
Electronic copy available at: http://ssrn.com/abstract=1687763

Tsinghua-Galaxy

 JOURNAL
Leading & Dedicated Research in Risk Control for Sustainable Returns

www.finamatrix.com

Automated Trading with Genetic-Algorithm Neural-Network

Risk Cybernetics: An Application on FX Markets

Professor Dr. Lanz CHAN, Galaxy Asset Management
lanzchan@galaxyfunds.net

Professor Dr. Alan WK WONG, Hong Kong Baptist University
awong@hkbu.edu.hk

20 February 2012

Special  thanks  to  colleagues  at  the  Macau  University  of  Science  and  Technology  and  the  National  
University of Singapore for their enlightening comments and to traders and friends that have made this  
work possible.

Abstract

Recent years have witnessed the advancement of automated algorithmic trading systems as institutional  
solutions in the form of autobots or black box. However, little research has been done in this area with  
sufficient  evidence to show the efficiency of  these systems. This paper builds an automated trading 
system  which  implements  an  optimized  genetic-algorithm  neural-network  (GANN)  model  with 
cybernetic concepts and evaluates the success using a modified value-at-risk (MVaR) framework. The 
cybernetic  engine  includes  a  circular  causal  feedback  control  feature  and  a  developed  golden-ratio  
estimator, which can be applied to any form of market data in the development of risk-pricing models.  
The paper applies the Euro and Yen currency rates as data inputs. It is shown that the technique is useful  
as a trading and volatility control system for institutions including central bank monetary policy as a risk-
minimizing strategy. Furthermore, the results are achieved within a 30 second timeframe for a intra-
week trading strategy, offering relative low latency performance. The results show that risk exposures 
are reduced by four to five times with a maximum possible success rate of 96%, providing evidence of  
further research and development on this area.

KEY WORDS: automation, autobot, genetic-algorithm neural-network, risk cybernetics, risk-pricing

1. Introduction

There is a growing group of investors and professionals who believe that financial failures are due to  
poor risk management.  In  the area of trading and money management,  traders and fund managers  
require risk management systems that are reliable, which means reference to timely information so as to 
put  an  appropriate  price  to  risk  exposures.  Hence,  automation  in  trading  algorithmic  systems  has  
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received strong interest in recent years so as to minimize human errors and poor judgement.

One of the first research in the direction of trading automation is by Jacobs et al (1991) who introduced  
expert neural networks that provide positive results in adaptive computational mixtures. In the same 
year, Hornik (1991) produced multi-layer feed-forward networks with new approximation capabilities, 
which  explained  and  operationalised  feed-forward  artificial  neural  networks  (ANNs).  These  studies 
provided automation procedures in general and these concepts are applied to forex data.

However,  Carpenter et  al (1991) introduced a real-time learning environment of non-stationary data 
such as rates using a self-organizing neural network with some success. Mackay (1992) applied computer 
methods with Bayesian interpolation which assists in rate estimation. These methods serve as the basis  
of expert systems.

Mizrach (1992) used a multivariate technique in nearest-neighbour forecasts of rates, while Taylor and  
Alien (1992) compared technical analysis methods for rates. Both studies proved to provide evidence of  
the  positive  forecasting  abilities  of  technical  methods.  Weigend  et  al  (1992)  attempted  to  predict  
sunspots and rates using connectionist networks. Although these studies provided some success, they 
were not convincing to the trading community.

Fransconi et al (1992) expanded ANN methods by introducing multi-layer networks by local feedback.  
Pictet et al (1992) offered real-time trading models for rates, which was one of the first papers on real-
time models. Refenes et al (1993) offered rate prediction with neural network design strategies, which  
again gave direction to the research community that ANNs could provide positive results for forecasting  
performance and hence for risk management techniques. Nachne and Ray (1993) modelled rates from 
the  frequency  perspective  and  provided  forecasts.  These  models  from  the  early  1990s  provided 
forecasting strategies but lacked in risk management applications.

Kuan and Liu (1995) forecasted rates using feed-forward and recurrent neural networks, which was a 
new application of ANNs to rate prediction. The early 1990s turned attention to ANNs and Wei and Jiang 
(1995) used standard ANNs for rate forecasting with some success. Later on, Episcopos and Davis (1996) 
used a combination of ANN and an expanded and modified GARCH model to predict returns in rates.  
Tenti  (1996) applied recurrent neural  networks in  forecasting rates.  We expand these methods with 
genetic  optimization  and  in  some  ways  the  recurrent  and  feedback  strategies  are  similar  to  the  
cybernetic strategies that are introduced in this paper.

Further to the above research, Shanker et al (1996) analysed the effect of data standardization on neural  
network training, which provided foundations to today’s ANN setup. Hann and Steurer (1996) attempted 
to forecast monthly and weekly rates using neural networks and linear models with some success. Neely  
et al (1997) utilized a genetic-programming approach to determine if  technical analysis  in  rates was  
profitable with mixed results. 

This  research presented  here  uses  a  genetic  optimization approach  in  an  ANN framework  so  as  to 
forecast rates. The process involves the use of a developed golden-ratio estimator and causal feedback  

Copyright 2012 2



Tsinghua-Galaxy

 JOURNAL
Leading & Dedicated Research in Risk Control for Sustainable Returns

www.finamatrix.com

loops which are the foundations of cybernetics.

2. Related Literature

El Shazly and El Shazly (1997) compared the forecasting performance of neural networks and forward 
rates, which evidently pointed to the usefulness of forward rates for ex ante results. Jamal and Sundar 
(1998)  modelled  rates  with  neural  networks,  which  provided  more  evidence  for  positive  ANN 
applications. Zhang et al (1998) used state-of-the-art ANN forecast models and again in Zhang and Hu  
(1998),  used  neural  network  forecasting  which  was  tested  on  the  Pound/Dollar  rate.  Both  studies 
provided ANN applications in the positive direction.

With the advent of more modern estimation approaches, Alien and Karjalainen (1999) used genetic  
algorithms to find technical trading rules, which is among the first appearances of using GA for technical  
rules which relates to our current study.

Moving forward, El Shazly and El Shazly (1999) used genetically-evolved neural networks to forecast  
rates  for  four  currencies,  which  was  designed  to  forecast  the  3-month  spot  rate  and  compared  to 
forward and futures rates, then evaluated with accuracy and direction of change. The performance of  
their attempt was positive and supported the advancement of similar techniques. 

Lisi and Schiavo (1999) compared neural networks and chaotic models for rate prediction, and concluded  
that both models outperformed the random walk. Shin and Han (2000) create an optimal signal multi-
resolution by GA to support ANN for rate forecasting. They use wavelet analysis for feature detection 
useful in describing the signals with discontinuous or fractal structure in financial markets. They propose  
an integrated thresholding design  of  the optimal  or  near-optimal  wavelet  transformation by GAs to 
represent a significant signal most suitable in ANN models. They conclude that their integrated approach  
using GAs has better performance than the other wavelet thresholding algorithms.

