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ABSTRACT. As the Great Financial Crisis reminds us, extreme
movements in the level and volatility of asset prices are key fea-
tures of financial markets. These phenomena are difficult to quan-
tify using traditional models that specify extreme risk as a rare
event. Multifractal analysis, whose use in finance has consider-
ably expanded over the past fifteen years, reveals that price series
observed at different time horizons exhibit several forms of scale-
invariance. Building on these regularities, researchers have devel-
oped a new class of multifractal processes that permit the extrap-
olation from high-frequency to low-frequency events and generate
accurate forecasts of asset volatility. The new models provide a
structured framework for studying the likely size and price impact
of events that are more extreme than the ones historically observed.

1. Introduction

Fractals use invariance principles to parsimoniously model complex
objects at multiple scales. They have proven to be of major impor-
tance in mathematics and the natural sciences, as this issue illustrates.
Fractals also offer enormous potential benefits for the field of finance,
in particular for modeling the price of traded securities, for computing
the risk of financial portfolios, and for managing the exposure of insti-
tutions. These benefits should become more apparent as the adoption
of fractal methods by the financial industry continues to gain ground.
The fields of finance and economics also play a singular role in the intel-
lectual history of fractals. Benoit Mandelbrot first discovered evidence
of fractal behavior in financial returns, household income, and house-

hold wealth in the late 1950’s and early 1960’s and subsequently found
1
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similar patterns in the coastline of Brittany and other natural phenom-
ena. These observations prompted the development of the fractal and
multifractal geometry of nature ([M82])."

In financial markets, the distribution of price changes is of key im-
portance because it determines the risk, as well as the potential gains,
of a position or a portfolio of assets. Different investors may mea-
sure price changes at different horizons. For instance, a high-frequency
trader may look at price changes over microseconds, while a pension
fund or a university endowment may have horizons of months, years,
or decades. For this reason, researchers have tried to uncover invariant
properties in the distribution of price changes observed over different
time increments. The French economist Jules Regnault (1863) may
have been the first to observe that the standard deviation of a price
change over a time interval of length At scales as the square root of At
([R]). This observation motivated Louis Bachelier ([Ba]) to formalize
the definition of the Brownian motion as a possible model of a stock
price. That is, he postulated that price changes are Gaussian, identi-
cally distributed and independent. While some of these assumptions
are controversial, Bachelier opened up the field of financial statistics,
which has remained vibrant ever since.

In the early 1960’s, Benoit Mandelbrot discovered that price changes
have much thicker tails than the Gaussian distribution permits ([M63]).
He proposed to replace the Brownian motion with another family of
scale-invariant processes with independent increments — the stable pro-
cesses of Paul Lévy ([L24]). Let p(t) denote the logarithm of a stock
price or an exchange rate. If p(t) follows a Brownian or a Lévy pro-
cess, the distributions of returns p(t + At) — p(t) observed over vari-
ous horizons At can be obtained from each other by linear rescaling.
Self-similarity turns out to be a rather crude approximation of price
changes. In addition, the Brownian motion and Lévy processes assume
that price changes are independent, while there is substantial evidence
that the size of price changes,|p(t + At) — p(t)|, is persistent ([E82]).
In fact for many series, the size of price changes is a long-memory
process characterized by a hyperbolically declining autocorrelogram
(IDGE],[D)).

Since the mid—1990’s, researchers have uncovered different forms
of scale-invariance in financial returns, based on multifractal moment-
scaling. [G], [CFM], and [CF02] found evidence that the moments

'Benoit Mandelbrot eventually returned to finance in the mid-1990’s, when
he taught a course on Fractals in Finance at Yale University. We attended this
course and went on to develop with Benoit Mandelbrot the first applications of
multifractals to financial series.
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of the absolute value of price changes, E(|p(t + At) — p(t)|?), scale as
power functions of the horizon At. This observation motivated the con-
struction of the first family of multifractal diffusions ([CFM], [CFO01],
[BDM]). The Markov-Switching Multifractal (MSM) captures well
the dynamics of asset prices, including fat tails, long memory and mo-
ment scaling ([CFO01], [CF04], [CF]). MSM assumes that the size
of the price change is driven by a product of components that have
invariant distributions but different degrees of persistence. Each com-
ponent follows a Markov chain in its own right. MSM thus constructs
a multifractal measure stochastically over time, which improves over
earlier algorithms with predetermined switching points. MSM permits
proper statistical estimation and generates accurate forecasts of the
conditional distribution of returns, and therefore of the downside risk
of a position.

Fractals provide a natural structure for modeling large risks. A
common approach in finance is to represent an asset price as the sum of
an It6 diffusion and a jump process. The diffusion describes “ordinary”
fluctuations, while jumps are meant to capture “rare events.” Difficul-
ties in empirical implementation of this type of approach are readily
apparent. Because rare events are modeled as intrinsically different
from regular variations, inference on rare events must be conducted on
a small set of observations and is therefore imprecise. Of increasing
importance, researchers would like to understand the implications for
asset prices of events that have never been previously observed (“peso
effects,” [R88], [B06], (G12], [W]). However, statistical inference on
an empty set is a notoriously challenging exercise! Fractal modelling
offers a promising tool in light of growing awareness of the importance
of rare events. Scale invariance properties permit researchers to model
all price variations using a single data-generating mechanism. As a
consequence, models constructed using fractal principles are extremely
parsimonious. A small number of well-identified parameters, combined
with testable assumptions on scale-invariance, specify price dynamics
at all timescales. Implications for rare events, even those more extreme
than have been observed in existing data, are a natural outcome of a
fractal approach to modeling financial prices.

The organization of the paper is as follows. Section 2 discusses early
fractal models and presents fractal regularities in financial markets.
Section 3 discusses the Markov-Switching multifractal model and its
empirical applications. In Section 4, we show the pricing implications
of fractal models. Section 5 concludes.
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2. Fractal Regularities in Financial Markets

2.1. Self-Similar Proposals. Let P(t) denote the price at date
t of a financial asset, such as a stock or a currency, and let p(t) denote
its logarithm. The asset’s return between dates ¢t and t + At is given

by:

p(t + At) — p(t).
For over century, one of leading themes in finance has been to under-
stand the dynamics of returns.

In his 1900 doctoral dissertation, the French mathematician Bache-
lier introduced an early definition of the Brownian motion as a model
of stock prices ([Ba]). The Brownian motion assumes that the return
p(t+At)—p(t) has a Gaussian distribution with mean At and variance
o?At, or more concisely

p(t + At) — p(t) £ N(uAt; 0> At).

The Brownian motion now pervades modern financial theory and no-
tably the Black—Merton—Scholes approach to continuous time valuation
([BS], [M]). Its lasting success arises from its tractability and consis-
tency with the financial concepts of no-arbitrage and market efficiency.

