢ and elements 7, and 7, of his partition
such that r(7g) > 0, r(mp) > 0, and z, = E.[X |7, < zp < xp = E[X|m). Let 7 = min(zp— 2, 2, —
Zq)/3, p = min(r(my),r(mp))/2, and let ¢ > 0 be such that for any ' in the ¢-neighborhood of r,
differences |z, — E/[X]|, |xa — E[X|7a]|, and |z — B[ X|m)| are all less than 7 and probabilities
r’'(my) and r'(m,) are both greater than p (such ¢ exists by continuity). By the choice of r in
Step 3, there exist d; > 0 and K7 such that for any k& > K7, the probability that Qp is in the
%-neighborhood of r is greater than §;. Fix ¢ and §; for the rest of the proof.
Step 5. Since @ converges to Q, for any € > 0 there exists Ks(e) > Kj such that for any
kE > Ko, the probability that max, (|Qk(w) — Qr+1(w)|) > % is less than €. Let K3(e) = Ka(ed1p)

(which is greater than or equal to K3(¢)). By construction, for any k& > Kjs(e):
1. the probability that () is in the %—neighborhood of r is at least d1;
2. conditional on point 1, the probability that player ¢’s information is m, is at least p;

3. conditional on points 1 and 2, the probability that Q41 is in the ¢-neighborhood of r is at
least (1 — €), because the unconditional probability of Q1 being outside that neighborhood
is at most €d1p and the probability of points 1 and 2 is at least 1 p.
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Step 6. Note that when Q1 is in the ¢-neighborhood of r, player ¢ makes, in expectation, at
least (x, — 7) — (xq + 7) > 7 per unit of security purchased at time t;y1 (or loses at least that
much per sold unit, if dfC 1 < 0). By the arguments above, the total expected continuation payoff
of player i after period tj is bounded by Wy/ \/ﬁk, and Wy converges to 0. These observations
imply that for any A > 0, conditional on player i’s information being m, and @) being in the
%-neighborhood of 7, the probability that player ¢ buys more than \/ ﬁk units of the security
at time 41 must converge to 0 as t; goes to 1. (Otherwise, consider the following “alternative”
continuation strategy for player i: in periods t;+2 and later; or in period t;+1; when his information
is not m, or Qg is not in the %—neighborhood of r; or in period ;1 when the original strategy
called for selling units or for buying less than \/ ﬁk—in all of these circumstances, do not trade;
otherwise, follow the original strategy. For a sufficiently small €, this “alternative” strategy gives
player i an expected continuation payoff close to or greater than 7Ad1p/ \/ik, which is greater than
U/ \@k for any sufficiently large k.) Similarly, the probability that player i sells more than \/ \/§k
units of the security at time ¢xy1, conditional on his information being 7, and @ being in the
%—neighborhood of r, must also converge to 0 as tj goes to 1. (Otherwise, for a sufficiently large
k, the expected losses incurred by player ¢ in period tx4, following that set of histories cannot be
offset by the possible gains in periods #;19 and later, and so he would be better off not trading at

all, in any period tx > tj, following that set of histories.)

Step 7.

Lemma 2 For any p > 0 there exists v > 0 such that for any z € [—1,1] and any set S C R whose
probability under N(0,0?) is less than or equal to v, the probability of set (S — Z) under N (0, o?)

1s less than or equal to p.

Proof. By rescaling, it is enough to prove the lemma for ¢ = 1. Let ®(:) denote the cdf of
N(0,1) and, without loss of generality, assume that u < 1. Let u be the solution of equation
Su—1)=1-— %. Let vy = %67%. For the rest of the proof, “the probability of a set” refers to its
probability under N(0,1) and, slightly abusing notation, is denoted “®.”

Take any set S whose probability is less than or equal to 1vy. Take any z € [—1,1]. Then
PSS —2)=d((S—2)N[—u+1l,u—1])+2((S—2)N((—o0,—u+ 1)U (u —1,00))).

By the choice of u, ®((S—2z)N((—o0, —u+1)U(u—1,00))) < ®((—o00, —u+1)U(u—1,00)) = §.
u2
Also, ®(S N [—u,u]) < ®(S) < 1vpy. The density of the normal distribution is at least \/%e_*
everywhere on [—u, u|, and so the Lebesgue measure of SN [—u,u| is at most % Hence, the
e

Lebesgue measure of (S —z) N [—u+1L,u—1]) C (S—2)N[-u—z,u—2z]) = ((SN[—u,u]) — 2)
is also at most % But then, since the density of the normal distribution is at most \/%
L T

2
everywhere, the probability of (S — z) N [—u + 1,u — 1] under the normal distribution is at most

1 ) _ V0 _ K
V2 \/%67§ s 2
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Therefore, ®(S—2) = ®((S—2)N[—u+1,u—1]) + &((S—2)N((—o0, —u+1)U(u—1,00))) <

b+4=p =

Step 8. Let A = %. Take a small € > 0 and a large k such that (i) the probability that player i
buys or sells more than \/ \/§k+l units of the security at time tx41, conditional on his information
being 7, and @ being in the %—neighborhood of r, is less than e and (ii) in the equilibrium
under consideration, the expected continuation payoff of player i after period ¢y is less than €/ \/§k
Consider the following “alternative” continuation strategy for player i: in periods t;4o and later,
or in period tx41 when his information is not 7w, or @y is not in the %—neighborhood of r, do not
trade; otherwise, buy M%H units of the security. Note that when player i buys M%H units of
the security under this alternative strategy, with probability close to one, he was buying or selling
at most %ﬂ units of the security under the original strategy, and so in that case, the total

42
amount demanded by the strategic traders in period t;y; changes by less than ﬁ Since the

demand from noise traders in period ¢ is distributed as N (0, 2,6%) and since under the original
strategy of player i, market makers’ belief ;11 was in the ¢-neighborhood of r with probability
at least 1 — € (conditional on player i’s information being 7, and Qj being in the %—neighborhood
of r), by Lemma 2, under the alternative strategy of player i, the probability that Q41 is in the
¢-neighborhood of r is also close to 1, for a sufficiently small e. But then the expected continuation
payoff of player i from this alternative strategy is close to or greater than 7Adip/ \/§k, which is
greater than e/ ﬁk, contradicting the assumption that the original strategy was optimal for player

1 in the continuation game following every history.

Proof of Theorem 2: “Only If” Direction?

Suppose security X is separable. Take any v € R. Ignore all states w with X(w) = v and let
w = 1,..., W index the remaining states. Let m = 1,..., M index all elements 7 of all players’
partitions. Construct an M x W matrix A as follows. If state w,, is in subset m,,, then the element
in row m and column w of the matrix is equal to X (w,) — v. Otherwise, it is equal to zero.

3

By Gordan’s Transposition Theorem,” exactly one of the following two systems of equations

and inequalities has a solution:
1. Az =0,z >0, z # 0 (where 2 € RW);
2. AT)\ > 0 (where A € RM),

Note that if system (1) has a solution, then the security is non-separable (Take solution x of
(1); rescale it so that its elements sum to 1; and use rescaled probabilities as the common prior P.)
Hence, if security X is separable, system (1) does not have a solution, which in turn implies that

system (2) does, which is exactly the statement of the “only if” direction of Theorem 2.

2] am grateful to Yury Makarychev for this proof.
3http://eom.springer.de/m/m130240.htm
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