Dempster and Jones (2001) developed a real-time adaptive trading system using genetic programming. 
They create a genetic program that could ‘drop’ trading rules as soon as they become loss-making or 
when more profitable rules are found. They attempt to emulate such traders by developing a trading 
system consisting of rules based on combinations of different indicators at different frequencies and 
lags. Their method shows that despite the individual indicators being generally loss-making over the data 
period,  the  best  rule  selected  by  the  developed  system  is  found  to  be  modestly,  but  significantly,  
profitable  in  the  presence  of  realistic  transaction  costs.  This  study  serves  as  a  good  basis  for  
development of  a more robust  system as we look at  creating a signal-producing framework for risk 
measurement.

Qi and Zhang (2001) operationalise time series forecasting using neural network and investigate model 
selection criteria.  Walczak (2001) empirically analysed data requirements for forecasting with neural  
networks. It became apprarent that the turn of the century increasingly focused on ANN studies which is  
the foundation of automated trading and risk management applications.
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Lawrenz and Westerhoff  (2003)  modelled rate behaviour with a GA by constructing a model  where 
heterogeneous,  boundedly-rational  market  participants  rely  on a  mix  of  technical  and  fundamental 
trading rules applied according to a weighting scheme. Traders evaluate and update their mix of rules by  
genetic algorithm learning. The study focused on the human element, where interaction between the 
traders produces a complex behaviour of exchange rates. Their model simultaneously produces several 
stylized facts: high volatility, unit roots in the exchange rates, a fuzzy relationship between news and 
exchange-rate movements, cointegration between the exchange rate and its fundamental value, fat tails 
for returns, a declining kurtosis under time aggregation, weak evidence of mean reversion, and strong  
evidence of clustering in both volatility and trading volume. This is one of the first studies that attempt 
to provide a comprehensive risk profile of rates for risk and trading management.

Neely and Weller  (2003) performed intra-day technical  trading on the forex market  with interesting 
results.  They  used  a  genetic  program  and  an  optimized  linear  forecasting  model.  When  realistic  
transaction costs and trading hours are taken into account, they find no evidence of excess returns to the 
trading  rules  derived  with  either  methodology.  Thus,  results  are  consistent  with  market  efficiency.  
However, they do find that the trading rules discover some remarkably stable patterns in the data. This 
result provides some evidence that genetic learning with appropriate trading rules, uncovering hidden  
patterns in data is a possibility, which could be capitalized on by market participants.

Austin et al (2004) created adaptive systems for forex trading, which was a collaborative extension of the 
study by Dempster and Jones (2001), and was a joint effort with HSBC bank and utilized order flow data  
from the bank to compute trading volume. They find that order flow is an important input for their  
trading system and encourage more research in the direction. However, order flow data is limited since it  
will be difficult to compute the total global order flow and volume data since many transactions are  
private in nature, and so the best effort would be to use a close proxy as a good estimate of the global 
order flow, which makes the effort an obvious limitation. 

Wei et al (2004) provided a comprehensive review of forecasting rates with ANNs. The integration of  
neural networks with other technologies produces mixed results but is encouraging and a promising tool  
for forecasting financial time series. They suggest that future research should address self-adaptation to  
different situations, which in effect are automation procedures.

In  the paper  where  Phillips  (2005)  wrote  on automated  discovery  processes  in  econometrics  is  an 
important reference to our study. Advances in computer power,  electronic communication, and data 
collection  processes  have  helped  to  elevate  the  status  of  empirical  research  within  the  economics 
profession in recent years and they now open up new possibilities for empirical econometric practice. Of  
particular significance is the ability to build econometric models in an automated way according to an 
algorithm of decision rules that allow for heteroskedastic and autocorrelation robust (HAR) inference.  
Computerized  search  algorithms  may  be  implemented  to  seek  out  suitable  models,  thousands  of  
regressions and model evaluations may be performed in seconds, statistical inference may be automated 
according to the properties of the data, and policy decisions can be made and adjusted in real time with  
the arrival of new data.
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Brandl  et  al  (2006)  created  an  automated  econometric  DSS  to  forecast  rates,  which  enables  the 
extraction of  essential  information indispensable  to  set  up accurate  forecasting models  based on a 
genetic algorithm and applies the resulting models to forecast daily EURUSD exchange rates. The genetic  
algorithm  optimizes  single-equation  regression  forecast  models.  The  approach  discussed  is  new  in 
literature and, moreover, allows flexibility in automated model selection within a reasonably short time.

Lee and Wong (2007) created a multivariate neuro-fuzzy system for currency risk management decision-
making  and  showed  evidence  of  plausible  performance  for  its  predictive  ability  in  forecasting  the  
direction and magnitude of  future  rate  movements.  They evaluate  the predictive  performance of  a  
hybrid  multivariate  model,  using  multiple  macroeconomic  and  microstructure  of  foreign  exchange 
market variables, and exploits the merits of adaptive learning ANN and intuitive reasoning (fuzzy-logic  
inference)  tools.  Empirical  tests  with  statistical  and  machine  learning  criteria  reveal  plausible  
performance of its predictive capability.

Yu et al (2007) develop an intelligent system framework integrating forex forecasting, and incorporating  
IF-and-THEN trading rules, back-propagation neural network (BPNN)-based forex forecasting and web-
based forex trading decision support, which is used to predict the directional change of daily forex rates 
and  to  provide  intelligent  online  DSS  for  investors.  Oh  et  al  (2007)  investigate  the  relative  market  
efficiency in financial market data, using the approximate entropy (ApEn) method for a quantification of  
randomness in time series. They used the global foreign exchange market indices for 17 countries during  
two periods from 1984 to 1998 and from 1999 to 2004 in order to study the efficiency of markets around  
the market crisis. They found that on average, the ApEn values for European and North American foreign 
exchange markets are larger than those for African and Asian ones except Japan, and also that the ApEn  
for Asian markets increased significantly after the Asian currency crisis. Their results suggest that the 
markets with larger liquidity have higher market efficiency.

One of the last studies with relevance to our study was by Kiani and Kastens (2008) who analyse forex  
futures  for  the  British  pound,  Canadian  dollar,  and  Japanese  yen  against  the  USD.  They  model  
relationships between exchange rates in  these currencies using linear models, feed forward artificial  
neural networks, and three versions of recurrent neural networks (RNN1, RNN2 and RNN3) for predicting 
these rates. They perform forecast evaluations based on a suite of forecast error tests and find mixed  
results for model selection.

We introduce in the next  sections the various components of the genetic algorithm neural-network  
developed.

