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1 Introduction

This paper o�ers an integrated time-series study of the joint transition behavior of the
S&P 500 index fStg and near-the-money short-dated option prices fCtg. Examining these
joint spot and option data through an arbitrage-free jump-di�usion model, we �nd compelling
evidence of a jump-risk premium that responds quickly to market volatility | becoming
more prominent during volatile markets. This jump-risk premium is important, not only in
reconciling the dynamics implied by the time series fSt; Ctg, but also in explaining changes
over time of the \smiles" and \smirks" found in cross-sectional options data.

The joint time-series data on spot and option prices strongly reject pure-di�usion models
(such as the Heston [1993] model), but do not disagree with the jump-di�usion models
considered in this paper. The stochastic-volatility model of Heston [1993] is examined both
with and without volatility-risk premia. Excluding volatility-risk premia from the Heston
[1993] model results in signi�cant inconsistency between the level of volatility observed in the
spot market and that implied, through the model, by the options market. Speci�cally, given
the level of spot-market volatility, this Heston [1993] model without volatility-risk premia
severely under-prices options. Including volatility-risk premia in the Heston [1993] model
resolves this \under-pricing" problem, but the volatility-risk premia thus estimated from
fSt; Ctg imply an explosive volatility process under the \risk-neutral" measure, and leads to
severely over-priced long-dated options.

The jump-di�usion model of Bates [1997] extends the Heston [1993] model by incorporat-
ing jumps in returns whose arrival intensity depends on the level of volatility. We consider
two variants of the Bates [1997] model, one incorporating premia for jump risk (\SVJ0"),
the other incorporating premia for both volatility and jump risks (\SVJ"). The SVJ0 and
SVJ models both �t the joint time-series data well. Key to this goodness of �t is the pres-
ence of non-trivial jump-risk premia that are highly correlated with market volatility. The
jump-risk premia uncovered by the SVJ model, however, are almost twice those uncovered
by the SVJ0 model. The estimated SVJ model compensates for its \overstated" jump-risk
premia (relative to the SVJ0 model) with negative volatility-risk premia. The \overstated"
jump-risk premia in the SVJ model result in exaggerated volatility \smirks" for short- and
medium-dated options, and (through negative volatility-risk premia) under-priced long-dated
options.

An empirical analysis of spot and option prices is challenged by the richness of the
data. On any given day, one observes a cross section of options with di�erent times to
expiration and degrees of moneyness. Such a rich structure of options data is also highly
informative, as each option re
ects, from a di�erent perspective, expectations regarding both
the underlying price dynamics and investors' risk attitudes. For example, the importance of
jump-risk premia is only uncovered when we examine the spot and option data jointly.

In order to capture some of this rich information regarding the underlying return dynam-
ics and risk attitudes, this paper adopts an \implied-state" generalized method of moments
(IS-GMM) estimation strategy. For a given set # of model parameters, we proxy for the
unobserved volatility Vt with an option-implied volatility V #

t , inverted from the time-t spot
price St and a near-the-money option price Ct, using the model-implied option-pricing for-
mula. (The true stochastic volatility Vt is recovered only at the true model parameter #0.)
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Access to the option-implied stochastic volatility V # allows us to explore the joint distri-
bution of spot and option prices by focusing directly on the dynamic structure of the state
variables (S; V ). This approach1 is especially attractive in our parametric setting, as the
conditional moment-generating function of (S; V ) is explicitly known. By taking advantage
of the analytically-derived conditional moments of (S; V ), we construct \optimal" moment
conditions in the spirit of Hansen [1985]. These analytical conditional moments also also
used as a rich set of diagnostic tools for investigating model mis-speci�cation.

Our econometric approach di�ers conceptually from those of Bates [1997] and Bakshi,
Cao, and Chen [1997], who focus mainly on cross-sectional options data. Both of these
studies estimate the \risk-neutral" model parameters and the current level Vt of stochas-
tic volatility by minimizing the sum of squared di�erences between the model-implied and
market-observed cross-sectional option prices.2 Their estimation strategies do not take ad-
vantage of a time-series model, and data, for the joint spot and option price process. That
strategy leaves open whether or not the price dynamics inverted from cross-sectional options
data are indeed consistent with the time-series properties of spot and option data. (Further
consistency tests in both Bates [1997] and Bakshi, Cao, and Chen [1997] show that the an-
swer is \no.") The integrated time-series approach of this paper is also better adapted to
the task of uncovering the nature of risk premia embedded in option prices.

Our �ndings are also consistent with, and partially explain, some previously reported
empirical �ndings. Using a joint time series of S&P 500 index and option prices, Chernov
and Ghysels [1999] �nd that the stochastic-volatility model of Heston [1993] is strongly
rejected by the joint data. Assuming that the S&P 500 index is a one-factor di�usion,
A��t-Sahalia, Wang, and Yared [1998] compare the state-price density estimated from cross-
sectional S&P 500 option prices to that inferred from time-series data on the S&P 500 index,
and �nd the di�erence to be signi�cant. A��t-Sahalia, Wang, and Yared [1998] also report
that the di�erence can be partially reconciled by adding a jump component to the index
dynamics. Evidence of volatility-risk premia is reported by Guo [1998], Benzoni [1998],
Chernov and Ghysels [1999], and Poteshman [1998]. These papers, however, do not consider
jump-risk premia, leaving open whether such volatility-risk premia are proxying for missing
jump-risk premia (as is shown here to be the case).

This paper also addresses some new econometric issues raised by the use of options with
time-varying contract variables, such as times to expiration and moneyness. Because the
option-implied volatility V # depends on such contract variables, time variation in contract
variables could introduce spurious e�ects in V # (unless, of course, # = #0), which in turn
introduces a form of \nuisance parameter" in the moment conditions. This problem is
not speci�c to the IS-GMM approach. It applies to other estimation approaches (such as
simulated method of moments or maximum-likelihood estimation) that use the same time
series of option prices. This issue of time-varying contract variables, inherent in exchange-

1An alternative approach can be found in Chernov and Ghysels [1999], who build moment conditions

directly on S&P 500 returns and option prices (measured in Black-Scholes implied-volatility), using the

SNP/EMM empirical strategy of Gallant and Tauchen [1998].
2Bakshi, Cao, and Chen [1997] minimize the sum of squared pricing di�erences on a daily basis, leaving

the model parameters vary from day to day. Bates [1997], on the other hand, minimizes the sum of squared

pricing errors over the entire time-series, keeping the model parameters �xed.
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traded options data, has been largely ignored in the previous literature. In this paper, we
prove consistency and asymptotic normality of the IS-GMM estimators, under mild technical
conditions on the time-varying contract variables.

Even for the jump-di�usion models considered in this paper, there remains signi�cant
room for improvement. In particular, our diagnostic tests indicate (i) mis-speci�cation for
the term structure of volatility, and (ii) poor �ts for the third and fourth conditional moments
of stochastic volatility. Both of these �ndings may call for a stochastic-volatility model with
two factors | one strongly persistent, the other quickly mean-reverting and highly volatile.
The second �nding also suggests the possibility of jumps in volatility.

The form of jump-risk premia considered in this paper can also be extended. In partic-
ular, this paper allows only for risk premia for the size of jumps, assigning no premia for
uncertainty regarding the timing of jumps. While aversion to both types of jump uncertainty
is realistic and potentially important for option valuation, concerns over our ability to sep-
arately identify these two types of jump-risk premia motivate us to \lump" them together
for purpose of estimating the model.

The rest of the paper is organized as follows. Section 2 sets up an arbitrage-free jump-
di�usion pricing model and provides the associated option-pricing formula. Section 3 in-
troduces IS-GMM estimation, establishes conditions for strong consistency and asymptotic
normality of IS-GMM estimators with time-varying contract variables, and provides details
on the construction of \optimal" moment conditions. Section 4 summarizes the empirical
�ndings, and Section 5 concludes the paper. Technical details are provided in appendices.