In the late 1950’s and early 1960’s, advances in computing tech-
nology made it possible to conduct more precise tests of Bachelier’s
hypotheses. In a series of pathbreaking papers, Benoit Mandelbrot
([M63], [M67]) uncovered major departures from the Brownian mo-
tion in commodity, stock and currency series. His main observation
was that the tails of return distributions are thicker than the Brownian
motion permits. Benoit Mandelbrot understood that this phenomenon
was not a mere statistical curiosity, as some researchers suggested at
the time, but major failures of the Brownian paradigm. In layman’s
terms, extreme price changes are key features of financial markets that
the Brownian motion cannot capture. Since the purpose of risk man-
agement is to weather financial institutions against storms, underes-
timating the size of these storms, as the thin-tailed Brownian model
does, is a recipe for financial disaster, panic and bankruptcy. The Great
Financial Crisis reminds us of the severity of the shocks that can be un-
leashed on financial institutions, especially those who took on excessive
risk as a result of poor risk management models and practices.

Benoit Mandelbrot advocated that financial prices should be mod-
elled by a broader class of stochastic processes.

DEFINITION 1. (Self-similar process) The real-valued process
{p(t);t € R;} is said to be self-similar with index H if for all ¢ > 0,
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n > 0, and t1,...,t, € Ry, the vector (p(cty),...,p(ct,)) has the same
distribution as (cfp(t), ..., p(t,)), or more concisely:

(p(ctr), oo pletn)) Z (Pp(ty), s Mp(tn)).

The Brownian motion is self-similar with H = 1/2. The stable pro-
cesses of Paul Lévy ([L24]) are self-similar processes with independent
increments and Paretian tails:

P{|p(t + At) —p(t)| > x} ~ Ko Atax™®

as ¢ — +oo, where @« = 1/H € (0;2) and K, is a positive constant.
Lévy processes have thicker tails than the Brownian motion and are
more likely to accommodate large price changes ([M63], [M67]). One
difficulty with Lévy-stable processes, however, is that they have infinite
variances, which is at odds with the empirical evidence available for a
large number of financial series ([BG], [FR], [AB]). Furthermore,
infinite variances pose theoretical difficulties, since a large body of the
portfolio selection and asset pricing literature is based on the trade-off
between mean and variance (see, e.g, [CV], [MK], [S], [T], [M]).

Fractional Brownian motions represent another important class of
self-similar processes ([K], [M65], [MV68]). Their increments are
stationary, normally distributed, and strongly dependent. Their auto-
correlation declines at the hyperbolic rate:

Cov(regn;r) ~ H(2H — 1)n*" 7% as n — oo,

where r; = p(t) — p(t — 1) denotes the return on a time interval of
unit length. The fractional Brownian motion rarely represents a prac-
tical model of asset prices, because their unconditional distributions
are Gaussian. Long memory in returns is inconsistent with arbitrage-
pricing in continuous time ([MS]).

The applicability of self-similar processes to finance is limited by an-
other, common shortcoming. By definition, returns observed at various
frequencies have identical distributions up to a scalar renormalization:

plt + At) — p(t) £ (At)Tp(1).

Most financial series, however, are not exactly self-similar, but have
thicker tails and are more peaked in the bell at shorter horizons. This
observation is consistent with the economic intuition that higher fre-
quency returns are either large if new information has arrived, or close
to zero otherwise. For this reason, self-similar processes cannot be fully
satisfactory models of the asset returns.
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2.2. Evidence on Fat Tails and Long Memory. Following
[M63] and [M67], a number of researcher have documented Paretian
tails in financial series, albeit with a tail index larger than 2 and there-
fore a finite variance. The early evidence was parametric ([BG], [FR/,
[AB]). In the 1970’s, statisticians developed precise techniques for the
nonparametric estimation of the tail index of a distribution ([Hi]). This
lead to a series of papers showing that financial series have finite tail
indexes that are most often strictly larger than 2 (e.g., [KK], [KSV],
[PMM], [JD], [LP], [G09]).

In the 1990’s, researchers uncovered evidence of strong persistence
in volatility ([D], [DGE]). Long memory is often defined by a hyper-
bolic decline in the autocovariance function as the lag goes to infinity.
For every moment ¢ > 0 and every integer n, let

(2.1) pa(n) = Corr(jri|*, [resnl”)

denote the autocorrelation in levels. We say the asset exhibits long
memory in the size of returns if p,(n) is hyperbolic in n.

These key features of financial data can be seen by casual observa-
tion of standard asset returns. Figure 1, Panel A, shows the Japanese
Yen / U.S. dollar exchange rate series from 1973, following the demise
of the Bretton-Woods system of fixed exchange rates, to the present
day. The series shows both fat tails and volatilility clustering at dif-
ferent time scales, including over periods as long as several years, as
occurs in the presence of long memory. Panel B shows the same fea-
tures in a long time series of daily U.S. stock index returns, obtained
from the Center for Research in Securities Prices (CRSP).

[Insert Figure 1 here]

Figure 2 shows long memory in the volatility of these two series. We
display on a double logarithmic scale the lag length n on the horizontal
axis versus the autocorrelation of squared returns ps(n) on the vertical
axis. For both series the plots are approximately linear, indicating a
hyperbolic decay in volatility.

[Insert Figure 2 here]

2.3. Multifractal scaling. In the mid-1990’s, the combination of
fat tails and long memory in volatility led researchers to consider that
asset prices may exhibit multifractal properties. This suggested that



EXTREME RISK AND FRACTAL REGULARITY IN FINANCE 7

financial series should exhibit multifractal moment-scaling, a general-
ization of self-similarity defined by:

(2.2) E (|p(t + At) — p(t)|?) = c (At)"@H

which holds for every (finite) moment ¢ and time interval At. A self-
similar process satisfies this relation, with 7(¢) = Hq — 1. The process
p is said to be strictly multifractal if (2.2) holds for a strictly concave
function 7(g). Strict multifractality has been observed in fields as di-
verse as fluid mechanics, geology, or astronomy. We now also have
strong evidence of strict multifractal moment-scaling in a variety of fi-
nancial series, including currencies and equities ([CF02], [CFM], [G],
[VA]).

Figure 3 shows evidence of multifractal moment scaling in the Yen /
U.S. dollar exchange rate series and in CRSP stock index returns. The
panels of the figure plot the partition interval At on the horizontal axis
versus an empirical estimate of E (|p(t + At) — p(¢)|?) on the vertical
axis. The empirical estimate is obtained by taking the sample analogue
of (2.2), as explained in the figure caption, for a variety of moments .
The dotted lines in the figure represent the scaling implied by Brownian
motion, which satisfies self-similarity with H = 1/2. The panels both
show evidence of moment-scaling that is linear in At, but the scaling
coefficients 7(¢q) cannot be captured as a linear function of a single index
H. These empirical facts are characteristics of multifractal scaling.