3. Golden-Ratio Estimator

We  develop  a  golden-ratio  estimator  (GRE)  based  on  the  golden  section,  which  is  a  line  segment  
sectioned into two according to the golden ratio. The total length (a + b) is to the longer segment a as a 
is to the shorter segment b. The golden ratio, circa 1.618 can also be expressed as its inverse or 0.618.
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The reason for using the golden ratio is that the ratio postulates that it includes the way humans behave, 
i.e. the ratio reflects the innate behavior of human thinking towards the treatment of proportions 
relative to 2-dimensional actions (Plummer, 2005).

Hence, the following is postulated as the basis of an input component of the GANN.

The golden ratio isφ , expressed algebraically is:

φ==+
b
a

a
ba

(3.1)

...6180339887.1
2
51 ≈+=φ (3.2)

The following are  corrollaries  of  the GR which  are  applied  to  the relationships  between minimum,  
maximum and mean of open-to-close prices on a weekly basis as follows:

a: | min price – mean price | (3.3)
b: | mean price – max price | (3.4)
where a>b : hypothesized ratio=1.618 
where b>a : hypothesized ratio=0.618

It is proposed that values out of this range bound above or below are termed as volatility fractures,  
outliers or extreme values; while values within this bound are known as volatility clusters. We compute 
the probability statistics for this occurrence for the EURUSD and USDJPY and draw comparisons. Thus the 
GRE is developed and estimated as follows:

Golden-Ratio Estimator (GRE) = GF/GR (3.5)
where GF is subject to genetic optimization between 0 and the golden ratio (GR).

The GRE is a ratio used as an input to the genetic-algorithm neural network (GANN) signal, which is 
described in the next sections. The GRE developed can be interpreted as the ratio of the conditionally-
optimized GF normalized with the GR, which represents a multiplier to the genetic algorithm. The GRE  
also serves as an adjustment factor that absorbs or inflates the “gap” to satisfy the algorithm in creating  
an appropriate signal output.

4. Technical Explanatory Variables as Network Inputs

We introduce a class of technical explanatory variables (TEVs) which are classified into various groups. 
They are: Return Factors (REF), Return Volatility Factors (RVF), Mean Factors (MEF), Difference Factors  
(DIF), Range Factors (RAF), and Relative Ratio Factors (RRF). 
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The TEVs are described below:

There are two REFs which proxy the return function of forex rates.

The Return Factors (REF) are:

)/ln()ln()ln( OPCPOPCPLNR =−= (4.1)
)/ln()ln()ln( MINPMAXPMINPMAXPLNRM =−= (4.2)

where LNR is the logarithm of the closing price (CP) minus the logarithm of the open price (OP). LNR 
represents the continuously compounded nominal return if one is to buy at the open price and sell at  
the closing price; and LNRM is the continuously compounded nominal return if one is to buy at the  
minimum price and sell at the maximum price. LNRM, hence, represents the maximum possible return 
given this trading strategy.

The two RVFs are proxies to return volatilities of the above two possible return calculations. 

The Return Volatility Factors (RVF) are:

22 LNRLNR = (4.3)

22 LNRMLNRM = (4.4)

where LNR2 is the square of LNR and LNRM2 is the square of LNRM. Both LNR2 and LNRM2 represent  
the volalities of the return statistics calculated above. By taking the squares of the returns is a common 
treatment  for  converting  negative  returns  into  positive  numbers  to  analyse  the  magnitude  of  the 
volatility. The direction of volatility is not the concern here as the trading strategy includes both long and 
short positions that can realize returns in either direction.

Mean prices serve as a middle point of a series of prices or as in this case, the middle point of two  
prices. Often, the mean calculation is treated as a representation of an expected value, such as a mean  
return would equate to the expected return. Below are the two Mean Factors (MEF) that explicitly  
represent the price value between the open price and close price for the mean price (MEP), and for  
the MMEP, it represents the price value between the maximum and minimum prices. In equation form, 
they are:

Mean Factors (MEF):

2/)( CPOPMEP += (4.5)
2/)( MINPMAXPMMEP −= (4.6)

where MEP is the Mean Price which is the average of the open price (OP) plus close price (CP); MMEP is  
the Minimax Mean Price which is the average of the maximum price (MAXP) and minimum price (MINP).
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Difference factors (DIF) represent the range between various prices. These include 2 types of momentum 
calculations, one using open prices and the other using close prices; and both upside and downside 
potential returns. They are calculated as follows:

Difference Factors (DIF):

112 −−=− tt OPOPOO (4.7)

1−−= tt CPCPMOM (4.8)

OPMAXPUS −= (4.9)

OPMINPDS −= (4.10)

where O2-O1 is daily momemtum using open prices; MOM is daily momemtum using close prices; O1 or 

1−tOP  is the open price at the previous period or (t-1), O2 or tOP  is the open price at current period or t, 

hence O2-O1 is the momentum using open prices; MOM is the momentum using close prices, where  

1−− tt CPCP  is the close price at time t minus the close price at time (t-1). Both momentum calculations 

represent the range of price variation between periods and are an indicator for the relative momentum 
or strength of a continuous direction of a market trend. Momentum measures the acceleration and  
deceleration of prices, indicating if prices are up at an increasing rate or down at a decreasing rate. 

The next TEV is Range Factors (RAF), which is similar to difference factors, but in this classification, only  
the positive values are utilized, i.e. the modulus of the calculations. There are a total of ten RAFs which  
are  range  values  between  combinations  of  the  open,  close,  maximum  and  minimum  prices.  RAFs,  
however, exclude the values that are included as DIFs. The RAFs are as follows.

10 Range Factors (RAF):

CPOPCO −=− (4.11)

where  O-C  is  the  modulus or  absolute  value of  the  open  price  minus  the  close  price.  The  value 
represents the spread between the open and close prices, which indicates the volatility of prices during 
the time period under study, in this case, the weekly period. O-C can be interpreted as a volatility proxy  
to the price volatility between open and close prices.

MEPOPMO −=− (4.12)

where O-M is the modulus difference of the open price and mean price, which represents a range value 
where the larger the O-M, the greater the range volatility.

Copyright 2012 8



Tsinghua-Galaxy

 JOURNAL
Leading & Dedicated Research in Risk Control for Sustainable Returns

www.finamatrix.com

MEPCPMC −=− (4.13)

where C-M is the modulus difference of the close price and the mean price. This is also a range volatility  
proxy.

MEPMINPMMIN −=− (4.14)

where MIN-M is the modulus difference of the minimum price and the mean price, which represent a  
range volatility with reference to the end of period price.

MEPMAXPMMAX −=− (4.15)

where MAX-M is  the  modulus  difference of  the  maximum price  and mean  price,  which  is  a  range 
volatility proxy as well.