2 The Model

This section provides the dynamic model of spot prices, and a speci�cation of risk premia
that determine options prices.

2.1 The Data-Generating Process

We �x a probability space (
;F ; P ) and an information �ltration (Ft) satisfying the usual
conditions,3 and let S be the ex-dividend price process of a security that pays dividends
at a stochastic proportional rate q, whose speci�cation will follow shortly. The stochastic-
volatility model with state-dependent jumps (SVJ model) is parameterized as

dSt = [rt � qt + �sVt � (�0 + �1Vt)�
�]St dt+

p
VtSt dW

(1)
t + dZt

dVt = �v(�v � Vt) dt+ �v
p
Vt

�
� dW

(1)
t +

p
1� �2 dW

(2)
t

�
;

(2.1)

where W =
�
W (1) ;W (2)

�>
is an adapted standard Brownian motion in R2, � 2 (0; 1) is a

constant coeÆcient controlling correlation between the \Brownian" shocks to S and V , r
is a short interest-rate process de�ned below, and Z is a pure-jump process to be de�ned
shortly. The stochastic-volatility process V is an autonomous one-factor \square-root" pro-
cess, characterized by Feller [1951], with constant long-run mean �v, mean-reversion rate �v,

3See, for example, Protter [1990].
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and volatility coeÆcient �v. The jump-event times fTi : i � 1g of the pure-jump process
Z arrive with a state-dependent stochastic intensity process f�0 + �1Vt : t � 0g, for some
non-negative constants �0 and �1. (The conditional probability at time t of another jump
before t + �t is, for some small �t, approximately (�0 + �1Vt)�t.) At the i-th jump time
Ti, the price jumps from S(Ti�) to S(Ti�) exp(U s

i ), where U
s
i is normally distributed with

mean �J and variance �2J , independent of W , of inter-jump times, and of U s
j for j 6= i. The

mean relative jump size is � = E(exp(U s) � 1) = exp(�J + �2J=2) � 1. Finally, �s and ��

are constant coeÆcients associated with premia for \Brownian" return risk and jump risk.
respectively. The jump model is of the Cox-process type: Conditional on the path of V ,
jump arrivals are Poisson with time-varying intensity f�0+�1Vt : t � 0g. (See, for example,
Br�emaud [1981].)

The short interest-rate process r is of the type modeled by Cox, Ingersoll, and Ross
[1985]. Speci�cally, r and the dividend-rate process q are de�ned by

drt = �r(�r � rt) dt+ �r
p
rt dW

(r)
t

dqt = �q(�q � qt) dt+ �q
p
qt dW

(q)
t ;

(2.2)

whereW (r) andW (q) are independent adapted standard Brownian motions in R, independent
also ofW and Z. Similar to the stochastic-volatility process V , both r and q are autonomous
one-factor square-root processes with constant long-run means (�r and �q), mean-reversion
rates (�r and �q), and volatility coeÆcients (�r and �q). Our formulation of r and q precludes
possible correlation between r and q, as well as more plausible and richer dynamics for the
short-rate process. For the short-dated options used to �t our model, however, the particular
stochastic nature of interest rates r and dividend yields q plays a relatively minor role.4

Except for the stochastic short-rate process r and dividend-rate process q, the SVJ model
speci�ed in (2.1) is a special case of that of Bates [1997], which in turn extends the stochastic-
volatility model (SV) of Heston [1993]. Compared with the Merton [1976] jump extension
of the Black and Scholes [1973] model, two important characteristics introduced by the SVJ
model are: (1) volatility is itself stochastic, driven by a series of random shocks that could be
either positively or negatively correlated with the random shocks driving the price process;
(2) the jump-arrival intensity is state-dependent.

Appendix A provides a more precise technical speci�cation of the model by specifying
the in�nitesimal generator of the state process (lnS; V; r; q).

2.2 The State-Price Density

The concept of a state-price density (or pricing kernel) is central to the dynamic asset-pricing
literature. In essence, a state-price density process � is such that the time-t price of a claim
paying Ys at some future time s is given (under technical conditions) by Et(�sYs)=�t, where
Et denotes Ft-conditional expectation. Under technical conditions, the existence of a state-
price density ensures the absence of arbitrage, and conversely. (See, for example, DuÆe

4In this paper, we choose to treat r and q as stochastic processes, as opposed to time-varying constants,

in order to accommodate stochastic interest rates and dividend yields, which vary in the data, and whose

levels indeed a�ect even short-dated option prices. This approach could also be potentially useful for studies

of very long-dated options such as leaps.
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[1996] and references therein.) In our setting of stochastic volatility and jumps, markets
are incomplete, and the state-price density is not unique. Our approach5 is to focus on
a candidate state-price density that prices the three important sources of risks: di�usion
price shocks, jump risks, and volatility shocks. Without much loss for our pricing problem
(because of their mild e�ects on short-dated option prices), we assume that the interest-rate
and dividend-rate risks are not priced.

Consider a candidate state-price density � of the form

�t = exp

�
�
Z t

0

r� d�

�
E
�
�
Z t

0

�� dW�

�
exp

 X
i;Ti�t

U�
i

!
; (2.3)

where E( � ) denotes the stochastic exponential,6 and where � and U�
i are de�ned as follows.

Associated with the Brownian motions W (1) and W (2) are their respective market prices of
risks �(1) and �(2), de�ned by

�
(1)
t = �s

p
Vt ; �

(2)
t = � 1p

1� �2

�
��s +

�v

�v

�p
Vt ; (2.4)

where �s and �v are constant coeÆcients. The jump risks are priced with the i.i.d. random
variables U�

1 ; U
�
2 ; : : : , normally distributed with mean �� and variance �

2
�, and independent of

W , W r, W q, and inter-jump times. We suppose that U�
i and U s

j are independent for i 6= j,
and that U�

i and U s
i have correlation ��. The most general form of jump-risk premia is

obtained by treating ��, ��, and �� as free parameters. In this paper, however, we constrain
the mean relative jump size in the state-price density to be zero. That is, ��+�

2
�=2 = 0. We

postpone a motivation for this constraint to the next subsection when we introduce a \risk-
neutral" measure associated with this state-price density �. We let �� = exp(�J + �J���� +
�2J=2)� 1, which can be interpreted as the mean relative jump size under the \risk-neutral"
measure associated with �. (A formal de�nition given in the following section.)

We now show that (2.3) indeed de�nes a state-price density. Let

S =

�
St exp

�Z t

0

q� d�

�
: 0 � t � T

�
; B =

�
exp

�Z t

0

r� d�

�
: 0 � t � T

�
;

be the total gain processes generated by holding one unit of the underlying security and
one dollar in the bank account, respectively. For � to be a state-price density, the de
ated
processes S� = �S and B� = �B are required, by de�nition, to be local martingales. Ap-
pendix B shows that this indeed rules out arbitrage opportunities involving S and B, under
natural conditions on dynamic trading strategies.