[Insert Figure 3 here]

A class of stochastic processes consistent with (2.2) is provided by
the Multifractal Model of Asset Returns (MMAR), the first example
of a multifractal diffusion ((CFM], [CF02]). This approach builds on
multifractal measures ([M74]), which are constructed by the iterative
random reallocation of mass within a time interval. One of the simplest
examples is the binomial measure? on [0, 1], which we derive as the limit
of a multiplicative cascade. Consider the uniform probability measure
o on the unit interval. Let M denote a binomial distribution taking the
high value mg € [1/2, 1] or the low value 1 —mg with equal probability.
In the first step of the cascade, we draw two independent values My and
M from the binomial. We define a measure p; by uniformly spreading
the mass My on the left subinterval [0,1/2], and the mass M; on the
right subinterval [1/2,1]. The density of y; is a step function.

2The binomial is sometimes called the Bernoulli or Besicovitch measure.
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In the second stage of the cascade, we draw four independent bino-
mials Moo, Mo, Mo and M; ;. We split the interval [0, 1/2] into two
subintervals of equal length; the left subinterval [0,1/4] is allocated a
fraction My of 111[0, 1/2], while the right subinterval [1/4, 1/2] receives
a fraction My ;. Applying a similar procedure to [1/2,1], we obtain a
measure fo such that:

p2]0,1/4] = MoMoyo, — peoll/4,1/2] = MoMy;,
M2[1/2,3/4] = MlMl,Oa [1,2[3/4, ]_] = M1M171.

Iteration of this procedure generates an infinite sequence of random
measures (i) that weakly converges to the binomial measure p.

Consider the interval [t, t+27%], where t = Zle 2 and ny, ..., €
{0,1}, ? and let ¢y and ¢, denote the relative frequencies of 0s and 1s
in (n1,...,mx). The measure of the dyadic interval is then

plt,t +27% = M, M M, Q

numz + s A G
where (2 is a random variable determined by the change in the mass
generated by stages k+1,..., 00 of the cascade. Furthermore, we note
that
E(ult, t +27%7) = [E(M9)]* = (Ap)™@+,

where At = 27% and 7(q) = —log,(E(M?)) — 1. The moments of the
limiting measure of a dyadic interval of length At is therefore a power
of At.

The MMAR extends multifractals from measures to diffusions. The
asset price is specified by compounding a Brownian motion with an
independent random time-deformation:

p(t) = p(0) + BlO(1)],

where 6 is the cumulative distribution of the multifractal measure p.
The price process inherits the moment-scaling properties of the mea-
sure, in the sense that E(|p(t + At) — p(t)|?) = (At)™» @2+ on any
dyadic interval [t, -+ At]. These moment restrictions represent the basis
of estimation and testing ([CFM], [CF02], [L08]). The MMAR pro-
vides a well-defined stochastic framework for the analysis of moment-
scaling, which has generated extensive interest in econophysics (for
example, [LB]). The multifractal model is also related to recent econo-
metric research on power variation, which interprets return moments at
various frequencies in the context of traditional jump-diffusions (for ex-
ample, [ABDL]|, [BNS]). The MMAR also captures nonlinear changes
in the return density with the time horizon ([LO1]).

3A number t € [0,1] is called dyadic if t =1 or t = ;27" + ... + 27 for a
finite k and 71, ..,mx € {0,1}. A dyadic interval has dyadic endpoints.
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Despite its appealing properties, the MMAR is unwieldy for econo-
metric applications because of two features of the underlying measure:
(a) the recursive reallocation of mass on an entire time-interval does not
fit well with standard time series tools; and (b) the limiting measure
contains a residual grid of instants that makes it non-stationary.

3. The Markov-Switching Multifractal (MSM)

The Markov-switching multifractal (MSM) resolves these difficul-
ties by constructing a fully stationary volatility process that evolves
stochastically through time ([CFO01], [CF04], [CF]). MSM builds a
bridge between multifractality and regime-switching, which permits the
application of powerful statistical methods to a multifractal process.

3.1. Definition in Discrete Time. We assume that time is de-
fined on the grid t = 0,1, ..., 00. We consider:

e a first-order Markov state vector M; = (M) <p<i € Rﬁ, and
e a distribution M > 0 with a unit mean: E(M) = 1.

In this survey, we consider for expositional simplicity that the compo-
nents My, Moy, ..., My, are independent across k. Each component
M.+ is a Markov process in its own right, which is constructed as fol-
lows. Given My 1, the next-period component M, is

drawn from distribution M with probability .
set equal to its current level Mj, with probability 1 — ;.

The construction generally requires no other assumptions about M.
For simplicity, however, we will assume in the rest of this paper that
M is a Bernoulli distribution taking values mg € [1,2] or 2—myq € [0, 1]
with equal probability.

The transition probabilities are tightly specified by

(3.1) e =1—(1—7)"),

where ;1 € (0,1) and b € (1,00). The definition implies that v, <
. < 7, so that components with a low index k£ are more persistent
than higher-k components. If the parameter ~; is small compared to
unity, the transition probability v, ~ ¥,0*~! grows approximately at
geometric rate b for low values of k. The rate of increase eventually
slows down so that the parameter ~; remains lower than unity.
We specify volatility a date ¢ by:

1/2

(32) o(M,) =5 <H Mk,t> :
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where 6 € R, is a positive constant. We assume that returns r; =
P¢ — pe—1 are given by

(3.3) re =+ o(M)ey,

where © € R and {&;} are independent standard Gaussians. The pa-
rameter p is the unconditional mean of the return process: E(r;) = p.
Since E[(r; — u)?] = 2, the parameter & is the unconditional standard
deviation of the return r;.

We call this construct the Markov-Switching Multifractal process,
and denote by MSM(k) the version of the model with k frequencies.

An MSM(k) process is fully parameterized by
w = <m076'7b7 Vla:u) € [15 2] X R++ X (17 +OO> X (07 1) X ]Ra

where mg characterizes the distribution of the multipliers, & is the
unconditional standard deviation of returns, b and v, define the set of
switching probabilities, and p the average return per period.

The multiplicative structure (3.3) is appealing to model the high
variability and high volatility persistence exhibited by financial time
series. The components have the same marginal distribution M but
differ in their transition probabilities v,. When a low level multiplier
changes, volatility varies discontinuously and has strong persistence.
In addition, high frequency multipliers produce substantial outliers.

MSM parsimoniously specifies a high-dimensional state space. Since
M is a binomial, the number of states is equal to 2. However, MSM is
also parsimonious. In a general Markov chain, the size of the transition
matrix is equal to the square of the number of states. For instance a
general Markov chain with 28 states generally needs to be parameter-
ized by 216 = 65,536 elements. In comparison, the MSM dynamics are
fully characterized by five parameters.