MINPMAXPMINMAX −=− (4.16)

where MAX-MIN is the maximum price minus the minimum price. This represents the maximum range 
possible in any given time period.

MMEPOPMMO −=− (4.17)

where O-MM is the modulus difference between the open price and the minimax mean price (MMEP).

MMEPCPMMC −=− (4.18)

where C-MM is the modulus difference between the close price and the MMEP.

MMEPMINPMMMIN −=− (4.19)

where MIN-MM is the modulus difference between the minimum price and the MMEP.

MMEPMAXPMMMAX −=− (4.20)

where MAX-MM is the modulus difference between the maximum price and the MMEP. The last  3 
calculations represent range volatility proxies with reference to the MMEP.

The final group of TEVs is the Relative-Ratio Factor (RRF) classification. These represent the ratio of the  
various combinations of open, close, maximum and minimum prices in ratio format. The six RRFs are as  
follows:
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Relative-Ratio Factors (RRF):

CPOPCO // = (4.21)
where O/C is the open price divided by the close price.

MAXPMINPMAXMIN // = (4.22)
where MIN/MAX is the minimum price divided by the maximum price.

MINPOPMINO // = (4.23)
where O/MIN is the open price divided by the minimum price.

MAXPOPMAXO // = (4.24)
where O/MAX is the open price divided by the maximum price.

MINPCPMINC // = (4.25)
where C/MIN is the close price divided by the minimum price.

MAXPCPMAXC // = (4.26)
where C/MAX is the close price divided by the maximum price.

5. ANN Iterative Algorithm

This  section  describes  the  artificial  neural  network  (ANN)  iterative  algorithm  procedure  that  is 
implemented as follows:
1) Create an initial population within possible input variables and network architectures selected from  

the pool of technical explanatory variables (TEVs). Initial population members are transformed to a 
binary coded chromosome, which represents the trading signal of 0 or 1, where 0 represents short  
position or no action, and 1 represents long position.

2) Train and test these networks to determine how fit they are for solving the problem. Calculate the 
fitness measure of each trained network in the current population. The fitness measure used here 
is the absolute success rate of the signal output compared to the actual trading signal where an  
actual buy signal is where price at time t is lower than price at time t+1 and vice versa for the short  
or no action signal.

3) Rank the networks according to their fitness value and select the best networks through designing 
a probability  experiment with the use of  success rate measurements where if  implied signal  =  
actual signal, success rate is 1, if not 0.

4) Create the next generation by pairing up the genetic material representing the weights, inputs and 
neural structure of these networks. Refilling is done by mating the selected members by exchanging  
genes of chromosomes, where the genes are the various forms of TEVs, while the weights are in the 
form of the GRE.

5) Apply mutation in a random fashion according to a preassigned mutation probability with the use 
of evolutionary optimization technique.
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6) Go back to stage (2) of the training/testing cycle until the optimum population is reached.

The process is continued generation after generation until an optimum (according to the predetermined 
criteria described in the next section) network architecture is reached. Through this process, the better 
networks survive and their features are carried forward into future generations and are combined with 
others to find better networks for the particular application. This genetic search method is much more 
effective than random searching, as the genetic process of recombining features vastly improves the  
speed of  identifying highly  fit  networks.  It  also  has  a potential  advantage over  using only  personal 
experience in building neural networks, as new and potentially better solutions may be found through 
this process which might otherwise be overlooked because of almost unavoidable assumptions made by 
the user.

6. Genetic-Algorithm Neural-Network (GANN)

GANN are  constructed using  both  genetic  feedforward (GFF)  and  genetic  feedback  (GFB)  networks.  
Genetic-Algorithm  (GA)  is  applied  to  the  initial  parameter  space  for  optimization.  To  evaluate  the  
performance of the models, observations are used as ‘out-of-sample’ testing sample points. 

Inspired by the role of mutation of an organism's DNA in natural evolution - an evolutionary algorithm (a 
subset of GA) periodically makes random changes or mutations in one or more members of the current 
population, yielding a new candidate solution (which may be better or worse than existing population  
members). There are many possible ways to perform a "mutation," and the Evolutionary Solver (ES)  
actually employs  three different  mutation strategies.  The result  of  a  mutation may be an infeasible  
solution, and the ES attempts to "repair" such a solution to make it feasible; this is sometimes, but not  
always, successful.

The  research  deals  with  a  DS-approach  which  automatically  searches  for  econometric  forecasting 
specifications in multivariate,  nonlinear,  dynamic models by means of  a GA, specifically with the ES  
application. For an overview of automated attempts in selecting econometric forecast models see for  
example Pesaran and Timmermann (2005).

Forecasting time series y can generally be described as follows: given a set of explaining time series X, we 
are trying to find a function f(.), such that

111211 ˆ,...),,,( +++−−+ +=+= ttttttt yyyyXfy εε (6.1)

where the time series ε  is statistically independent or patternless and 1ˆ +ty  is the forecast for 1+ty . 

An FX-trading decision g(.) can be seen as the mapping,
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{ }sellbuyyg t ,ˆ: 1 →+ (6.2)

Coding and Genetic Optimization Procedure

As usual, a population P is a set of individual or chromosomes ig , i.e.,

{ }npT ggP ,...,1= (6.3)

Since in our GA-application each chromosome has to represent a set of TEVs contained in a regression 
model as well as the number of observations to be included in the (in-sample) regression, the internal  

bit-representation of a chromosome ig  is as follows:

w

w

w

niii

niii

niii

i

bbb
bbb
bbb

g

22221

11211

00201

,...,
,...,
,...,

=  and so on… (6.4)

where b denotes binary variables, i.e. b denotes the number of variables included in the regression  
model represented by g and n and n denoting the number of bits used for coding a variable index and  
the number of observations to be included in the model, respectively. Note that the coding mechanism  
uses variable chromosome length, since in our case a chromosome is a sequence of variable indices, and 
the GA is allowed to arbitrarily set the number of variables between some user-defined lower and upper 
bound.

The objective function is to maximize the success rate which is the sum total of the efficiency output.  
The success rate measures the percentage success where the model predicts the price movements of 
the actual signal i.e. where implied signal equates to actual signal. The contraint function is the GR-
Factor (GF), which is a user-defined bounded variable subject to GF >= 0 and <= GR. By estimating GF 
under GANN optimization, the system computes the implied signal that best-fits the actual signal of the  
price feed which results in an optimized solution for the model. 

Optimization with Premium Solver

Microsoft  (MS)  Excel  Solver  add-in  tool  uses  the  Generalized  Reduced  Gradient  (GRG)  non-linear  
optimization code developed by Leon Lasdon, University of Texas at Austin, and Allan Waren, Cleveland  
State University. This study uses visual basic for applications (VBA) in MS Visual C++ environment to  
implement the model.