5An alternative approach is preference-based equilibrium pricing, for which the state-price density arises

from marginal rates of substitution evaluated at equilibrium consumption streams. See Lucas [1978]. Also,

see Naik and Lee [1990] for an extension to jumps, Pham and Touzi [1996] for an extension to stochastic

volatility, and Detemple and Selden [1991] for an analysis on the interactions between options and stock

markets.
6The stochastic exponential of a continuous semi-martingale X , with X0 = 0, is de�ned by E(X)t =

exp (Xt � [X;X ]t =2), where [X;X ] is the total quadratic-variation process.
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Finally, we show that S� and B� are indeed local martingales. By Ito's Formula,

dS�
t =

�p
Vt � �st

�
S�
t dW

s
t � �vt S�

t dW
v
t +

�
exp

�
U�
Nt

+ U s
Nt

�� 1
�S�

t� dNt � (�0 + �1 Vt)�
�S�

t dt

dB�
t = ��st B�

t dW
s
t � �vt B�

t dW
v
t +

�
exp

�
U�
Nt

�� 1
� B�

t� dNt ;

where Nt is the number of price jumps by time t. We see that S� and B� are in fact local
martingales, by using the fact that, for any i � 1, U�

i and U s
i are independent of fVtg and

that

E [exp (U�
i + U s

i )� 1] = exp

�
�� +

�2�
2
+ �J + �� �s � +

�2J
2

�
� 1 = ��

E [exp (U�
i )� 1] = exp

�
�� +

�2�
2

�
� 1 = 0 :

2.3 The Risk-Neutral Dynamics

In order to rule out arbitrage involving not only the underlying spot and interest rate markets,
but also the options markets, it is enough to assign a price Et

�
�T (ST �K)+

�
to any call

option expiring at time t with strike price K, and likewise for put options. For the purpose of
arbitrage-free derivative pricing, however, it is generally convenient to transform the pricing
calculation to those under the associated \risk-neutral measure." (Harrison and Kreps [1979])
For this, we de�ne a density process � by

�t = �t exp

�Z t

0

rs ds

�
= E

�
�
Z t

0

�� dW�

�
exp

0
@ X
fi: Ti�tg

U�
i

1
A ; 0 � t � T : (2.5)

Applying Ito's Formula, one can show that � is a local martingale. If � is actually a martin-
gale,7 then � uniquely de�nes an equivalent martingale measure Q. Both r and q have the
same joint distribution under Q as under the data-generating measure P . The dynamics of
(S; V ) under Q are of the form8

dSt = [rt � qt � (�0 + �1Vt)�
�] St dt+

p
Vt St dW

(1)
t (Q) + dZ

Q
t ;

dVt = [�v (�v � Vt) + �vVt] dt+ �v
p
Vt

�
� dW

(1)
t (Q) +

p
1� �2 dW

(2)
t (Q)

�
;

(2.6)

where W (Q) =
�
W (1)(Q) ; W (2)(Q)

�
is a standard Brownian motion under Q de�ned by

Wt(Q) = Wt +

Z t

0

�s ds ; 0 � t � T : (2.7)

This can be shown as an application of Levy's Characterization Theorem. See, for example,
Karatzas and Shreve [1991]. The pure-jump process ZQ has an distribution under Q that is

7Appendix C gives a suÆcient Novikov-like condition on the model parameters, for � to be a martingale.
8Appendix A provides a more precise technical speci�cation of the model by specifying the in�nitesimal

generator of the state process (lnS; V; r; q) under the risk-neutral measure Q.
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identical to the distribution of Z under P de�ned in (2.1), except that, for any i � 1, U s
i is

normally distributed with Q-mean ��J and Q-variance �J . In particular, one can show that
��J = �J + �J����. The mean relative jump size of S under Q is �� = EQ (exp(U s)� 1) =
exp (��J + �2J=2)� 1.

We now focus on the types of jump-risk premia. By allowing the risk-neutral mean
relative jump size �� to be di�erent from its data-generating counterpart �, we accommodate
a premium for jump-size risk. Similarly, a premium for jump-timing risk can be incorporated,
if we allow the coeÆcients ��0 and �

�
1 for the risk-neutral jump-arrival intensity to be di�erent

from their respective data-generating counterparts �0 and �1. In this paper, however, we
focus only on the risk premium for jump-size and ignore the risk premium for jump-timing
by supposing9 that ��0 = �0 and �

�
1 = �1. With this assumption, all jump risk premia will be

arti�cially absorbed by the jump-size risk premium coeÆcient �� ��, resulting in an time-t
expected excess rate of return for jump risk of (�0 + �1Vt)(�� ��). We adopt this approach
mainly out of empirical concern over our ability to separately identify the risk premia for
jump timing and jump size. For example, the arrival intensity of price jumps, as well as
the mean relative jump size �, could be diÆcult to pin down using the S&P 500 index data
under a GMM estimation approach.

Premia for \conventional" return risks (\Brownian" shocks) are parameterized by �sVt,
for a constant coeÆcient �v. This is similar to the risk-return trade-o� in a CAPM framework.
Premia for \volatility" risks, on the other hand, are not as transparent, since volatility is
not directly traded as an asset. Because volatility is itself volatile, options may re
ect an
additional volatility risk premium. Volatility risk is priced via the extra term �vVt in the
risk-neutral dynamics of V in (2.6). For a positive coeÆcient �v, the time-t instantaneous
mean growth rate of the volatility process V is therefore �vVt higher under the risk-neutral
measure Q than under the data-generating measure P . Since option prices respond positively
to the volatility of the underlying price in this model, option prices are increasing in �v.

The linear form of the volatility-risk premia �vVt could be relaxed by introducing the
polynomial form �0+�1Vt+�2V

2
t + � � �+�lV l

t , for some constant coeÆcients �0; �1; �2; : : : ; �l.
In our speci�cation, however, we rule out the possibility that �0 6= 0. The quadratic term
�2V

2
t seems an interesting case, which is not, however, studied in this paper.

2.4 Option Pricing

The model parameters are �r = [�r ; �r ; �r]
>, �q = [�q ; �q ; �q]

>, and

# = [�v ; �v ; �v ; � ; �
s ; �v ; �0 ; �1 ; � ; �J ; �

�]> ; (2.8)

where the vectors �r and �q include the model parameters for the interest-rate process r
and the dividend-rate process q, respectively. We will focus on the parameter vector #, an
element of a parameter space � � Rn# with n# = 11.

9This is a direct consequence of our speci�cation of the state-price density � in Section 2.2. Specif-

ically, we impose the constraint �� + �2�=2 = 0. One can show that ��0 = �0 exp
�
�� + �2�=2

�
and

��1 = �1 exp
�
�� + �2�=2

�
. The constraint �� + �2�=2 = 0 therefore corresponds to ��0 = �0 and ��1 = �1.

Similarly, the risk-neutral standard deviation ��J of the jump amplitude can also be di�erent from its data-

generating counterpart �J .
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Let Ct denote the time-t price of a European-style call option on S, struck at Kt and
expiring at T = t+ �t. Assuming that E(�TST ) <1, we have

Ct =
1

�t
Et

�
�T (ST �K)+

�
= E

Q
t

�
exp

�
�
Z T

t

ru du

�
(ST �K)+

�
: (2.9)

In order to calculate the expectation in (2.9), we adopt a transform-based approach. (See,
for example, Stein and Stein [1991], Heston [1993], Bates [1997], Bakshi, Cao, and Chen
[1997], Bakshi and Madan [1999], and DuÆe, Pan, and Singleton [1999].) Speci�cally, for
any c 2 C, the time-t conditional transform of lnST , when well de�ned, is given by

 #(c; Vt ; rt ; qt ; T � t) = E
Q
t

�
exp

�
�
Z T

t

ru du

�
ec lnST

�
:

Under certain integrability conditions (DuÆe, Pan, and Singleton [1999]),

 #(c; v; r; q; �) = exp

�
�(c; �; #; �r; �q) + �v(c; �; #) v + �r(c; �; �r) r + �q(c; �; �q) q

�
; (2.10)

where �, �v, �r, and �q are shown explicitly in Appendix D. For notational simplicity, the
dependence of  on �r and �q is not shown.

