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ABSTRACT: This note is a further commentary on a previous paper on the chaos theory of stock returns that derives 

from the alleged detection of persistence in time series data indicated by values of the Hurst exponent H that differs 

from the neutral value of H=0.5 implied by the efficient market hypothesis (EMH) (Munshi, 2014). A comparison of 

four different methods for estimating H is presented. Linear regression of log transformed values (OLS) is compared 

against a numerical approach using the generalized reduced gradient (GRG) method. These methods are applied to 

two different empirical models for the estimation of H. We find that the major source of error in the empirical 

estimation of H is the insertion of the extraneous constant C into the empirical model
1
. 

 

 

 

1. INTRODUCTION 

 

Some methodological flaws in Rescaled Range Analysis of financial markets were explored in a previous 

paper2 which addressed certain issues having to do with the empirical test of the Hurst equation (Hurst, 

1951) as it is applied to financial markets (Munshi, 2014). The Hurst equation is 

 

Equation 1    R/S = √H 

 

Empirical tests of this relationship in stock returns is normally carried out using OLS regression and so a 

logarithmic transformation is used to render it into linear form as  

 

Equation 2    ln(R/S) = H*ln(√) 

 

A test of the linear equation as written in Equation 2 requires that the constant term b0  in the linear 

model {y = b0 + b1*x} be set to {b0 = 0} and the linear model written as {y = b1*x} to have a direct 

correspondence with Equation 2. The empirical test could then proceed by taking the natural logarithms 

of the values of R/S and √ and using OLS regression to estimate the value of H in Equation 2. However, 

this is not what R/S analysts do possibly because setting {b0 = 0} lowers the precision of the linear fit and 

that in turn increases uncertainty of the b1 coefficient, and the likelihood that the empirical test will fail 

                                                           
1
 Date: February, 2015 

Keywords and phrases: finance, financial analysis, efficient market hypothesis, financial markets, chaos theory, stock markets, 
rescaled range analysis, Hurst exponent, fractal theory of stock markets, stock price behavior, long term memory of stock 
returns, persistence in stock returns, OLS regression, least squares, linear regression, transformations, logarithmic 
transformations, nonlinear regression, numerical methods, computational statistics, generalized reduced gradient. 
Author affiliation: Professor Emeritus, Sonoma State University, Rohnert Park, CA, 94928, munshi@sonoma.edu  
2
 This paper should be read as an addendum to “THERE IS NO CHAOS IN STOCK MARKETS” available online at 

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2448648 
 

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2448648


METHODS FOR ESTIMATING THE HURST EXPONENT OF STOCK RETURNS: A NOTE, JAMAL MUNSHI, 2015  2 

 

to find a significant result. It is probable that it is the desire to maintain a higher statistical power of the 

test that R/S researchers retain the b0 term and write their linear model as  

 

Equation 3    ln(R/S) = ln(C) + H*ln(√) 

 

Recognizing the mismatch between Equation 1 (the theory to be tested) and Equation 3 (the alleged 

empirical model for testing the theory), researchers then work backwards to force the theory to match 

their empirical test by introducing the constant C and writing Equation 1 as 

 

Equation 4    R/S = C*√H 

 

Statistical power is thought to be achieved but at the great cost of not knowing what C represents and 

therefore of not knowing what theory is being tested. This issue is the main focus of a previous paper on 

Rescaled Range Analysis (Munshi, 2014). It is noted in that paper that in addition to the problem with C3, 

errors may also be introduced by the logarithmic transformation itself (Greene, 2010) (Zeng, 2011).  An 

alternative to OLS is the use of numerical methods to fit the non-linear equation directly. Thus to 

investigate the reliability and validity issues in the estimation of H we examine the four different 

approaches involving two different empirical models and two different estimation methods as indicated 

in Table 1.  

 

  Method for minimizing sum of squared errors 

Empirical model OLS GRG 

R/S = C*nH 

R/S = nH 
Table 1: Four methods for estimating the Hurst exponent H 

OLS regression is essentially a minimization problem that with certain assumptions can be solved 

algebraically to yield an expression for the value of the coefficients of a linear model at which the sum of 

squares of the prediction errors is at a minimum (Draper, 1998)4. When the conditions for these 

algebraic solutions do not exist, generalized extremum seeking convergence analysis may be used to 

hunt for the minimum. Numerical methods such as linear programming, quasi-Newton, reduced 

gradient, and generalized reduced gradient (GRG) use a trial-and-error algorithm to converge to an 

approximate solution (Lee, 2004) (University of Pittsburg, 2015) (Lasdon, 1973) (Lasdon, Nonlinear 

optimiation, 1973). The Solver tool in Microsoft Excel (Microsoft, 2015) includes a GRG tool that may be 

used for simple non-linear systems such as Equation 1.  
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2. THE ESTIMATED H-VALUES FOR EIGHT STOCK RETURNS TIME SERIES 