7. GANN-GRE (GANN1) Optimization 

Following  the  above  sections,  the  developed  model  is  the  Genetic-Algorithm  Neural-Network  with 
Golden-Ratio  Estimator  (GANN-GRE or  for  simplicity  just  GANN1).  It  is  programmed  as  an  iterative 
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algorithm providing a signal output desribed as follows.

GANN1 is  estimated based on the cybernetic  concept that  all  technical  explanatory variables (TEVs) 
within the framework proposed impact decision for trading. It is corollarized that TEVs contribute as a 
decision  coefficient  and/or  multiplier  of  the  upside  potential  (US)  for  a  long  (buy)  decision,  and  a 
decision coefficient and/or multiplier of the downside risk (DS) for a short (sell) decision.

In economics, a multiplier is a factor of proportionality that measures how much an endogenous variable  
changes in response to a change in some exogenous variable. That is, suppose a one-unit change in some 
variable x causes another variable y to change by M units. Then the multiplier is M. In the case here, the  
TEVs are endogenous for the determination of the exogenous trading signal.

Both US and DS for both decisions are factorised by momentum (MOM), which represents an indication 
of the directional strength, and subject to adjustment by the GRE, which acts as a buffer term to “soak”  
or “inflate” estimates according to the optimization functions. The proposed form for GANN-GRE is as  
follows.

GANN-GRE signal at time t utilizing all values at (t-1) is estimated as:

If (REF * RVF * MEF * RAF * RRF * MOM * GRE * US)>
(REF * RVF * MEF * RAF * RRF * MOM * GRE * DS), then 1, otherwise 0. (7.1)

where GRE = GF/GR subject to 0<GF<1.618; REF: return-factors; RVF: return-volatility factors; MEF: mean 
factors; RAF: range factors; RRF: relative-ratio factors; US: upside; MOM: momentum; and DS: downside.

Hence,  the  GANN1  signal  comprises  weekly  values  at  time  (t-1)  that  impound  the  following 
combinational conditions: US>DS, scale-adjusted by MOM with GRE as a multiplier under constraint and 
GA optimized. The estimtated outputs of 1 signifies a long signal, 0 signifies a short or inaction position.

The outputs performances are evaluated based on the following designs:

Actual Signal: if close price > open price, then 1, otherwise 0.

Signal Efficiency: if actual signal = GANN signal, then 1, otherwise 0.

Output Parameters: US/DS Signals, One-Day Ahead Long/Short Signals, Modified Value-at-Risk (MVaR).

While other studies have included macroeconomic factors such as the gross domestic product (GDP), 
interest rates, import/export statistics, cosumer price index (CPI), etc, these are excluded from this study  
as the data are mostly static on a short-term basis and become a non-dynamic explanatory factor that  
makes  less  sense  to  include  in  this  technically-driven  model.  The  derivative  parameters  represent 
calculated proxies for risk and return volatility measures in various forms.
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As  described  in  the  previous  chapter,  GRE  is  GF/GR and  subject  to  constraint  618.10 ≤≤ GF .  The 
rationale being that the US or DS terms can be scaled to a potential maximum of 1 or 0 with the GRE,  
which is a range estimate for the risk threshold. Implementing standard evolutionary (a subset of genetic  
algorithm  techniques)  optimization  derives  a  set  of  results.  If  the  adjusted-US  is  greater  than  the 
adjusted-DS, the signal should be long (buy) signal, otherwise vice versa.

In notation form:

If

)(
)(

,,,,

,,,,

tntntntn

tntntntn

DSGREMOMTEV
USGREMOMTEV

×××
>×××

(7.2)


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)(

,,,,,,,,

,,,,,,,,

tntntntntntntntn

tntntntntntntntn

DSGREMOMRRFRAFMEFRVFREF
USGREMOMRRFRAFMEFRVFREF

×××××××
>×××××××

(7.3)

Then 1, otherwise 0, where GRE = GF/GR, which represents a risk threshold factor.
where TEV: technical explanatory variable; MOM: momentum; GRE: golden-ratio estimator; US: upside;  
DS: downside; REF: return factor; RVF: return volatility factor; MEF: mean factor; RAF: range factor; and 
RRF: relative-ratio factor. 

Figure 7.1 - EURUSD-GANN1-GRE Charts
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The GRE values for EURUSD under GANN1-optimization are non-normal as expected that is similar to the  
results for the GF values previously. The important result obtained at the 97% cumulative value is that  
the range of values are between 0 to 0.5194, which signifies that the GRE values of 0 to 0.5194 represent  
97% of the GANN inputs. Since GRE is the normalization of GR, the values are between 0 and 1. GRE  
represents  a  percentage  multiplier  in  the  optimization  procedure.  Evidence  above  shows  that  the 
volatility structure of GRE under optimization is of a volatility band within approximately 52% of the 
maximum allowable estimator (GRE). The histogram also shows there exist a peakedness on the extreme 
left side of the distribution, implying some evidence of a trend formation.

The GANN-GRE (GANN1) optimization that is performed for EURUSD is also estimated for the USDJPY 
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and presented here as follows. 

Figure 7.2 - USDJPY-GANN1-GRE Charts
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Likewise, the GRE values for USDJPY under GANN1-optimization are non-normal, and the results are 
markedly different to those of EURUSD. The values are more dispersed and varying with values ranging 
the entire spectrum between 0 and 1. It is noted that the GRE values concentrate in a band of 0 to  
0.4286, which make up 75.0%. The range of 0 to 0.714 make up 90.5%. This represents evidence that the  
GRE statistic is less sensitive for USDJPY than for the EURUSD series.

8. GANN-GRE-2 (GANN2) Optimization

GANN-GRE-2 is termed GANN2 and is the same as GANN1 except for a time adjustment, where the 
operation of the signal function utilizes data from (t-1) in time. In notation form:

If

)(
)(

1,1,1,1,

1,1,1,1,

−−−−

−−−−

×××
>×××

tntntntn

tntntntn
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(7.4)


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1,1,1,1,1,1,1,1,
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−−−−−−−−

−−−−−−−−

×××××××
>×××××××

tntntntntntntntn

tntntntntntntntn

DSGREMOMRRFRAFMEFRVFREF
USGREMOMRRFRAFMEFRVFREF

(7.5)

Then 1, otherwise 0, where GRE = GF/GR (risk threshold factor / multiplier).
where TEV: technical explanatory variable; MOM: momentum; GRE: golden-ratio estimator; US: upside;  
DS: downside; REF: return factor; RVF: return volatility factor; MEF: mean factor; RAF: range factor; and 
RRF: relative-ratio factor. 
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Figure 8.1 - EURUSD-GANN2-GRE Charts
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The GRE values for EURUSD under GANN2 optimization are non-normal, and values are dispersed and 
concentrate in between 0 to 0.4130, which comprise 82.5%. GRE values of 0 to 0.757 account for 90% of  
values, or 76% of maximum possible value. Likewise, GANN2 is performed for USDJPY. 