Letting kt = Kt=St be the time-t \strike-to-spot" ratio, the time-t price of a European-
style call option with time-to-expiration �t can be calculated as

Ct = St f(Vt; #; rt; qt; �t; kt) ;

where f : R+ � �� R+ � R+ � R+ � R+ ! [0; 1] is de�ned by

f(v; #; r; q; �; k) = P1 � kP2 ; (2.11)

with

P1 =
 (1; v; r; q; �)

2
� 1

�

Z 1

0

Im
�
 (1� iu; v; r; q; �)ei u(ln k)

�
u

du

P2 =
 (0; v; r; q; �)

2
� 1

�

Z 1

0

Im
�
 (�iu; v; r; q; �)ei u(ln k)�

u
du ;

(2.12)

where Im(�) denotes the imaginary component of a complex number.
The integrations in (2.12) are typically carried out by a numerical scheme, a potential

source of computational burden and numerical errors. In Appendix E, we introduce a new
numerical inversion scheme that o�ers both computational eÆciency and error control by
taking advantage of the fact that the transform  is explicitly known.

3 Estimation

This section focuses on a strategy for using market-observed data to estimate the parameters
�r, �q, and # of the state process (S; V; r; q) and state-price density �. We adopt a two-stage
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approach. The �rst stage obtains the maximum-likelihood (ML) estimates of �r and �q,
using time series of interest rates and dividend yields, respectively. The second stage treats
the ML estimates of �r and �q as true parameters, and adopts an \implied-state" GMM
estimation strategy for #, using a joint time series of spot and option prices. A direct one-
stage estimation of (#; �r; �q) is feasible and does not involve any new conceptual diÆculties.
We choose this two-stage approach for simplicity. Any loss of eÆciency from the two-stage
approach is expected to be small, as the particular stochastic natures of r and q play a
relatively minor role in pricing the short-dated options that we use to estimate #. This
two-stage approach also allows us to focus more easily, in the second stage, on the dynamic
implications of the joint spot price and option data.

Treating the ML estimates �r and �q as true parameters, we show in this section that
\implied-state" GMM estimators are consistent. This result can be easily extended to our
two-stage setting, given the consistency of the ML estimators �̂r and �̂q.

3.1 \Implied-State" GMM Estimators

Fixing some time interval �, we sample the continuous-time state process fSt; Vt; rt; qtg at
discrete times f0;�; 2�; : : : ; N�g, and denote the sampled process fSn�; Vn�; rn�; qn�g by
fS�

n ; V
�
n ; r

�
n ; q

�
n g. Letting

yn = lnS�
n � lnS�

n�1 �
Z n�

(n�1)�

(ru � qu) du (3.1)

denote the date-n \excess" return, it is easy to see that transition distribution of fyn; V �
n g

depends only on parameter vector #, and not on �r or �q. For the purpose of estimating #,
we construct nh � n# moment conditions of the form

E#0
n�1

�
h
�
y(n;ny); V(n;nv); #0

��
= 0 ; (3.2)

where #0 is the true model parameter, h : R
ny �Rnv+ ��! Rnh is some test function to be

chosen,10 E#
n�1 denotes F(n�1)�-conditional expectation under the transition distribution of

(y; V ) associated with parameter #, and, for some positive integers ny and nv,

y(n;ny) =
�
yn; yn�1; : : : ; yn�ny+1

�>
and V(n;nv) =

�
V �
n ; V

�
n�1; : : : ; V

�
n�nv+1

�>
denote the \ny-history" of y and the \nv-history" of V , respectively.

As with the generalized method of moments (GMM) approach of Hansen [1982], the
set (3.2) of moment conditions allows for an exploration of the dynamic structure of the
state variables S and V . Setting our situation apart from that of a typical GMM, we do
not directly observe, at each date n, the stochastic volatility V �

n . Our approach is to take
advantage of the date-n market-observed spot price Sn and option price Cn, and explore
the option-pricing relation cn = Cn=Sn = f(V �

n ; #0). In fact, we will formally introduce, in
the paragraph below, a #-proxy of V �

n , obtained by inverting this option-pricing relation at

10We assume that h is continuously di�erentiable and integrable in the sense of (3.2).
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some candidate parameter # 2 �. Given this #-proxy of V �
n , denoted V #

n , we can construct
the sample analogue of the moment condition (3.2) by

GN(#) =
1

N

X
n�N

h
�
y(n;ny); V

#
(n;nv)

; #
�
; (3.3)

and de�ne the \implied-state" GMM (IS-GMM) estimator by #̂N by

#̂N = arg min
#2�

GN(#)
>WN GN(#) ; (3.4)

where fWng is an (Fn�)-adapted sequence of nh�nh positive semi-de�nite distance matrices.
We now formally introduce the concept of option-implied volatility V #. Let cn = Cn=Sn

be the price-to-spot ratio of the option observed on date n, with time �n to expiration and
strike-to-spot ratio kn. We have, using the option-pricing function f de�ned by (2.11),

cn = f(V �
n ; #0; r

�
n ; q

�
n ; �n; kn) ; (3.5)

where #0 2 � is the true model parameter. Let � � [0; 1]���R+�R+�R+�R+ denote
the domain of invertibility (with respect to volatility) of the option-pricing function f of
(2.11), in that � is the maximal set for which a mapping g : �! R+ is uniquely de�ned by

f(g(c; #; r; q; �; k); #; r; q; �; k) = c ; (3.6)

for all (c; #; r; q; �; k) 2 �. We suppose that the parameter space � is de�ned so that, for
any observation date n and all # 2 �, we have (cn; #; rn; qn; �n; kn) 2 �. In e�ect, this is a
joint property of the data and �, akin to an assumption that the model is not shown to be
mis-speci�ed. Indeed, in the empirical results to follow, inversion was possible at all data
points. For any # 2 �, we can therefore de�ne the date-n option-implied volatility by

V #
n = g(cn; #; r

�
n ; q

�
n ; �n; kn) : (3.7)

One important property of V #
n is that that the true date-n stochastic volatility V �

n is retrieved
when V #

n is evaluated at the true model parameter #0.
We also note that the sample analogue (3.3) of the moment condition (3.2) requires

observations of the excess return y. In order to construct the excess-return process y de�ned
by (3.1), we need to observe, at any time t, the continuous-time processes r and q. In
practice, however, we observe r and q at a �xed time interval �. In our estimation, we use
~yn = lnS�

n � lnS�
n�1�

�
r�n�1 � q�n�1

�
� as a proxy for yn. For a relatively short time interval

� (our data are weekly), the e�ect of this approximation error on our results is assumed to
be small.11

Our IS-GMM approach falls into a group of estimation strategies for state variables that
can only be observed up to unknown model parameters.12 This econometric setting arises in

11Alternative proxies for
R n�

(n�1)�
(rt�qt) dt, such as

�
r�n � q�n

�
� and

��
r�n + r�n�1

�
=2�

�
q�n + q�n�1

�
=2

�
�,

are also considered. The empirical results reported in this paper are robust with respect to all three proxies.
12In the stochastic-volatility framework of Hull and White [1987], Renault and Touzi [1996] develop an

MLE-based two-step iterative procedure. Applications of simulated method of moments to option and under-

lying spot markets can be found in Pastrorello, Renault, and Touzi [1996] and Chernov and Ghysels [1999].

More recently, Singleton [1999a] develops a conditional-characteristic-function-based estimation method for

the general class of aÆne jump-di�usions. In particular, the implied-state approach using GMM is also

discussed in Singleton [1999a].
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many other empirical applications. For example, zero- and coupon-bond yields, exchange-
traded interest-rate option prices, over-the-counter interest-rate cap and 
oor data, and
swaptions can all in principle be used to invert for an otherwise-unobserved multi-factor
state variable that governs the dynamics of the short interest rate process. Dai and Singleton
[1997] provide an example in a swap-curve setting. More recently, Piazzesi [1999] adds
Federal Reserve target rates and macro-economic variables to the swap-curve setting. As
another example, an increasingly popular approach in the literature (on defaultable bonds,
in particular) is to model the uncertain mean arrival rate of economic events through some
stochastic intensity process.13 If there exist market-traded instruments whose values are
linked to such events, then the otherwise-unobserved intensity processes can be \backed
out."