 

In the previous paper that this note follows, Rescaled Range Analysis was carried out for eight stock 

returns series (Munshi, There is no chaos in stock markets, 2014). They included daily returns for IXIC, 

DJI, BAC, and Cl, and weekly returns for SPX, CAT, BA, and IBM. In this note we compute the H-values of 

these time series using the four different methods listed in Table 1. The results are summarized in Table 

2. The computational details may be found in the relevant Excel file included in the data archive for this 

paper (Munshi, HurstExponentPaperDataArchive, 2015). Table 2 shows that for some of the stocks there 

is a great deal of variation among the four methods in the estimated value of H as well as in the 

precision5 of the estimate. These differences are easier to appreciate in their graphical depiction in 

Figure 1 and Figure 2.  

 

 

Model Method   IXIC DJI BAC CL SPX CAT BA IBM 

R/S=ln(C) + H*ln(√) OLS C 0.9550 1.0012 0.7339 1.3406 0.6999 1.1850 0.7721 0.9346 

    H 0.5282 0.5065 0.5810 0.4352 0.6030 0.4741 0.5872 0.5548 

    R2 0.8627 0.8639 0.8594 0.8382 0.8472 0.8211 0.8478 0.8395 

    sigma 0.0270 0.0257 0.0301 0.0245 0.0328 0.0283 0.0319 0.0311 

    H-0.5 0.0282 0.0065 0.0810 
-

0.0648 0.1030 
-

0.0259 0.0872 0.0548 

    t-statistic 1.0444 0.2529 2.6910 2.6449 3.1402 0.9152 2.7335 1.7621 

    p-value 0.3004 0.8012 0.0092 0.0104 0.0026 0.3637 0.0082 0.0831 

R/S=C*√H GRG C 0.8898 0.6631 0.6356 1.3220 0.9080 1.5396 1.0776 1.2200 

    H 0.5433 0.5827 0.6102 0.4399 0.5597 0.4286 0.5309 0.5103 

    R2 0.8961 0.8867 0.9368 0.9104 0.9184 0.8375 0.8591 0.8780 

    sigma 0.0265 0.0254 0.0288 0.0235 0.0315 0.0280 0.0317 0.0304 

    H-0.5 0.0433 0.0827 0.1102 
-

0.0601 0.0597 
-

0.0714 0.0309 0.0103 

    t-statistic 1.6345 3.2601 3.8224 2.5565 1.8950 2.5480 0.9751 0.3387 

    p-value 0.1073 0.0018 0.0003 0.0131 0.0628 0.0134 0.3334 0.7360 

R/S=H*ln(√) OLS H 0.5192 0.5067 0.5205 0.4925 0.5332 0.5073 0.5366 0.5416 

    R2 0.8624 0.8639 0.8498 0.8232 0.8356 0.8170 0.8413 0.8390 

    sigma 0.0270 0.0257 0.0303 0.0247 0.0330 0.0284 0.0320 0.0311 

    H-0.5 0.0192 0.0067 0.0205 
-

0.0075 0.0332 0.0073 0.0366 0.0416 

    t-statistic 0.7110 0.2607 0.6772 0.3034 1.0052 0.2573 1.1429 1.3372 

    p-value 0.4798 0.7952 0.5008 0.7626 0.3187 0.7978 0.2575 0.1860 

R/S=√H GRG H 0.5250 0.5184 0.5401 0.4846 0.5448 0.4974 0.5425 0.5413 

    R2 0.8946 0.8710 0.9186 0.8963 0.9174 0.8055 0.8585 0.8732 

    sigma 0.0265 0.0256 0.0291 0.0237 0.0315 0.0286 0.0317 0.0305 

    H-0.5 0.0250 0.0184 0.0401 
-

0.0154 0.0448 
-

0.0026 0.0425 0.0413 

    t-statistic 0.9429 0.7189 1.3773 0.6500 1.4213 0.0910 1.3407 1.3544 

    p-value 0.3494 0.4749 0.1734 0.5181 0.1602 0.9278 0.1849 0.1805 

Table 2: Comparison of H values of stock returns estimated using four different methods 
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The four different estimation methods listed in Figure 1 are: OLSC, corresponding to Method 1, GRGC, 

corresponding to Method 2, OLS, corresponding to Method 3, and GRG, corresponding to Method 4 in 

Table 1. Figure 1 shows that although the H values are fairly stable across estimation methods for some 

stocks, IXIC for example, for other stocks the value of H varies sufficiently to lead to different 

conclusions with respect to long term persistence in the series. Much of the divergence is introduced by 

the inclusion of C in the model. It is apparent in Figure 1 that the H values derived from empirical models 

that do not include C (OLS and GRG) are more stable than those derived from empirical models that do. 