Figure 4 illustrates the construction of binomial MSM. The top
three panels represent the sample path of the volatility components
M, for k varying from 1 to 3. We see that the number of switches tends
to increase with k due to the geometric progression of arrival intensities
(3.7). The fourth panel represents the variance 0®(M,) = 62 My ... My,
where kK = 8 and & = 1. The construction generates cycles of differ-
ent frequencies, consistent with the economic intuition that there are
volatile decades and less volatile decades, volatile years and less volatile
years, and so on. The panel also shows pronounced peaks and inter-
mittent bursts of volatility, which produce fat tails in returns. The last
panel illustrates the impact of these various frequencies on the asset
return series.
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[Insert Figure 4 here.]

3.2. Filtering and Estimation. Since the distribution M is a bi-
nomial, the state vector M, takes d = 2* possible values m',...,m? €
R’i. Let A = (ai;)1<ij<a denote the transition matrix with compo-
nents* a;; = P(M;y; = m/| M, = m'). Conditional on the volatility
state, the return has Gaussian density w;(r;) = n[(ry—u)/o(m?)]/o(m?),
where n () denotes the density of a standard normal.

The financial statistician observes the returns r; but not the state
vector M;. She therefore computes the conditional probability distri-
bution II; = (II}, ..., IIf) € R%, where for every j € {1,...,d},

I E]P’(Mt :mj|r1,...,rt) .
The vector 11; is computed recursively. Bayes’ rule implies that
(3.4) I flr My =m? ry, ... r1)P (Mt =ml|ry,... ,Tt—1) ,

or T} oc w;(r) Z'j:l a; jP (M;—y = m'|ry,...,1—1). The vector II; is
therefore a function of its lagged value and the contemporaneous return
T«

w(ry) o (TI;_1 A)
[w(re) o (T;_ A)] 0’

where w(ry) = [wi(re), ..., wa(ry)], ¢ = (1,...,1) € R% and z oy de-
notes the Hadamard product (z1ys, ..., z4yq) for any x,y € R% These
results are familiar in regime-switching models ([H]). In empirical ap-
plications, the initial vector I is chosen to be the ergodic distribution
of the Markov process.

Let L(ry,...,rr;1) denote the probability density function of the
time series 7y, ..., 77 under the MSM model with parameter vector .
We easily check that:

(3.5) I, =

T
(3.6) log L (r1,....,r; %) = Y _loglw(ry) - (TL—1 A)].
t=1
For a fixed k, the maximum likelihood estimator (ML),
Q/AJ = argmax,, log L (11, ...,r7;v),

k j i

4We note that a;; = [[r_, {(1 — Vi) 1{m§;=m'§;} + v P(M = mfc)} , where mj,

denotes the mth component of vector m?, and 1 {mi=mi} is the dummy variable
[

equal to 1 if mfc = mi, and 0 otherwise.
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is consistent and asymptotically normal: /T(¢) — 1) AN (0,V).
Furthermore, v is asymptotically efficient, in the sense that no other
estimator has a smaller asymptotic variance-covariance matrix V' (see,
e.g., [C]). The maximum likelihood estimator also performs well in
finite samples ([CF04]). Filtering and parameter estimation are there-
fore remarkably convenient with MSM.

3.3. Empirical Estimation and Forecasting. We apply maxi-
mum likelihood estimation to the Yen / U.S. dollar exchange rate series
shown in Figure 1. The daily logarithmic returns are calculated from
exchange rates beginning in June 1973, extending to the end of our
sample at the end of March, 2012.

Table 1 reports the maximum likelihood estimates. For convenience
and to focus attention on volatility, we set the drift parameter p = 0. In
Panel A, following [CF04] and [CFT], we estimate the four remaining
parameters myg, &, 7, and b, for the number of frequencies k varying
from 1 to 12. The first column is therefore a standard Markov-switching
model with only two possible values for volatility. As k increases, the
number of states increases at the rate 2¥. There are thus over four
thousand states when k = 12.

[Insert Table 1 here.]

The results in Panel A show that the multiplier parameter mg tends
to decline with k: with a larger number of components, less variability
is required in each My, to match the fluctuations in volatility exhibited
by the data. The estimates & vary across k with no particular pattern.
Standard errors of & increase with k, consistent with the idea that long-
run averages are difficult to identify in models permitting long volatility
cycles. We next examine the frequency parameters 43 and b. When
k = 1, the single multiplier has a duration of about one week. As k
increases, the switching probability of the highest frequency multiplier
increases until a switch occurs almost once a day for large k. At the
same time, the estimate b decreases steadily with k. The increasing
number of frequencies permits the range of frequencies to spread out
to include both low- and high-frequency components, while the spacing
between frequencies becomes tighter.

We finally examine the behavior of the log-likelihood function as
the number of frequencies k increases from 1 to 12. The likelihood
rises substantially as we add components for low k, and continues to
rise at a decreasing rate as we add components until approximately
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flattening in the range of k = 10 to k = 12 components. This behavior
of the likelihood confirms one of the main premises of the multifractal
approach: fluctuations in volatility occur with heterogeneous degrees of
persistence, and explicitly incorporating a larger number of frequencies
results in a better fit.

In Panel B, we restrict two of the MSM parameters. Consistent with
the idea that the long-run mean of volatility is poorly identified, we set
the unconditional volatility & equal to the sample standard deviation
of returns. Since the lowest-frequency volatility component is difficult
to identify even in a long data sample, we set the value of v, such that
a switch in this component is expected to occur once in a sample four
times the available sample size. With these restrictions, the model
is fully identified by estimating only the two parameters mg and b.
Empirically, these restrictions reduce the likelihood substantially when
k is small, but for large values of k the restricted likelihood is very close
to the unrestricted values shown in Panel A. These results suggest that
restricting the values of o and ~; can be a pragmatic empirical approach
that further simplifies the estimation of the MSM model.

It is natural to compare the in-sample likelihood results of MSM
with estimates for a standard volatility process. Generalized Auto-
Regressive Conditional Heteroskedasticity ("GARCH”, [E82], [Bo])

has the form r; = h,}/ Qet, where h; is the conditional variance of r;
at date t — 1, and {e;} are i.i.d. Student innovations with unit variance
and v degrees of freedom. The standard GARCH(1,1) specification
assumes the recursion hy;y; = w + ar? + Bhy, and therefore has four
parameters, v, w, «, and 5. We estimate the GARCH model on the
Yen / U.S. dollar exchange rate data, and find a likelihood of -8299.20,
almost 100 points lower then MSM.