Figure 8.2 - USDJPY-GANN2-GRE Charts
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The GRE values for USDJPY under GANN2-optimization presented above are non-normal, but similar to  
GF values in the previous section, the evidence is clear that the values are regularized between 0 to  
0.500,  which  comprise  90.0%.  In  other  words,  the  GRE  values  of  0  to  0.5  account  for  90% of  the 
optimization results, which represents 50% of the entire possible spectrum allowed under optimization. 
This result is meaningful as it means that the estimator used (GRE) is able to explain 90% of the GANN2 
results.

9. GANN Summary Results

This section analyses the results for the return volatilities of LNR2 and LNRM2 under GANN optimization 
and are described below.

EURUSD Return Volatility Analysis

LNR2 and LNRM2 volatilties display instability patterns  over the 200 weekly data points for periods  
August 2005 to August 2009. There is an obvious volatility breakout for the period of mid-2008 to mid-
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2009, which is beyond the volatility range of the general trend. Based on the trading algorithms for the 
period under study, the upside (US) signal for EURUSD is 18.0% and downside (DS) signal is 12.0%.

The EURUSD series reveal the following mean values computed as: a=0.0148, b=0.0153, a/b=1.3624. 
Under the GF-framework, volatilty fractures (VFs) occur 22.5% for EV@0.618 (where EV: extreme value) 
and 20.5% for EV@1.618.

VCF-analysis of LNR2 reveals 81.5% is within volatilities (vols) of 0.000% - 0.027%, while LNRM2 reveals  
74.5% is within vols of 0.000% - 0.072%. LNR reveals 45.5% are positive, while LNRM reveals 2.21% mean 
returns  with  this  weekly  strategy.  There are  evidence  of  volatility  clusters  in  the data  series,  while  
volatility fractures occur that are in line with EV@0.618 and EV@1.618.

GANN1 encompasses  the technical  factors  with GRE, and is  genetically-optimized to  produce same-
period forecasting. GANN2 encompasses all technical factors with GRE, and is genetically-optimized but  
utilizes  1-period  before  as  a  circular  causal  (continuous)  feedback  loop  of  data  for  1-period  ahead  
forecast (>15,000 iterations are used in the optimization algorithms). The results are reported as follows.

The success rates for GANN1 are: long signal @ 0.30, actual signal (ASIG) long @ 0.54, which means that  
the efficiency rate is 67%. The partition for efficiency is: long efficiency @ 85%, short efficiency @ 59%  
(with >16,800 iterations, no further improvements are observed and obtained).

For GANN2: long signal @ 0.31, ASIG long @ 0.54, hence 65% efficiency rate. Efficiency partition is: long  
efficiency @ 82% and short efficiency @ 58%.

Finally,  for  GANN1,  the  mean  values  of  GF=0.2465  and  GRE=0.1523.  For  GANN2:  mean  values  of 
GF=0.2145 and GRE=0.1326 (see below on GRE for USDJPY for discussion on this).

USDJPY Return Volatility Analysis

The  trading  algorithms  reveal  US  signal  15.0%  and  DS  signal  8.5%.  GR-framework  reveals  volatilty  
fractures occur 12.0% for EV@0.618 and 28.5% for EV@1.618. The values of a=1.4837, b=1.2458, and  
a/b=1.5493 (closer to GR=1.618 compared to EURUSD, implying that the GR algorithm for USDJPY has a  
stronger tendency or approximation to GR).

LNR2 reveals 76.0% is within vols of 0.000% - 0.040% (27.0% falls out of range). LNRM2 reveals 79.0% is  
within vols of 0.000% - 0.109% (21.0% falls out of range). LNR reveals 60.0% are positive. LNRM reveals  
mean returns for a weekly strategy averages 2.555%.

For GANN1: long signal @ 0.47, ASIG long @ 0.48, this represents 61% success efficiency. Long efficiency  
@  61%,  and  short  efficiency  @  60%  (>18,000  iterations  and  above,  no  further  improvements  are 
obtained). For GANN2: long signal @ 0.28, ASIG long @ 0.48, 78% efficiency. Long efficiency @ 96%, and  
short efficiency @ 71%. And finally for GANN1: GF=0.4826, and GRE=0.2983. GANN2: GF=0.2838, and 
GRE=0.1754 (the GRE value for EURUSD-GANN2 is the lowest, implying that the GRE requires a smaller  
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range for obtaining optimization i.e. GANN2 for EURUSD is most efficient).

LNR2 volatility fractures occur at 18.5% for EURUSD and 24% for USDJPY. Under the GR-risk framework, 
DS is 22.5% for EURUSD and only 12.0% for USDJPY, implying less downside volatility in the USDJPY.

The GANN2 model for EURUSD in the long transaction achieves signal efficiency of 82%. GANN2 long 
signal  efficiency for USDJPY is  a high 96%, implying that  the GANN2 models are the most  useful  in  
implementing for an automated DSS.

Table 9.1 – LNR2 Summary Results

MEAN or VALUE EURUSD USDJPY
LNR 45.5% positive 60.0% positive
LNRM 2.210% 2.555%
US / DS 18.0% / 12.0% 15.0% / 8.5%
a / b 0.0148 / 0.0153 1.4837 / 1.2458
(a/b) 1.3624 1.5493
LNR2-VC 81.5% (0-0.027%) 76.0% (0-0.040%)
LNR2-VF 18.5% (>0.027%) 27.0% (>0.040%)
LNR2-VF-DS @ GR 22.5% @ EV0.618 12.0% @ EV0.618
LNR2-VF-US @ GR 20.5% @ EV1.618 28.5% @ EV1.618
LNRM2-VC 74.5% (0-0.072%) 79.0% (0-0.109%)
LNRM2-VF 25.5% (>0.072%) 21.0% (>0.109%)
GANN1-LSIG / ASIG 0.30 / 0.54 0.47 / 0.48
GANN1-EFF 67% 61%
GANN1-L-EFF / S-EFF 85% / 59% 61% / 60%
GANN2-LSIG / ASIG 0.31 / 0.54 0.28 / 0.48
GANN2-EFF 65% 78%
GANN2-L-EFF / S-EFF 82% / 58% 96% / 71%
GANN1-GF / GRE 0.2465 / 0.1523 0.4826 / 0.2983
GANN2-GF / GRE 0.2145 / 0.1326 0.2838 / 0.1754

Note: US- upside; DS- downside; a=|min-mean|; b=|max-mean|; Sig TEV- Significant Technical Explanatory Variable; LNR2-VC is 

LNR2 volatility within volatility cluster range; LNR2-VF is LNR2 volatility out of volatility cluster range, i.e. volatility fracture has  

occurred; EFF-efficiency; While it is apparent that EURUSD possesses more US and DS risks compared to USDJPY, the GR-risk value 

of (a/b) for both currencies is >1, implying that the downside is larger than the upside.