A possible motive for the introduction of C is apparent in Figure 2 which shows that R2 is somewhat 

higher in models that include the constant C. 
 

 

Figure 1: Comparison of H values for eight stocks using four different methods 

 
 

 

Figure 2: Comparison of the values of R-squared 
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3. A TEST FOR VALIDITY 

 

In Figure 1 we can see that the H values estimated using the OLS and GRG methods are more stable than 

those derived with the OLSC and the GRGC methods but what is not clear is how these methods 

compare with respect to validity. Accordingly, a test for validity is devised using the same values of √ 

used in the stock returns series in Table 2 but this time we compute synthetic values of R/S set exactly 

equal to √0.5 so that the Hurst exponent is set to H=0.5. We then introduce “noise” into the R/S values as 

normally distributed residuals and incrementally increase the range of noise levels until the R-squared 

values of the estimation models are approximately equal to those in Table 2. Now that we know the true 

value of H, we can compare the validity of the four methods in estimating H. The results of these 

computations are shown in Table 3. The computational details may be found in the relevant Excel file 

included in the data archive for this paper (Munshi, HurstExponentPaperDataArchive, 2015). 

 

 

Noise GRG C Predicted-H Actual-H Error R-squared 

0.12 0 1 0.4901 0.5 0.0198 0.8963 
0.12 0 0 0.5002 0.5 0.0004 0.8959 
0.12 1 1 0.4968 0.5 0.0064 0.9501 
0.12 1 0 0.5005 0.5 0.001 0.95 

0.13 0 1 0.5214 0.5 0.0428 0.8938 
0.13 0 0 0.5009 0.5 0.0018 0.8924 
0.13 1 1 0.5467 0.5 0.0934 0.9311 
0.13 1 0 0.5108 0.5 0.0216 0.9251 

0.14 0 1 0.5183 0.5 0.0366 0.8769 
0.14 0 0 0.5007 0.5 0.0014 0.8759 
0.14 1 1 0.5449 0.5 0.0898 0.8967 
0.14 1 0 0.5095 0.5 0.019 0.8911 

0.15 0 1 0.4979 0.5 0.0042 0.8499 
0.15 0 0 0.4999 0.5 0.0002 0.8499 
0.15 1 1 0.4808 0.5 0.0384 0.922 
0.15 1 0 0.4989 0.5 0.0022 0.92 

0.16 0 1 0.4942 0.5 0.0116 0.8303 
0.16 0 0 0.4996 0.5 0.0008 0.8302 
0.16 1 1 0.5104 0.5 0.0208 0.912 
0.16 1 0 0.5027 0.5 0.0054 0.9117 

0.17 0 1 0.4839 0.5 0.0322 0.8061 
0.17 0 0 0.4991 0.5 0.0018 0.8053 
0.17 1 1 0.4664 0.5 0.0672 0.8763 
0.17 1 0 0.497 0.5 0.006 0.8707 

0.18 0 1 0.4873 0.5 0.0254 0.7889 
0.18 0 0 0.4989 0.5 0.0022 0.7884 
0.18 1 1 0.5739 0.5 0.1478 0.8567 
0.18 1 0 0.5111 0.5 0.0222 0.8418 

0.19 0 1 0.4476 0.5 0.1048 0.745 
0.19 0 0 0.4975 0.5 0.005 0.7355 
0.19 1 1 0.4181 0.5 0.1638 0.7867 
0.19 1 0 0.4872 0.5 0.0256 0.7687 

0.2 0 1 0.4709 0.5 0.0582 0.7383 
0.2 0 0 0.4978 0.5 0.0044 0.7358 
0.2 1 1 0.4212 0.5 0.1576 0.7117 
0.2 1 0 0.4916 0.5 0.0168 0.6817 

Table 3: Values of H and R-squared for synthetic data 
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It was found by trial and error that a noise range of 12% to 20% included the entire range of R-squared 

values observed in the empirical data for stocks. Thus, values of H and R-squared are computed for each 

of nine levels of random dispersion of the data and for each of four estimation methods. The nine levels 

of dispersion are shown in the column labeled Noise in Table 3. The error of each estimation is 

computed as the absolute value of the difference between the estimated value of H and the known 

value of H=0.5 and is reported in Table 3 as a fraction of the known value of H=0.5. The columns labeled 

GRG and C in Table 3 contain dummy coding to identify the estimation method.  The values for GRG and 

C in Table 3 may be interpreted as 1=yes and 0=no. These values relate to Table 1 according to:  

 

GRG=0, C=1 => OLSC => Method 1. OLS is used and the constant C is included in the estimation model. 