The MSM model also produces good out-of-sample forecasts. For
both MSM and GARCH we estimate the models in-sample using data
from the beginning of the sample until the end of 1995. We then use the
data from the beginning of 1996 to the end of our data to evaluate out
of sample performance. For each model we evaluate ability to forecast
realized volatility RV}, ; = Zi:t_n 41 72, for forecasting horizons ranging
from 1 to 100 days. The out-of-sample forecasting R? for each model
at each horizon is given by R? = 1 — MSE/TSS, where T'SS is the
out-of-sample variance of squared returns: 7'SS = L™! EtT:Tf LT —

ST, 1 77/L)?, and the mean squared error (MSE) quantifies fore-

cast errors in the out-of-sample period: L™1S°0 . | [r2 —E,_i(r?)]2.
Table 2 reports summary forecasting results for horizons of 1, 5,
10, 20, 50, and 100 days. In addition to the Yen / dollar exchange
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rate, we consider three additional currencies.® The multifractal model
shows robust good performance at all horizons and for all currencies,
with particular strength appearing over longer horizons of 50 and 100
days. Additional evidence on the in- and out-of-sample performance
of MSM in a variety of settings is provided in [CF04], [CFT], [L08§],
[BKM], [CDS], [BSZ], and [I].

[Insert Table 2 here.|

3.4. Long Memory in Volatility and Moment-Scaling. MSM
generates a hyperbolic decline in autocovariances for a range of lags.
Consider two arbitrary numbers «; and as in the open interval (0, 1).
The set of integers I = {n : a;log,(b¥) < logyn < aslog,(b*)} con-
tains a large range of intermediate lags. We show in [CF04]:

THEOREM 1 (Hyperbolic autocorrelation in volatility). Consider a
fixed vector ¢ and let ¢ > 0. The autocorrelation in levels satisfies

1
lim <Sup log py(n) _ 1') =0,
k—+o0 7’),6[,’c

log n—9o(a)
where §(q) = log, E(M?) — 2log, E(M/?).

MSM mimics the hyperbolic autocovariograms log p,(n) ~ —d(q) logn
exhibited by many financial series (e.g., [D], [DGE], [BBM]).

MSM illustrates that a Markov-chain regime-switching model can
theoretically exhibit one of the defining features of long memory, a hy-
perbolic decline of the autocovariogram. Fractionally integrated pro-
cesses generate such patterns by assuming that an innovation linearly
affects future periods at a hyperbolically declining weight; as a result,
fractional integration tends to produce smooth processes ([MV68],
[BBM]). By contrast, MSM generates long cycles with a switching
mechanism that also gives abrupt volatility changes. The combina-
tion of long-memory behavior with sudden volatility movements has a
natural appeal for financial modeling.

MSM also replicates the moment-scaling properties of financial se-
ries. Intuitively, MSM is a randomized version of the MMAR, and

5The Deutschemark-Euro / U.S. dollar series is obtained by splicing the
Deutschemark exchange rate with the Euro exchange rate, using the official
Deutschemark / Euro exchange rate instituted at the end of 1998. We also consider
the British pound / U.S. dollar exchange rate and the Canadian dollar / U.S. dollar
exchange rate.
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therefore inherits the moment-scaling properties of its precursor. We
refer the reader to [CF| for theoretical results and simulations.

3.5. Continuous-Time MSM. The MSM construction works just
as well in continuous time. We consider a filtration {F;} on the prob-
ability space (2, F,P). The Markov state vector

M, = (Myg; May; ... My,) € RE

is now defined for all £ € R. Given the Markov state M; at date ¢, the
dynamics over an infinitesimal interval are defined as follows. For each
ke {l,...,k}, achange in M,,; may be triggered by a Poisson arrival
with intensity A;. The component My, ;44 is drawn from a fixed distri-
bution M if there is an arrival, and otherwise remains at its current
value: My qr = My, The construction can be summarized as:

My, 144 drawn from distribution M with probability A\dt
Mk,t—f—dt = Mk,t with pI‘Ob&bﬂity 11— )\kdt

The Poisson arrivals and new draws from M are independent across

k and t. The sample paths of a component M, are cadlag, i.e. are

right-continuous and have a limit point to the left of any instant.%
The arrival intensities are specified by

(3.7) A = A bFL ke{l,... k}.

The parameter \; determines the persistence of the lowest frequency
component, and b the spacing between component frequencies.
The price process follows the Ito diffusion

dP,
(3.8) ?t = pdt + o(M,)dZ,,
t

where o(M;) follows the maintained equation (3.2).

3.6. Limiting Process with Countably Many Frequencies.
The MSM construction can accommodate an infinity of frequencies,
as we now show. For given parameters (u,a,mg, A1,b), let M; =
(Mr4)72, € R denote an MSM Markov state process with count-
ably many components. Each component M, is characterized by the
arrival intensity A\, = A\b*~!. For a finite k, stochastic volatility is
defined as the product of the first k& components of the state vector:

i) = o (TThy M)

Since instantaneous volatility oz (M;) depends on an increasing num-
ber of components, the differential representation (3.8) becomes un-
wieldy as k — oo. In fact, the instantaneous volatility converges almost

6Cadlag is a French acronym for continue & droite, limite ¢ gauche.
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surely to zero as k — oo; since volatility is unbounded, however, the
Lebesgue dominated convergence does not apply. We consider instead
the time deformation

(3.9) Hk(t)z/o o2 (My)ds.

Given a fixed instant ¢, the sequence {0(¢)}3, is a positive mar-
tingale with bounded expectation. By the martingale convergence
theorem, the random variable 0z(t) converges to a limit distribution
when k& — oo. A similar argument applies to any vector sequence
{0z(t1); .. .;05(tqa) }, guaranteeing that the stochastic process 65 has at
most one limit point. As shown in [CF01], the sequence {63} is tight
under the following sufficient condition.”

ConDITION 1 (Tightness). E(M?) < b.

Intuitively, tightness prevents the time deformation from oscillating
too wildly as k — co. Correspondingly, Condition 1 imposes that the
volatility shocks are sufficiently small or have durations decreasing suf-
ficiently fast to guarantee convergence.® Let D[0, 00) denote the space
of cadlag functions defined on [0, c0), and let d2, denote the Skohorod
distance.

THEOREM 2 (Time deformation with countably many frequencies).
Under Condition 1, the sequence (0;); weakly converges as k — oo to
a measure O, defined on the metric space (D]0,00),d2). Furthermore,
the sample paths of O are continuous almost surely.

The limiting process has a Markov structure analogous to MSM with a
finite k. In particular, M; = (M), is the state vector of the limiting
time deformation 6.

The sample paths of the price process p are continuous but can be
more irregular than a Brownian motion at some instants. Specifically,
the local variability of a sample path at a given date t is characterized
by the local Holder exponent

at) =sup{B > 0: [p(t + At) — p(t)] = O(|At]®) as At — 0}.

"We refer the reader to [Bi] for a detailed exposition of weak convergence in
function spaces.