It should be noted that, on each date n, our IS-GMM approach uses only one option price
Cn from the entire date-n cross section of option prices, ignoring the additional information
potentially contained in the unused cross-sectional option data. Under the null that the
model is true, the \neglected" information is in fact redundant. This approach bene�ts from
its avoidance of a relatively ad hoc assumption of \pricing errors" for cross-sectional options
data. Such a strategy also allows us to focus �rst only on the tension between spot and
option prices, and then extrapolate the IS-GMM estimation result to cross-sectional option
data.

Finally, this approach of inverting for a proxy of the otherwise-unobserved state variable
V can be extended to cases in which V is multi-dimensional. For example, in the two-factor
stochastic-volatility model of Bates [1997], the price process S is driven by two unobserved
stochastic volatility factors, V (1) and V (2), which are not directly observed. For this, we
could collect, on each date n, the prices of two options with distinct contract variables
(� 1n; k

1
n) 6= (� 2n; k

2
n). Under mild technical conditions, we can use the option pairs to obtain

proxies for the implied volatility state variables.

3.2 Large-Sample Properties of IS-GMM Estimators

An inherent feature of exchange-traded options is that certain contract variables, such as
time �n to expiration and strike-to-spot ratio kn, vary from observation to observation. As
the option-implied stochastic volatility V #

n depends on �n and kn, this variation in contract
variables introduces a form of nuisance-dependency to the moment conditions that may af-
fect the large-sample properties of the IS-GMM estimators. In this section, we establish
the strong consistency and asymptotic normality of IS-GMM estimators under assumptions
of weak time-stationarity of f�ng and geometric ergodicity of fyn; Vn; rn; qn; kng. The re-
sults established in this section could be useful in other applications using exchange-traded
derivative securities.14

13See, for example, DuÆe and Singleton [1999] and Du�ee [1999], and references therein.
14For exchange-traded derivatives, this situation of time-varying contract variables almost always arises.

In over-the-counter markets, however, contract variables on regularly quoted derivative prices are usually

constant over time. See Brandt and Santa-Clara [1999] for an application to over-the-counter derivatives.
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3.2.1 Stationarity Assumption for Contract Variables

Figure 1 plots f�n; kng for a time series of S&P 500 options, where �n is chosen closest to
30 days to expiration (with a lower bound of 15 days), and where kn = Kn=Sn, with Kn

selected nearest to Sn from a grid of available strike prices.15 Qualitatively, we see that f�ng
is \repetitive," in an almost deterministic fashion according to the business calendar, while
fkng evolves in a random fashion that can be thought of as a sample path drawn from a
stationary process.
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Figure 1: Time series of contract variables: time-to-expiration � and strike-to-spot ratios k.

Given the nearly periodic feature of f�ng, the usual mixing conditions used for consistency
are diÆcult to justify. For example, suppose that f�ng is of the form (40, 33, 26, 19, 40,
33, 26, 19, : : : ). Then on date n, depending on where we start initially, �n can be 40,
33, 26, or 19. E�ectively, this chain has an in�nitely long \memory," contrary to the usual
mixing property.16 In this paper, we take an alternative approach, and assume that f�ng
takes only �nitely many outcomes, and satis�es a time-stationarity property (Assumption 3.1
below) that is weaker than typical mixing conditions. In the above example, for instance,
f�ng is time stationary because the fraction of observations for which �n = 40 converges
to 0.25, and likewise for each of the other outcomes of �n. Such an assumption of �nitely
many outcomes is characteristic of many derivative contract variables, such as the indicator

15To be more precise, we select Kn to be closest to the daily average of spot prices on the n-th day. See

also Section 4.1.
16The \mixing" property of a Markov chain can be intuitively explained by a physical analogue: the

location of a particle or gaseous mixture becomes less and less dependent on its initial position as time

progress. See Gallant and White [1988] and references therein.
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for \put" versus \call," the exchange identity (for example, CBOE, CME, or PHLX) from
which the derivative securities are observed, the maturity of the underlying instruments (in
the case of interest-rate derivatives), or multiple selections of an underlying.

An appropriate stationarity assumption for the dynamic behavior of the strike-to-spot
ratio fkng, on the other hand, is not as clear. In particular, the evolution of fkng could be
quite complicated, depending on the evolution over time of the strike-price grid, which is
driven by detailed institutional features of the equity index option market. In this paper, our
consistency result can be based on the assumption that fkng is, joint with fyn; Vn; qn; rng,
geometrically ergodic, as stated more precisely below and in Appendix I.

3.2.2 Consistency

We �rst establish a link between the #-proxy V #
n and the true volatility state variable V �

n

by letting V #
n = �(V �

n ; #; r
�
n ; q

�
n ; �n; kn), where � : R+ � �� R+ � R+ � R+ � R+ ! R+ is

de�ned by

�(v; #; r; q; �; k) = g(f(v; #0; r; q; �; k); #; r; q; �; k) ; (3.8)

where g is de�ned by (3.6), using the fact that cn = f(V �
n ; #0; r

�
n ; q

�
n ; �n; kn). We note that

�(v; #0; r; q; �; k) = v.
Next, letting Xn =

�
y(n;ny); V(n;nv); r(n;nv); q(n;nv); k(n;nv)

�
denote the \ny-history" of y and

the \nv-histories" of r, q, k, and � , and letting Yn = �(n;nv) denote the \nv-history" of � , we
write

H(Xn; #; Yn) = h
�
y(n;ny); �

�
V(n;nv); #; r(n;nv); q(n;nv); �(n;nv); k(n;nv)

�
; #
�
; (3.9)

where r(n;nv) = [rn; rn�1; : : : ; rn�nv+1], and, analogously, q(n;nv), k(n;nv), and �(n;nv) are the
nv-dimensional vectors consisting of qn, kn, �n, and their respective lags. As outlined in the
previous subsection, reasonable stationarity assumptions for X and Y are rather di�erent,
and are treated separately.

Assumption 3.1 (Time Stationarity of Y ) fYng has �nitely many outcomes, denoted

f1; 2; : : : ; Ig. For each outcome i and each positive integer N , let A
(i)
N = fn � N : Yn = ig

be the dates, up to N , on which Y has outcome i. For each i, there is some wi 2 [0; 1], such
that

lim
N

#A
(i)
N

N
= wi a:s: ; (3.10)

where #( � ) denotes cardinality.
Appendix I shows the state vector fyn; Vn; rn; qng is geometrically ergodic, under easy-to-
check parameter restrictions on #. Assuming further that fkng and fyn; Vn; rn; qng are jointly
geometrically ergodic, we know that Xn =

�
y(n;ny); V(n;nv); r(n;nv); q(n;nv); k(n;nv)

�
is geometri-

cally ergodic, since it includes only �nitely many lags of the joint process. The pointwise
strong law of large numbers (SLLN) part of Assumption 3.2 below then follows from Glynn
[1999], under Assumption 3.1 and the additional assumption of independence between X
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and Y . This independence assumption is trivially satis�ed in our setting because Y is de-
terministic.17

Assumption 3.2 (USLLN of A(i)-Sampling) For each outcome i of Y , letting

G
(i)
N (#) =

1

#A
(i)
N

X
n2A

(i)

N

H(Xn; #; i) ;

G
(i)
1 (#) = limN G

(i)
N (#) exists (pointwise SLLN), and

sup
#2�

jG(i)
N (#)�G(i)

1 (#)j ! 0 a:s: : (3.11)

Given the pointwise-SLLN portion of Assumption 3.2, in order to establish the uniform SLLN
of Assumption 3.2, it is typical to assume some form of Lipschitz condition on H(x; #; i) as
a function of #. Examples of such conditions include the Lipschitz and derivative conditions
of Andrews [1987] and the �rst-moment-continuity condition of Hansen [1982].