10. Risk Control with Value-at-Risk

The Value-at-Risk (VaR) measure is commonly used for calculating the risk of loss on a specific portfolio  
of financial assets. For a given portfolio, probability and time horizon, VaR is defined as a threshold value  
such that the probability that  the mark-to-market  loss on the portfolio over the given time horizon  
exceeds this value (assuming normal markets) at the given probability level.
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Value-at-Risk Metric
Given some confidence level )1,0(∈α , the VaR of the portfolio at the confidence level α is given by the 
smallest number l such that the probability that the loss L exceeds l is not larger than )1( α− .
In notation form:

{ } { }ααα ≥∈=−≤>∈= )(:inf1)(:inf lFRllLPRlVaR L (10.1)

On  the  left  is  the  symbol  of  VaR  at  confidence  level  α.  The  right  equality  assumes  an  underlying  
probability distribution, which makes it true only for parametric VaR.

In this study, the VaR statistic calculated has no underlying distribution assumption. Under GANN, the 
optimization is  based on the definition  of  VaR as  the maximum possible  loss  over  a  specified time 
horizon (here, weekly periods are the defined trading strategy) within a given confidence level (95% is 
used  here).  The  optimization  technique  solves  the  problem  by  finding  the  market  positions  that 
maximize the loss, subject to that all constraints are satisfied within their boundary values.

10.1 MVaR Analysis

The following tables and charts depict the Modified-Value-at-Risk (MVaR) numbers for both long and 
short positions for the time horizon under study. The VaR is modified in the sense that the probability  
distribution is not assumed to be normal but rather, the distribution is obtained from the actual long and  
short transaction calculations.

The MVaR is calculated and reported in percentage terms, as follows:

MVaRL = [(Minimum Price – Open Price)/Open Price]% (10.2)
MVaRS = [(Maximum Price – Open Price)/Open Price]% (10.3)

Under GANN, the following MVaR are computed as follows:
MVaRL-G1: if GANN1=1, then MVaRL otherwise 0. (10.4)
MVaRS-G1: if GANN1=0, then MVaRS otherwise 0. (10.5)
MVaRL-G2: if GANN2=1, then MVaRL otherwise 0. (10.6)
MVaRS-G2: if GANN2=0, then MVaRS otherwise 0. (10.7)

where MVaRL is modified Value-at-Risk for long signal; MVaRS is modified VaR for short signal; MVaRL-
G1 is MVaRL under GANN1; MVaRS-G1 is MVaRS under GANN2; MVaRL-G2 is MVaRL under GANN2; and 
MVaRS-G2 under GANN2.
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Figure 10.1 – MVaR Volatiltiy Charts

EURUSD-MVaR Charts USDJPY-MVaR Charts

 

The above charts show the absolute transactional modified-Value-at-Risk for both EURUSD and USDJPY 
based on a 200-weekly trading strategy; and specifically,  the graphs depict for both the MVaRL and  
MVaRS statistics for both currency series. The charts reveal that for EURUSD, short positions display  
more volatility, while for USDJPY, the long position is more volatile.

Figure 10.2 – MVaRL and MVaRS Distribution Charts
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The above four distributions of MVaR are negatively skewed as expected due to the way the values are 
calculated. Longing the USDJPY and shorting the EURUSD over the period with a weekly trading strategy  
offers the largest downside risk or potential loss.
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10.2 MVaR Results with GANN1 and GANN2

By implementing a quantitative approach, it is possible to compute precise calculations for risk profiling  
and characterization of currency series in terms of MVaR. In the risk matrix and framework developed 
here, the inputs are objective in interpretation and void of judgements since the data is dependent on a  
predefined criteria.

The following MVaR estimates are calculated based on the signals produced by both GANN1 and GANN2.

Figure 10.3 – MVaR@GANN1 and GANN2 Charts

EURUSD-MVaR@GANN1 Charts EURUSD-MVaR@GANN2 Charts
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The graphs above show the magnitudes (all are downside) of MVaR for both currency series and for both  
optimizations under GANN1 and GANN2.

Specifically, the following are the computed results obtained for MVaR under both GANN1 and GANN2 
for the EURUSD series:

EURUSD-MVaRL @ GANN1: -0.2111% (minimum)
EURUSD-MVaRL @ GANN2: -0.3297%
EURUSD-MVaRS @ GANN1: -0.7239% (maximum)
EURUSD-MVaRS @ GANN2: -0.6945%
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The MVaR estimates for EURUSD reveal that the maximum and minimum MVaR are obtained under 
GANN1  optimization,  which  means  that  the  range  of  MVaR  is  greater  under  GANN1.  GANN2 
optimization results offer a smaller range of downside MVaR, which implies that the use of GANN2 is  
more favourable for the EURUSD series.

In other words, the above results show that short positions under GANN1 have the highest risk of loss,  
and long positions under GANN1 have the lowest loss risk. Hence, an investor is able to choose the  
relevant optimization model for different values of MVaR based on individual risk aversion levels.

The following are the results for the USDJPY series. MVaR are computed for both GANN1 and GANN2 
optimizations.

JPY-MVaRL @ GANN1: -0.5425%
JPY-MVaRL @ GANN2: -0.3433% (minimum)
JPY-MVaRS @ GANN1: -0.5028%
JPY-MVaRS @ GANN2: -0.6156% (maximum)

Short positions under GANN2 offer the highest potential loss for USDJPY, while the lowest loss risk is for  
long positions under GANN2. Hence, GANN1 offers a more risk-averse choice for an investor that is 
choosing between the optimization models.

Figure 10.4 – EURUSD-MVaR@GANN1 and GANN2 Charts
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The charts above reveal that long transactions under GANN1 and long transactions under GANN2 are 
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similar  in  distributional  shape,  while  short  positions  under  GANN1  and  GANN2  are  also  similar  in 
distribution for MVaR. By observation, long positions for MVaR under both GANN optimizations appear 
to  cluster  on  the  extreme  right  values.  This  implies  that  the  MVaR  is  more  concentrated  for  long  
positions in EURUSD. This peculiar long transactional characteristic is present for the EURUSD data and 
weekly strategy under study.

Figure 10.5 – USDJPY-MVaR@GANN1 and GANN2 Charts
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The charts above for USDJPY reveal a more consistent pattern. Both long and short transactions under 
GANN1 are similar, while both long and short transactions under GANN2 are similar in distributional  
shape for MVaR. This implies that MVaR for USDJPY has similar long and short transactional risks specific  
to each GANN optimization output. This is evidence that the USDJPY series has GANN-specific MVaR 
results, while EURUSD does not possess this feature.