8Because volatility exhibits increasingly extreme behavior as k goes up, the
time deformation 6., cannot be computed by taking the pointwise limit of the
integrand of(M;) in equation (3.9). Specifically, 02 (M) converges almost surely
to zero as k — oo (by the Law of Large Numbers), suggesting that 6., = 0. This
conclusion would of course be misleading. For every fixed ¢, Condition 1 implies
that supy, E [0%(t)] < co ([CF]), and the sequence {6(t)}; is therefore uniformly
integrable. Hence Ef.(t) = Ez(t) = 52 t > 0.
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Heuristically, we can express the infinitesimal variations of the price
process as being of order (dt)a(t) around instant ¢t. Lower values of
a(t) correspond to more abrupt variations. Traditional jump diffusions
impose that a(t) be equal to 0 at points of discontinuity, and to 1/2
otherwise. In a multifractal diffusion, however, the exponent a(t) takes
a continuum of values in any time interval.

3.7. Extensions. MSM is a flexible framework that has been ex-
tended along several directions in recent years. ([CFT]) considers a
multivariate model of asset returns, which captures the correlation both
in levels and in volatility of the returns on several financial assets. Mul-
tivariate MSM preserves the tractability of univariate MSM, including
analytical expressions for the likelihood function and the Bayesian fil-
ter. It captures well the joint dynamics of asset returns and provides
accurate forecasts of the value at risk of a portfolio of assets.

[I] develops an extension of bivariate MSM that incorporates dy-
namic correlation in the Gaussian innovations. The new model, which
the author coins MSMDCC, combines the multifrequency structure of
bivariate MSM with the flexible correlation of Engle’s Dynamic Condi-
tional Correlation model [E02]. The likelihood and Bayesian filter of
MSMDCC are available analytically. MSMDCC outperforms its two
building blocks, MSM and DCC both in and out of sample.

[CDS] and [BSZ] introduce Markov-switching multifractal models
of the time interval between two trades on a given security. Inter-
trade durations are important in the microstructure literature and can
help design trading strategies. The MSM duration models capture the
key features of financial market inter-trade durations: long-memory
dynamics and highly dispersed distributions. They also outperform
their short-memory competitors in and out of sample.

4. Pricing Multifractal Risk

The integration of multifrequency models into asset pricing is now
at the forefront of current research. We begin with an illustrative
example drawn from [CFO08].

4.1. A Continuous-Time Model of Stock Prices. The econ-
omy is specified by a standard Brownian motion Z(t) € R and an MSM
state vector M; € R where t € [0,00) and k is a finite integer. The
processes Z and M are mutually independent.

The stock is an asset that pays a continuous stream of dividend

payments D,. Let gp € R, and let op(M,;) = 6D(H£:1 My )2,
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CoNDITION 2 (Dividends). The dividend process satisfies

log(Dy) = log(Do) + /Ot [QD - M} ds + /Ot op(Ms)dZp(s)

2

at every instant ¢ € [0, 00).

In the absence of arbitrage, the price of the stock at date ¢ can be ex-
pressed as the present value of expected future dividends, where the ex-
pectation takes into account the risk aversion of investors ([M],[DD]).

The stock is priced by a collection of identical risk-averse agents,
who observe the realization of the processes Z and M. Risk aversion
is defined as follows. The agent ranks the desirability of a random
consumption stream {C}}¢>o according to the utility index

vien =g [ et

where the discount rate ¢ is a strictly positive constant and the Bernoulli
utility is:

_ [0/ (1—a) ifa#1,
u(C) = { log(C) if o = 1.
The agent strictly prefers the consumption stream {C;} to the con-
sumption stream {C}} if and only if U({C;}) > U({C}}). We let
=0 — (1 — @)gp, which we assume to be strictly positive. We use
lower cases for the logarithms of all variables.

THEOREM 3 (Equilibrium stock price). The stock price is in logs
the sum of the continuous dividend process and the price:dividend ratio:

pe = dy + q(My),

where
oo a(l—a) ps 2

(41) Q(Mt) = log]Et (/ e P 3 o UD(Mt+h)dhdS) )
0

The price process therefore follows a jump-diffusion. A price jump
occurs when there is a discontinuous change in the Markov state M,
driving the continuous dividend process.

The endogenous price jumps contrast with the continuity of the
dividend process. Over an infinitesimal time interval, the stock price
changes by

d(p:) = d(ds) + Alqy),

where A(q;) = q; — q;- denotes the finite variation of the price:dividend
ratio in case of a discontinuous regime change. A Markov switch that
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increases the volatility of current and future dividends induces a neg-
ative realization of A(q) if o < 1. Market pricing thus generates an
endogenous negative correlation between volatility changes and price
jumps.

The size of the jumps depends on the persistence of the compo-
nent that changes. Low-frequency multipliers deliver persistent and
discrete switches, which have a large price impact. By contrast, higher
frequency components have no noticeable effect on prices, but give ad-
ditional outliers in returns through their direct effect on the tails of the
dividend process. The price process is thus characterized by a large
number of small jumps (high frequency My ,), a moderate number of
moderate jumps (intermediate frequency My ,), and a small number
of very large jumps. Earlier empirical research suggests that this is a
good characterization of the dynamics of stock returns. The model thus
avoids the difficult choice of a unique frequency and size for rare events,
which is a common issue in specifying traditional jump-diffusions.’

We illustrate in Figure 5 the endogenous multifrequency pricing
dynamics of the model, in the case where consumption is IID. The
top two panels present a simulated dividend process, in growth rates
and in logarithms of the level respectively. The middle two panels then
display the corresponding stock returns and log prices. The price series
exhibits much larger movements than dividends, due to the presence of
endogenous jumps in the price-dividend ratio, e?™#) To see this clearly,
the bottom two panels show consecutively: 1) the “feedback” effects,
defined as the difference between log stock returns and log dividend
growth, and 2) the price:dividend ratio. Consistent with Theorem 3,
we observe a few infrequent but large jumps in prices, with smaller but
more numerous small discontinuities. The simulation demonstrates
that the difference between stock returns and dividend growth can
be large even when the price-dividend ratio varies in a plausible and
relatively modest range (between 26 and 33 in the figure). The pricing
model thus captures multifrequency stochastic volatility, endogenous

9In the simplest exogenously specified jump-diffusions, it is often possible that
discontinuities of heterogeneous but fixed sizes and different frequencies can be
aggregated into a single collective jump process with an intensity equal to the sum of
all the individual jumps, and a random distribution of sizes. A comparable analogy
can be made for the state vector M; in our model, but due to the equilibrium
linkages between jump size and the duration of volatility shocks, and the state
dependence of price jumps, no such reduction to a single aggregated frequency is
possible for the equilibrium stock price.
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multifrequency jumps in prices, and endogenous correlation between
volatility and price innovations.

[Insert Figure 5 here.]

4.2. Convergence to a Multifractal Jump-Diffusion. We now
investigate how the price diffusion evolves as k — oo, i.e. as compo-
nents of increasingly high frequency are added into the state vector.
By Theorem 2, dj(t) converges to

doo(t) = do + Gpt — 0o (t) /2 + B0 (t)]
as k — oo. By (4.1), the process gg(t) is a positive submartingale,

which also converges to a limit as k — oo.