We now establish the uniform strong law of large numbers (USLLN) of fH(Xn; #; Yn)g,
key step step to establishing the strong consistency of f#̂Ng. A proof is given in Appendix H.

Proposition 3.1 (USLLN of H(X; #; Y )) Under Assumptions 3.1 and 3.2, for each #,

G1(#) = limN GN(#) exists, and

sup
#2�

jGN(#)�G1(#)j ! 0 a:s: ;

where GN(#), de�ned by (3.3), is the sample moment of the observation function.

Finally, to show strong consistency of the IS-GMM estimator f#̂Ng, we adopt the following
two standard assumptions.

Assumption 3.3 (Convergence of Weighting Matrices) WN ! W0 almost surely

for some constant symmetric positive-de�nite matrix W0.

Under Assumption 3.3 and the conditions of Proposition 3.1, the criterion function CN(#) =
GN(#)

>WNGN(#) converges almost surely to the asymptotic criterion function C : � ! R
de�ned by C(#) = G1(#)

>W0G1(#): In particular, we have C(#0) = 0, given the moment
condition (3.2), the pointwise-SLLN portion of Proposition 3.1, and the fact that V #0

n = V �
n .

Assumption 3.4 (Uniqueness of Minimizer) C(#0) 6= C(#), # 2 �, # 6= #0.

Theorem 3.1 (Strong Consistency) Under Assumptions 3.1{3.4, the IS-GMM f#Ng
estimator converges to #0 almost surely as N !1.

Given the Uniform SLLN (Proposition 3.1), the proof is standard and omitted. (See, for
example, the proof of Theorem 3.3 in Gallant and White [1988].)

17Independent-sampling strong laws for more general processes can be found in Glynn and Sigman [1998].
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3.2.3 Asymptotic Normality

Next, we establish asymptotic normality for the IS-GMM estimator, allowing for time-varying
contract variables. Because �(v; #0; r; q; �; k) = v, the sample moment GN(#) evaluated
at the true parameter #0 does not depend on the contract variables f�n; kng. Given the
consistency result above, the asymptotic normality of

p
NGN(#0) therefore depends only on

the properties of (y; V ) and h via a standard form of Central Limit Theorem (CLT).

Assumption 3.5 (CLT)
p
NGN(#0) converges in distribution as N ! 1 to a normal

random vector with mean zero and some covariance matrix �0.

This assumption follows immediately from the geometric ergodicity of (y; V ) and an as-
sumption of integrability of jjh �y(n;ny); V(n;nv)� jj2+Æ, for some Æ > 0, over the stationary
distribution of

�
y(n;ny); V(n;nv)

�
. (See, for example, Theorem 7.5 of Doob [1953] and the proof

of Theorem 4 of DuÆe and Singleton [1993].)
The asymptotic normality of

p
N(#N � #) depends further on the local behavior of the

observation functions in a neighborhood of #0, and is in
uenced by the contract variables
f�n; kng. For this, we consider the derivative d(#;Xn; Yn) of H(Xn; #; Yn) with respect to #,
de�ned by

d(#;Xn; Yn) =
@

@#
h
�
y(n;ny); V

#
(n;nv)

; #
�
+

nX
i=n�nv+1

@

@vi
h
�
y(n;ny); V

#
(n;nv)

; #
�
g#
�
ci; #; r

�
i ; q

�
i ; �i; ki

�
;

(3.12)

where g#(c; #; r; q; �; k) = @g(c; #; r; q; �; k)=@#, with g de�ned by (3.6), and where ci =
f(V �

i ; #0; r
�
i ; q

�
i ; �i; ki). The �rst term on the right-hand side of (3.12) arises from the explicit

dependence of h on #, while the second term arises from the dependence of h on Vi and the
dependence of V #

i = g(ci; #; r
�
i ; q

�
i ; �i; ki) on #, for i 2 fn�nv+1; : : : ; ng. This second term

is important in identifying risk-premium parameters such as �v. Intuitively, such parameters
are identi�ed by exploring the option-pricing relation through V #.

Assumption 3.6 (Convergence of \Jacobian Estimator") For some constant (nh�
n#) matrix d0 of rank n#: (i) 1

N

P
n�N d(#0; Xn; Yn) converges in probability as N ! 1 to

d0. (ii) For any f#ng converging in probability as n ! 1 to #0 ,
1
N

P
n�N d(#n; Xn; Yn)

converges in probability as N !1 to d0.

Part (i) of Assumption 3.6 follows from geometric ergodicity of X, independence and time-
stationary of Y , and integrability (over the stationary distribution of X) of d(#;Xn; i), for
each i. Given that part (i) holds, part (ii) follows from assuming �rst-moment continuity
(as in Hansen [1982]) of d(#;Xn; Yn) at #0.

Theorem 3.2 (Asymptotic Normality) Under Assumptions 3.1{3.6,
p
N (#N � #0) con-

verges in distribution as N !1 to a normal random vector with mean zero and covariance

matrix

� = (d>0W0 d0)
�1 d>0W0�0W0 d0 (d

>
0W0 d0)

�1 : (3.13)
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The proof is a standard application of the mean-value theorem (for example, Hamilton
[1994]), and omitted. The asymptotic covariance matrix � di�ers from its GMM counterpart
in that d0 is a�ected by the dependence of V # on # and f�n; kng.

For the usual two-step GMM of Hansen [1982], under which the distance matrices are
chosen so that W0 = ��10 , we have � = (d>0 �

�1
0 d0)

�1. Our setting is that of an exactly-
identi�ed GMM estimator (nh = n#, d0 is of rank n#, and W0 is the identify matrix), so
� = d�10 �0(d

>
0 )
�1.

3.3 \Optimal" Moment Selection

In this section, we construct a set of \optimal" moment conditions by taking advantage of the
explicitly known date-n conditional moment-generating function of (yn+1; Vn+1). (Through-
out this subsection, we denote V �

n by Vn for notational simplicity.) Under certain integra-
bility conditions (DuÆe, Pan, and Singleton [1999]), one can show that, for any uy and uv
in R,

En

�
exp (uy yn+1 + uv Vn+1)

�
= �(uy; uv; Vn) ;

where � : R� R� R+ ! R+ is de�ned by18

�(uy; uv; v) = exp (A (uy; uv) +B (uy; uv) v) ; (3.14)

where A and B are shown explicitly in Appendix D.
With the conditional moment-generating function �( � ), one can in principle perform full-

information estimation that is asymptotically equivalent to MLE. For example, Singleton
[1999a] develops a characteristic-function-based estimator for general aÆne di�usions that
is computationally tractable and asymptotically eÆcient. Liu [1997] develops a GMM-based
approach for aÆne di�usions, and shows that MLE eÆciency can be achieved by increasing
the number of moment conditions. These two approaches o�er a natural framework under
which the optimal instruments of Hansen [1985] can be implemented.

Our approach is closely related to those of Liu [1997] and Singleton [1999a]. We �rst
select a set of moment conditions implied by the conditional moments of (y; V ), and then
construct \optimal" instruments for the selected moment conditions. In both steps, we rely
on the fact that

En

�
yin+1V

j
n+1

�
=
@(i+j)�(uy; uv; Vn)

@iuy @juv

����
uy=0 ; uv=0

; i; j 2 f0; 1; : : : g : (3.15)

Direct computation of the derivatives in (3.15), although straightforward, can be cumbersome
for higher orders of i and j.19 Appendix F o�ers an easy-to-implement method for calculating
En(y

i
n+1V

j
n+1), recursively in i and j, up to arbitrary orders.