GRG=1, C=1 => GRGC => Method 2. GRG is used and the constant C is included in the estimation model. 

GRG=0, C=0 => OLS => Method 3. OLS is used and the constant C is left out of the estimation model. 

GRG=1, C=0 => GRG => Method 4. GRG is used and the constant C is left out of the estimation model. 

 

The results in Table 3 may be viewed graphically in Figure 3, Figure 4, and Figure 56. Figure 3 supports 

the intuition that the effect of increasing levels of dispersion is to lower the value of R-squared. Figure 3 

also contains the interesting information that the insertion of the constant C into the model does not 

appear to have a significant effect on R-squared. Instead what we find is that R-squared is generally 

higher for GRG models than they are for OLS models.  

 

 
Figure 3: Value of R-squared at increasing values of dispersion 
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Figure 4: Predicted value of H at increasing levels of dispersion 

 
 

 

Figure 4 shows that OLSC an GRGC are rather unstable as estimators of H with large swings in value. The 

relative instability of the C-models increases sharply at higher levels of dispersion.  In contrast, the OLS 

an GRG estimation methods appear to be relatively stable with OLS displaying a more stability than GRG.  

 
Figure 5: Prediction error at increasing levels of dispersion 

 
 

 

In terms of prediction error, we find that OLS consistently generates the best estimation and GRGC the 

worst although GRG performs better than OLSC. The data appears to indicate the insertion of the 

constant C into Hurst’s equation presents a serious problem in the estimation of The Hurst exponent.  
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A general linear model is used to assess the effect of Noise, GRG, and C on Error. The results are shown 

in Table 4 and the computational details are available in the synthetic data Excel file included in the data 

archive for this paper (Munshi, HurstExponentPaperDataArchive, 2015). 

 

  Coeff SE t Stat P-value 

Intercept 
-

0.1023411 0.0334995 
-

3.0549999 0.0045118 

Noise 0.59175 0.2016436 2.9346335 0.0061334 

GRG 0.0306333 0.0104128 2.9418837 0.0060219 

C 0.0546111 0.0104128 5.2445986 9.754E-06 

Table 4: General linear model for Error 

As in the previous paper we set our error rate for hypothesis tests at α=0.001 to be consistent with 

normal practice in Bayesian Statistics (Johnson, 2013). In strict conformance with α=0.001 we find that 

the only significant effect is that of C. On average the error in estimating H is higher by 0.0546 when the 

constant C is inserted into Hurst’s equation. On this basis and in view of our analysis of Figures 3, 4, and 

5, we can eliminate Method-1 and Method-2 (OLSC, GRGC) from consideration. Of the remaining two 

methods, the greater stability of OLS when compared with GRG7 appears to support the use of OLS for 

the empirical estimation of The Hurst exponent.  

 

Accordingly we reproduce the relevant section of Table 2 in Table 4 as our best estimate of H for the 

eight stock return series.  The high p-values in the last row show clearly that none of these values of H 

stands as evidence of persistence or of long term memory in stock returns and that these data do not 

serve as evidence against the efficient market hypothesis (EMH). 

 

Model Method   IXIC DJI BAC CL SPX CAT BA IBM 

R/S=H*ln(n) OLS H 0.5192 0.5067 0.5205 0.4925 0.5332 0.5073 0.5366 0.5416 

    R2 0.8624 0.8639 0.8498 0.8232 0.8356 0.8170 0.8413 0.8390 

    sigma 0.0270 0.0257 0.0303 0.0247 0.0330 0.0284 0.0320 0.0311 

    H-0.5 0.0192 0.0067 0.0205 
-

0.0075 0.0332 0.0073 0.0366 0.0416 

    t-statistic 0.7110 0.2607 0.6772 0.3034 1.0052 0.2573 1.1429 1.3372 

    p-value 0.4798 0.7952 0.5008 0.7626 0.3187 0.7978 0.2575 0.1860 

Table 5: Our best estimate for values of H for the eight stock series 
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4. CONCLUSIONS 

 

The usual procedure for the empirical estimation of The Hurst exponent in stock returns is to insert the 

constant C into the Hurst equation and then to use logarithmic transformation and OLS regression. Our 

study shows that the use of the constant C corrupts the estimation and is the probable cause of a large 

number of spurious findings in this field of research. We also find that although the logarithmic 

transformation may introduce a bias into the data, the OLS results are still superior to numerical 

methods such as the generalized reduced gradient method. We propose that The Hurst exponent in 

time series data should be estimated by a logarithmic transformation of Hurst’s equation to ln(R/S) = 

H*ln(√) where R/S is the rescaled range and √ is the sub-sample size. The value of H can then be 

estimated using OLS regression with the y-intercept restricted to b0 = 0.  
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