THEOREM 4 (Jump-diffusion with countably many frequencies).
We assume that o < 1 and that the maintained conditions 1 and 2
hold. When the number of frequencies goes to infinity, the log-price
process weakly converges to

Doo(t) = doo(t) + goo(l),

where

+oo a(l—a)
Joo(t) = logE {/ e Ps= g oo (t+s8) =0 (1)] g ¢
0

(M7

is a pure jump process. The limiting price is thus a jump diffusion with
countably many frequencies.

In an economy with countably many frequencies, the log-price process is
the sum of: (i) the continuous multifractal diffusion d(¢); and (ii) the
pure jump process ¢ (t). We correspondingly call po(t) a multifractal
Jump-diffusion.

When k£ = oo, the state space is a continuum while the mul-
tifractal jump-diffusion is tightly specified by the seven parameters
(gp,p, Mo, V1,0, ,0). The limiting process ¢o(t) exhibits rich dy-
namic properties. Within any bounded time interval, there exists al-
most surely (a.s.) at least one multiplier M}, that switches and triggers
a jump in the stock price. A jump in price occurs a.s. in the neigh-
borhood of any instant. The number of switches is also countable a.s.
within any bounded time interval, implying that the process ¢ (t) has
infinite activity and is continuous almost everywhere.

The convergence results provide useful guidance on the choice of
the number of frequencies in theoretical and empirical applications.
On the one hand, the convergence of the price process implies that the
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marginal contribution of additional components is likely to be small
in applications concerned with fitting the price or return series. It is
then convenient to consider a number of frequencies k that is suffi-
ciently large to capture the heteroskedasticity of financial series, but
sufficiently small to remain tractable. On the other hand, countably
many frequencies might prove useful in more theoretical contexts, in
which the local behavior of the price process needs to be carefully un-
derstood. Examples could include the construction of learning models
or the design of dynamic hedging strategies.

4.3. Other Work. Several other papers derive the pricing impli-
cations of multifractal risk. [CF07] develops a discrete-time model of
stock returns in which the volatility of dividend news follows an MSM.
The resulting variance of stock returns is substantially higher than the
variance of dividends, as is the case with the data. The MSM dividend
specification improves on the classic [CH| model, which generates more
modest amplification effects with a GARCH dividend process. [CFO07]
also investigates the dynamics of returns when the agent is not fully
informed about the state M; but must sequentially learn about it from
dividends and other signals; the implied return process exhibits sub-
stantial negative skewness, which is again consistent with the data.

Multifractal modeling is also helpful for option pricing. [CFFL]
introduces an extension of MSM that can account for the variation in
skewness and term-structure of option data. Jumps to the return pro-
cess are triggered by changes in lower-frequency volatility components,
and the “leverage effect” is generated by a negative correlation of high-
frequency innovations to returns and volatility. Using S&P 500 index
returns and a panel of options with multiple maturities and strikes,
the latent volatility components enable the model to dynamically fit a
wide range of option surfaces.

Parsimonious models with multiple components have a natural use
in interest rate modeling. [CFW]) develops a class of dynamic term
structure models that accommodates arbitrarily many interest-rate fac-
tors with a fixed number of parameters. The approach builds on a
short-rate cascade, a parsimonious recursive construction that ranks
the state variables by their rates of mean reversion, each revolving
around the preceding lower-frequency factor. The cascade accommo-
dates a wide range of volatility and risk premium specifications, and
the forward curves implied by absence of arbitrage are smooth, dy-
namically consistent, and available in closed form. [CFW] provides
conditions under which as the number of factors goes to infinity the
construction converges to a well-defined, infinite-dimensional dynamic
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term structure. The cascade thus overcomes the curse of dimensionality
associated with general affine models. Using a panel of 15 LIBOR and
swap rates, [CFW] estimates specifications with a number of factors
ranging from one to 15, all specified by only five parameters. In sample,
the implied yield curve fits the data almost perfectly. Out of sample,
interest rate forecasts significantly outperform prior benchmarks.

Overall, the results presented in this section show that multifractal
risk has rich pricing implications that have already allowed researchers
to overcome key shortcomings of standard financial models. These
early successes suggest that multifractals are promising powerful tools
for asset pricing.

5. Conclusion

Fifty years ago, Benoit Mandelbrot discovered that financial re-
turns exhibit strong departures from Gaussianity and advocated the
use of self-similar Lévy-stable processes for modeling market fluctua-
tions. These two insights sparked the introduction of fractal methods
in finance. Since then, fat tails, fractional integration, and multifractal
scaling have become familiar tools to financial practitioners, econome-
tricians, statisticians and econophysicists. Fractal methods are now
routinely combined with more traditional approaches, and have given
rise to popular hybrid models such as fractionally integrated GARCH
([BBM]) or long-memory stochastic volatility ([HMS]). These ad-
vances are testimony to the successful integration of fractal methods
into mainstream finance.

In the past fifteen years, fractal research in finance has centered on
the development of multifractal models of returns, which can jointly
capture fat tails, long-memory volatility persistence, multifractal mo-
ment scaling, and nonlinear changes in the distribution of returns ob-
served over various horizons. Multifractal models capture these empir-
ical regularities with a remarkably small number of parameters, and
as a result are strong performers both in- and out-of-sample, as the
empirical section of this article illustrates.

These developments in financial research have led to advances in
multifractal methodology itself. Multifractal measures can now be
constructed dynamically through time ((CFO01], [BDM]), and several
classes of multifractal diffusions are now available ([CFM], [CFO01],
[BDM]). These innovations provide new intuitions about the emer-
gence of multifractal behavior in economic and natural phenomena.
For instance, MSM shows that multifractality can be generated by a
Markov process with multiple components, each of which has its own
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degree of persistence. MSM also permits the application of efficient
statistical methods, such as likelihood estimation and Bayesian filter-
ing, to a multifractal process. These developments are new to the
multifractal literature and are now spreading outside the field of fi-
nance (e.g., [RR]). Furthermore, incorporating multifractal risk into a
pricing model generates multifractal jump-diffusions, an entirely new
mathematical object that deserves further investigation.