18See also Heston [1993], Bates [1997], and Das and Sundaram [1999].
19Das and Sundaram [1999] derive the �rst four central moments of y for the Heston [1993] model of

(S; V ), extended to include jumps at a constant intensity.
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We let M : R+ � � ! R
7 denote the list of conditional moments of (y; V ) de�ned

by M1(Vn; #) = E#
n (yn+1), M2(Vn; #) = E#

n

�
y2n+1

�
, M3(Vn; #) = E#

n

�
y3n+1

�
, M4(Vn; #) =

E#
n

�
y4n+1

�
, M5(Vn; #) = E#

n (Vn+1), M6(Vn; #) = E#
n

�
V 2
n+1

�
, and M7(Vn; #) = E#

n (yn+1Vn+1).
For this choice of conditional moments, we construct the \fundamental moment conditions"
by

E#
n�1(�n) = 0 ; �n = [�y1n ; �y2n ; �y3n ; �y4n ; �v1n ; �v1n ; �yvn ]

> ; (3.16)

where

�y1n = yn �M1(Vn�1; #) ; �y2n = y2n �M2(Vn�1; #)

�y3n = y3n �M3(Vn�1; #) ; �y4n = y4n �M4(Vn�1; #)

�v1n = Vn �M5(Vn�1; #) ; �v2n = V 2
n �M6(Vn�1; #)

�yvn = yn Vn �M7(Vn�1; #) :

(3.17)

This choice (3.16) of moment conditions is intuitive, and provides some natural and testable
conditions on certain lower moments and cross moments of y and V . Relative to full-
information MLE, however, this approach sacri�ces some eÆciency by exploiting only a
limited portion of the distributional information contained in the moment-generating func-
tion.

Next, we construct \optimal" instruments for the fundamental moment conditions of
(3.16). In the spirit of Hansen [1985], we de�ne the \optimal" moment conditions by

Hn+1 = Zn�n+1 ; with Zn = D>
n �

�
Cov#n(�n+1)

��1
; (3.18)

where Cov#n(�n+1) denotes the date-n conditional covariance matrix of �n+1 associated with
the parameter #, and Dn is the (7� n#) matrix with i-th row Di

n de�ned by

Di
n = �@Mi(Vn; #)

@#
� g# (cn; #)

@Mi(v; #)

@v

����
v=Vn

; i = 1; 2; 3; 4 ;

Di
n = �@Mi(Vn; #)

@#
; i = 5; 6; 7 ;

(3.19)

where cn = f(Vn; #0) with f given by the option-pricing formula (2.11), and where g#(c; #) =
@g(c; #)=@# with g de�ned by (3.6). (For notational simplicity, the dependence of f , g, and
g# on (r; q; �; k) is not shown.) The component of D associated with g#(cn; #) is speci�c
only to our implied state variable setting. Intuitively, g#(cn; #) measures the sensitivity of
the date-n option-implied volatility V #

n = g(cn; #) to #. We can calculate g# by using the
implicit function theorem, in that

g#(cn; #) = �f�1v (Vn; #) f#(Vn; #) ; (3.20)

where fv = @f(v; #)=@v, and f# = @f(v; #)=@#, with the option pricing formula f de�ned
by (2.11). The partial derivatives fv and f# can be calculated explicitly, up to numerical
integration, by di�erentiating through the integrals in (2.12).

Each element Hj
n+1 of the \optimal" observations Hn+1 =

�H1
n+1 ; : : : ;Hn#

n+1

�
is associ-

ated with an element #j of the parameter vector #. Intuitively, Hj
n+1 is the weighted sum
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of the 7 fundamental observations �n+1, normalized by the covariance matrix Cov#n(�n+1),
with weights proportional to the date-n \conditional sensitivity" of �n+1 to #j. Given this
set H of \optimal" observations, we can apply our implied-state-variable approach outlined
in Section 3.4 by replacing the unobserved stochastic volatility Vn with the option-implied
stochastic volatility V #

n .
It should be noted20 that the eÆciency of this \optimal-instrument" scheme is limited in

that the Jacobian D constructed in (3.19) di�ers from that, denoted (D)H, of Hansen [1985].
Speci�cally, we have (Di

n)
H = Di

n, for i 2 f1; : : : ; 4g, but

(D5
n)

H = D5
n + E#

n [g#(cn+1; #)]� g#(cn; #)
@M5(v; #)

@v

����
v=Vn

(D6
n)

H = D6
n + E#

n

�
2V #

n+1g#(cn+1; #)
�� g#(cn; #)

@M6(v; #)

@v

����
v=Vn

(D7
n)

H = D7
n + E#

n [yn+1g#(cn+1; #)]� g#(cn; #)
@M7(v; #)

@v

����
v=Vn

;

(3.21)

where cn+1 = f(Vn+1; #0). E�ectively, in constructing D5, D6, and D7, we sacri�ce eÆciency
by ignoring the dependence of V# on #. We do, however, gain analytic tractability, as
calculations of the form E#

n [g#(cn+1; #)], E
#
n [Vn+1 g#(cn+1; #)], and E

#
n [yn+1 g#(cn+1; #)] would

be challenging.

4 Empirical Results

In this section, we �nd that jump-risk premia, especially their ability to respond quickly to
market volatility, are critical in reconciling the dynamics implied by spot and option prices.
On their own, premia for return risk and volatility risk, cannot accommodate the joint data.
Further diagnostic analyses of the models considered in this section provide evidence of mis-
speci�cation in term structure of volatility, and the possibility of jumps in volatility. This
section then extrapolates the time-series estimation results to cross-sectional options data,
�nding that jump-risk premia also play an important role in explaining volatility \smiles"
and \smirks."

4.1 Data

The joint spot and option data are from the Berkeley Options Data Base (BODB), a complete
record of trading activity on the 
oor of the Chicago Board Options Exchange (CBOE). We
construct a time-series fSn; Cng of S&P 500 index and near-the-money short-dated option

20When the state is observed directly, the optimality of this choice of instruments (without the extra

parameter dependence associated with the \implied" state) for our conditional moment restrictions follows

immediately from Hansen [1985] and Hansen, Heaton, and Ogaki [1988]. In our case of implied states, an

analogous optimality result obtains for a class of estimators based on the same moment equations evaluated

at the implied states. This can be seen by adapting the analysis in Hansen [1985] to the case of implied

states; see also Singleton [1999b] for details.

19



prices, from January 1989 to December 1996, with \weekly" frequency (every 5 trading
days), as follows.

For each observation day, we collect all of the bid-ask quotes (on both calls and puts)
that are time-stamped in a pre-determined sampling window. The sampling window, lying
always between 10:00am to 10:30am, varies from year to year. For example, it is set at
10:07am{10:23am for all trading days in 1989; for 1996, it is set at 10:14am{10:16am. Such
adjustments in the length of the sampling window accommodate signi�cant changes from
year to year in the trading volume of S&P 500 options. Our objective is to have an adequate
pool of options with a spectrum of expirations and strike prices. For the n-th observation
day, we �rst sort the options by time to expiration. Among all available options, we select
those with a time �n to expiration that is larger than 15 calendar days and as close as possible
to 30 calendar days.21 From the pool of options with the chosen time �n to expiration, we
next select all options with a strike price Kn that is nearest to the date-n average of the
S&P 500 index. If the remaining pool of options, with the chosen �n and Kn, contains
multiple calls, we select one of these call options at random. Otherwise, a put option is
selected at random.22 By repeating this strategy for each date n, we obtain a time-series
fCng of option prices, using the average of bid and ask prices. One nice feature of the CBOE
data set is that, for each option price Cn, we have a record of the contemporaneous S&P 500
index price Sn. The combined time series fSn; Cng is therefore synchronized. The sample
mean of f�ng is 31 days, with a sample standard deviation of 9 days. The sample mean of
the strike-to-spot ratio fkn = Kn=Sng is 1.0002, with a sample standard deviation of 0:0067.
The time series f�n; kng is illustrated in Figure 1.