11. Summary and Implications

We provide risk profiles and characteristics of EURUSD and USDJPY in terms of MVaR in both long and 
short  trading decisions under GANN optimizations.  Table 13.1 provides the summary results for the  
MVaR estimates.

The results without GANN optimization (i.e. no DSS) show that EURUSD has a smaller MVaR loss for long 
transactions while USDJPY has a smaller MVaR for short transactions. In other words, for the period  
under study, a trader should long the EURUSD and short the USDJPY to minimize MVaR.
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A critical result obtained is that the MVaRL values for EURUSD under both GANN1 and GANN2 are the 
only values that display VCF effects, and are overall lower than values for USDJPY; whereas there are 
lower MVaRS estimates under GANN1 and GANN2 for USDJPY, implying lower risks for short transactions  
for the USDJPY, however there is no evidence of VCF effects. Furthermore, the estimates for >90% MVaR 
values are estimated for both currency series and the results show that GANN1 offers less MVaR for  
EURUSD, while for the USDJPY, GANN1 is preferred for a short strategy but GANN2 is preferred for a long  
strategy.

In statistical terms, the lowest risk of loss if an investor uses the GANN system is in adopting a long  
strategy for the EURUSD is only -0.211% for GANN1 and -0.330% for GANN2. The highest risk of loss is  
offered on a short strategy on EURUSD for both GANN1 and GANN, while trading the USDJPY offers a risk 
of loss between these extreme scenarios.

Table 11.1 – MVaR Summary Results

MEAN or VALUE EURUSD USDJPY
MVaRL / MVaRS -1.034% / -1.181% -1.423% / -1.123%
MVaRL-GANN1/GANN2 -0.211%** / -0.330%** -0.543% / -0.343%
MVaRS-GANN1/GANN2 -0.724% / -0.695% -0.503% / -0.616%
MVaRL-GANN1@>90% > -0.349%* > -1.045%*
MVaRS-GANN1@>90% > -1.35%* > -1.24%*
MVaRL-GANN2@>90% > -0.865%* > -0.55%*
MVaRS-GANN2@>90% > -1.444%* > -2.172%*

Note: ** symbolizes that VCF exists. VCF exists only for EURUSD-MVaRL under both GANN1 and GANN2; * represents values that 

are less than 0; MVaRL: modified value-at-risk for long transactions; MVaRS: modified value-at-risk for short transactions; GANN1:  

Genetic Algorithm Neural Network 1; GANN2: Genetic Algorithm Neural Network 2 1-period ahead feedback loop optimization ;  

@>90% means that the values represent the cumulative frequency of just being >90% of the total distribution.

12. Concluding Remarks

Forex volatility in all  its forms can have a wide repercussion on trading decision making and foreign 
exchange policy. The aftermath caused by terrorist attacks, financial reporting scandals and the recent 
subprime  mortgage  crisis  have  caused  great  turmoil  to  world  financial  markets  and  there  is  clear  
evidence that there is a tandem increment in forex volatility as shown by the results herein.

For the reason that there is a direct link between financial market uncertainty and public confidence, 
policy makers often rely on market estimates of volatility as a barometer for the vulnerability of financial  
markets and the economy. In the US, the Federal Reserve explicitly takes into account the volatility of  
stocks,  bonds,  currencies  and commodities  in  establishing its  monetary  policy.  This  is  also  common 
practice among other governments.

Table below displays the myriad of results obtained in this study and are summarily discussed thereafter 
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for EURUSD and USDJPY currency pair series.
 
Overall Summary

The study has provided a comprehensive process in developing risk profiles that depict the relevant risk  
characteristics of two most important currency pairs in the world today. The goals are to offer to traders  
and policy makers advanced risk management techniques that utilize a suite of technical explanatory 
variables that are developed.

One of the key outcomes of the research is that RRFs are most the significant technical explanatory 
factors for explaining both EURUSD and USDJPY return volatities, while other TEVs do not improve the  
significance of the overall models herein. This offers an extremely interesting result since prior to this  
study, RRFs have not been closely studied by the academic world but more by the practising world. The  
direction of technical analysis should be geared towards quantitative methods that describe with more 
precision the risk statistics of trading decisions.

LNR2 volatility fractures occur at 18.5% for EURUSD and 24% for USDJPY. Under the GR risk framework,  
DS is 22.5% for EURUSD and only 12.0% for USDJPY, implying that there is less downside volatility in the  
USDJPY.

The GANN2 model for EURUSD in the long transaction achieves signal efficiency of 82%. GANN2 long 
signal  efficiency for USDJPY is  a high 96%, implying that  the GANN2 models are the most  useful  in  
implementing for an automated DSS, which can be executed through macros or a repetitive function in 
MS Visual C++ utilizing live streaming data on a per tick or per customized period basis.

This study postulates the following:

Stylized Fact I: GANN-GRE optimization with feedback control (circular causal or with data-looping as the 
optimization continuously uses (n-1)-period data for optimizing n-period data) termed GANN2 is most 
efficient in producing up to 96% efficiency for a weekly long strategy on the USDJPY. This is the basis of  
risk cybernetics and autobots.

Stylized Fact II:  MVaR estimates under GANN provide long and short risk statistics for forex trading 
signals and decisions. For e.g. a long strategy on EURUSD under GANN1 or GANN2 offer MVaR values of  
4 to 5 times smaller than MVaR without either GANN signals.

Contributions of Research

This  study  can  ben  implemented  in  accordance  to  the  latest  ISO  guidelines,  which  are  useful  for  
corporations keen on risk management for trading decisions. The methods herein are a suggested way of 
risk management for trading volatility or for hedging decisions.

Risk characterization allows traders to view risk perspectives objectively. For risky portfolios, developing 
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a pragmatic and speedy method for managing risks is essential. As practiced on a daily basis by major  
financial  institutions and investors,  volatility management  is  a routine that  never  ends.  The process 
repeats itself and is crucial to almost everyone involved in international trade and is exposed to currency  
risks and fluctuations.

In  particular,  the  study  investigates  the  application  of  modern  financial  theory  and  financial  risk  
management tools and techniques to the case of investment and trading portfolios, which contain vast  
amount of forex cash securities (between both long and short positions). It also provides an insight on 
how to measure and report active investment and proprietary trading risk in an innovative and proactive 
way to senior management in financial and non-financial entities.

Like in every study, there are limitations to this research. As there are enumerous factors that shed light  
to explain the return volatility performance of forex rates, the study, from the outset, sets the research 
parameters to include all  forms of technical  data and indicators  only.  The exclusion of fundamental  
factors and other variables is deliberate.
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