Despite these successes, multifractal finance remains a young and
under-researched field, and many challenges remain. The statistical
methodology can be improved to incorporate finer features of finan-
cial returns, for instance along the lines of [CFFL|. Improvements
in statistical inference are undoubtedly possible, for instance by using
different distributions M, by exploring different transition probability
specifications or by simplifying the estimation method. The integration
of fractal risk into pricing models seems very powerful, as illustrated by
recent work on option pricing and the term structure of interest rates.
The applications of multifractal techniques to finance nonetheless re-
mains in their infancy. Last but not least, the multifractal behavior
of financial returns remains unexplained and invites the financial theo-
rist to explore the economic mechanisms producing self-similar regime-
switching in financial volatility.
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TABLE 1. - MaxXiMUM LIKELIHOOD RESULTS
k=1 2 3 4 5 6 7 3 9 10 11 12

Japanese Yen / US Dollar
A. Four Parameters

o 1732 1730 1.663  1.625  1.563  1.541 1493 1488 1435 1405 1400  1.376
(0.012)  (0.014)  (0.010)  (0.011)  (0.009)  (0.012)  (0.009)  (0.010)  (0.010)  (0.009)  (0.009)  (0.009)
& 0.658 0563 0564 0483 0493 0592 0599 0497 0519 0516 0448  0.442
(0.009)  (0.014)  (0.015)  (0.024)  (0.016)  (0.025)  (0.020)  (0.016)  (0.022)  (0.009)  (0.012)  (0.024)
A 0192 0352 0309 0719 0856 0932 0992 098  1.000  1.000  1.000  1.000
(0.022)  (0.041)  (0.059)  (0.080)  (0.053)  (0.050)  (0.015)  (0.013)  (0.000)  (0.000)  (0.000)  (0.000)
b - 5396 1357  16.81 11.14 8.86 7.07 6.48 4.80 4.03 3.81 3.20

(23.65)  (2.08)  (3.34)  (1.39)  (0.91)  (0.80)  (0.60)  (0.48)  (0.46)  (0.02)  (0.67)
InL  -8887.13 -8520.07 -8339.72 -8260.27 -8233.90 -8217.42 -8208.84 -8203.64 -8200.27 -8199.34 -8197.46 -8196.81

B. Two Parameters

o - 1716 1710  1.640 1612 1552 1506 1471 1453 1427 1403  1.382
(0.008)  (0.012)  (0.010)  (0.008)  (0.009)  (0.008)  (0.008)  (0.010)  (0.009)  (0.008)  (0.008)
b - 5460 86.84 4232 1540 1012 7.73 6.53 443 3.94 3.61 3.33
(522)  (7.97)  (3.88)  (0.67)  (0.42)  (0.38)  (0.31)  (0.17)  (0.13)  (0.11)  (0.11)
InL -8573.37 -8420.14 -8308.86 -8236.95 -8222.57 -8213.22 -8214.04 -8208.38 -8202.43 -8200.51 -8199.23

Notes: This table shows maximum likelihood estimation results for the binomial MSM model and Japanese yen
/ U.S. dollar data. Panel A shows unrestricted estimation of the four parameters mo, o, 73, and b. In Panel B, we
set o equal to the sample standard deviation, and 1 equal to the inverse of the sample size divided by four, which
corresponds to a lowest frequency arrival rate that would occur on average once in a period four times the sample
size. Columns correspond to the number of frequencies k in the estimated model. Asymptotic standard errors are in
parenthesis.



TABLE 2. — FORECAST SUMMARY,
MurTIPLE HORIZONS
Horizon (Days)
1 5 10 20 50 100
Restricted R?

Deutsche Mark/U.S. Dollar
Binomial MSM 0.036 0.205 0.298 0.347 0.280 0.088
GARCH 0.045 0.197 0.285 0.328 0.174 -0.396

Japanese Yen/U.S. Dollar
Binomial MSM 0.052 0.120 0.166 0.206 0.166  0.103
GARCH 0.051 0.094 0.101 0.071 -0.172 -0.384

British Pound/U.S. Dollar
Binomial MSM 0.085 0.352 0414 0418 0.343 0.181
GARCH 0.117 0.410 0485 0489 0452 0.118

Canadian Dollar/U.S. Dollar
Binomial MSM 0.100 0.270 0.324 0.316 0.257 0.219
GARCH 0.142 0.430 0.574 0.574 0.378 0.170

Notes: This table summarizes out-of-sample forecasting performance for MSM and GARCH
across multiple forecasting horizons. We estimate the models in-sample using data from the
beginning of the sample until the end of 1995. We then use the data from the beginning of
1996 to the end of our data to evaluate out of sample performance. For each model we evalu-
ate ability to forecast realized volatility RV, : = Zizt—nﬁ»l r2, for forecasting horizons n rang-
ing from 1 to 100 days. The out-of-sample forecasting R? for each model at each horizon is
given by R* = 1 — MSE/TSS, where TSS is the out-of-sample variance of squared returns:
TSS = L™! Z?:T7L+1(rf — Z?:T7L+1 r?/L)?, and the mean squared error (MSE) quantifies

forecast errors in the out-of-sample period: L™* Z?:T7L+1[rf — B (r]))
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Figure 1: Financial Return Series. This figure shows daily logarithmic returns for the Japanese
yen / U.S. dollar exchange rate series, and for the value weighted U.S. stock index compiled by
the Center for Research in Securities Prices (CRSP). The yen series begins in June 1, 1973 and
ends on March 30, 2012, and has 9751 return observations. The stock index return series begins
on January 2, 1926 and ends on December 30, 2011 and has 22,780 return observations.
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Figure 2: Moment Scaling of Financial Returns. This figure shows moment scaling in fi-
nancial asset returns. Let X(¢) denote the cumulative logarithmic returns of a financial se-
ries. Partitioning [0,7] into integer N intervals of length At, we define the partition function
Sy(T, Aty = SNV IX (AL + At) — X (iA))7. When X (t) is multifractal and has a finite ¢ mo-
ment, then E [| X (At)|7] = ex(¢q)(At)x @D+ or equivalently InE[S, (T, At)] = 7x(q) In(At) +¢*(q)
where ¢*(¢) = Incx(q) +InT. The figure provides log-log plots of At against S, (7, At). When the
data-generating process is multifractal these plots should be approximately linear.
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Figure 3: Long Memory in Financial Return Volatility. This figure shows the autocorrelations
of squared logarithmic returns for the yen series (Panel A) and the CRSP stock index return
series (Panel B). The autocorrelations are plotted on a log-log scale, so that a hyperbolic decay
in autocorrelations, as occurs under long-memory, will appear as an approximately straight line in
the figure.
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Figure 4: Construction of the Markov-Switching Multifractal. This figure shows the construction of
multifractal volatility. The first three panels show the values of the three lowest-frequency volatility
components Mj ¢, Moy, and Ms;. The fourth panel shows the variance o2, which is the product
of all multipliers. The construction uses k = 8 multipliers. The final panel shows the simulated
logarithmic return series. The 7" = 10,000 period simulation uses the binomial MSM construction
with m1 = 1.4, b =2, and v, = b/T.
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Figure 5: The Multifractal Jump-Diffusion. This figure shows the relation between exogenous
dividends and equilibrium prices. The top two panels show dividend growth and dividend levels.
The middle panel shows the equilibrium returns and price process, which are considerably more
variable. The bottom panels isolate the endogenous portion of returns and prices. The left hand
side displays the equilibrium feedback effects, defined as the diffierence between log returns and log
dividend growth. The right hand side shows the price:dividend ratio, which varies due to changes

in the state variables.