4.2 Interest Rates r and Dividend Yields q

For the purpose of estimating the respective parameter vectors �r and �q of the short-rate
process r and the dividend-rate process q de�ned by (2.2), we use, from Datastream, weekly
time-series of 3-month LIBOR rates and S&P 500 composite dividend yields from January
1987 to December 1996.

Fixing a sampling interval �, and taking advantage of the fact that the conditional
density of q�n given q�n�1 is that of a non-central �2 (Feller [1951] and Cox, Ingersoll, and
Ross [1985]), we estimate �q using MLE. The time series of S&P 500 composite dividend
yields is used as a proxy for fq�n g. The observed T -year LIBOR rates fRng (converted to
continuous compounding rates) can be expressed in terms of r�n by (Cox, Ingersoll, and Ross
[1985])

Rn = � 1

T

�
�r
�
0; T; �0r

�
+ �r

�
0; T; �0r

�
r�n

�
;

where �0r denotes the true parameter vector, and where �r and �r are as de�ned in (D.3).

21Both time to expiration �n and sampling interval � are annualized, using a 365-calendar-day year and

a 252-business-day year, respectively.
22One can either use the put-call parity to convert the observed put price to that of a call option, or

treat the mixture of call and put options using an additional contract variable. These two approaches are

equivalent, for our estimation strategy.
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The one-period conditional density pR( � jRn�1 ; �r) of Rn given Rn�1 is therefore given by

pR
�
x
��Rn�1 ; �r

�
=

T

j�(0; T; �r)j p
r

�
�xT + �r(0; T; �r)

�r(0; T; �r)

���� r�n�1 ; �r
�
; x 2 R+ ;

where, as with the dividend-rate process q, the one-step conditional density pr( � j r�n�1 ; �r)
of the short-rate r�n is that of a non-central �2.

Table 1: ML Estimates of Interest Rates r and Dividend Yields q.

�r �r �r �q �q �q
0.20 0.058 0.0415 0.24 0.025 0.0269
(0.15) (0.016) (0.0009) (0.33) (0.011) (0.0004)

Data: Weekly 3-month LIBOR rates and S&P 500 dividend yields,

Jan. 1987 to Dec. 1996.

The ML estimates of �r and �q are summarized in Table 1. The long-run means of r and
q are 5.8% and 2.5%, respectively. Both processes exhibit high persistence with relatively
slow mean reversions.

4.3 Estimation Results and Goodness-of-Fit Tests

In this section, we use the time series fSn; Cng of S&P 500 index and option prices to
estimate the parameters of the SVJ and nested models, and examine how well the models
accommodate the joint time-series data.

Throughout this section we maintain the assumption that �0 = 0, so that the jump-
arrival intensity is �1V . We choose this formulation so as to reduce the number of free
parameters that are important in explaining the joint distribution of spot and option prices.
This hypothesis of �0 = 0 is tested formally in Section 4.3.3. We also consider the following
three nested models:

� The SVJ0 model: �v = 0 (no volatility-risk premia).

� The SV model: �1 = 0 (no jumps).

� The SV0 model, �1 = 0 and �v = 0 (no jumps, no volatility-risk premia).

Each of the four models (SVJ, SVJ0, SV, and SV0) is estimated within an exactly-
identi�ed IS-GMM setting, with the number of \optimal" moment conditions equaling the
number of unknown model parameters. Table 2 reports the IS-GMM estimates and asymp-
totic standard errors. Table 3 summarizes the results of goodness-of-�t tests for the four
models. These tests focus on how well the respective models satisfy the fundamental moment
conditions (3.16), and are constructed directly from the heteroskedasticity-corrected version
~� of �, de�ned by

~� in =
� inp

E(n�1)(� in)
2
; i 2 f1; : : : ; 7g: (4.1)
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We test the 7 moment conditions, En�1(~�n) = 0, both individually and jointly. The large-
sample distribution of the test statistics is standard normal for the individual tests, and,
for any n, �2 with n degrees of freedom for a joint test on n moment conditions.23 We let
~� y = [~� y1; ~� y2; ~� y3; ~� y4]> denote the y-related moments, and let ~� v = [~� v1 ; ~� v2]> denote the
V -related moments. In addition to the joint test on E(~�n) = 0, results for joint tests on
E(~� yn) = 0 and E(~� vn) = 0 are reported in Table 3. We next interpret the results of these
goodness-of-�t tests, as well as the estimation results.

4.3.1 The Pure-Di�usion Models: SV0 and SV

The SV0 model (Heston [1993] with no volatility-risk premia) is strongly rejected by the
joint time-series data. Table 3 shows that the joint test on E(~�n) = 0 is rejected in the SV0
model with a p-value of 10�10. Results from the individual tests reveal that a key source
of this violation is the moment condition E(~� y2n ) = 0, which connects the realized squared
return y2n to its conditional expectationM2(V

#
n�1; #). By a Taylor-expansion ofM2(v; #) over

small �, we have M2(V
#
n�1; #) � V #

n�1�, which leads to �y2n � y2n � V #
n�1�. The signi�cantly

negative test statistics associated with E(�y2n ) therefore indicate that the volatility realized
in the spot market is signi�cantly less than that observed from the options market through
the SV0 model. In other words, given the level of volatility observed in the underlying spot
market, the SV0 model under-prices options.24 One possible explanation for this under-
pricing is that the SV0 model does not incorporate investors' aversion toward the risk of
changes in volatility.

Indeed, moving to the SV model (Heston [1993]), we investigate the possibility of a
volatility-risk premium by introducing a volatility-risk premium coeÆcient �v. As reported
in Table 2, the SV model estimate of �v is positive and signi�cantly di�erent from zero.
(Here and below, we use a conventional p-value of 5% to judge \signi�cance.") Let Hn+1(�

v)
denote the \optimal" moment associated with �v, as described in Section 3.3. We further
perform a Lagrange-multiplier test of the SV0 model against the SV model, using the moment
condition En[Hn+1(�

v)] = 0. This test is of the Lagrange-multiplier style, in the sense that
the moment condition En[Hn+1(�

v)] = 0, which is true under the alternative (the SV model),
is tested using the parameter estimates associated with the null (the SV0 model). The SV0
model (that with �v = 0) is rejected against the SV model, with a p-value of 0.0002. We also
see from Table 3 that the moment condition E(�y2n ) = 0 is no longer strongly violated for
the SV model. These �ndings suggest that introducing a volatility-risk premium partially
reconciles the tension between spot and option prices that arises in the SV0 setting.

The role of volatility-risk premia is also examined in Guo [1998], Benzoni [1998], Potesh-
man [1998], Kapadia [1998], and Chernov and Ghysels [1999]. As volatility-risk premia are

23Appendix G provides more details on large-sample distributions of such test statistics. Our tests of

moment conditions follow from the tests of orthogonality conditions developed in Eichenbaum, Hansen, and

Singleton [1988], and are also closely related to the Hansen [1982] test of over-identifying restrictions. More

details can be found in Singleton [1999b].
24Similar �ndings under the Black-Scholes setting are reported in Jackwerth and Rubinstein [1996]. The

SV0 model considered in this paper extends the Black-Scholes model by allowing stochastic volatility, but it

still has the same risk-premium structure as the Black-Scholes model. It is therefore not surprising that the

SV0 model is found to \under-price" near-the-money short-dated options.
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the only form of risk premia examined in these studies, the evidence in support of volatility-
risk premia is not conclusive. For example, these studies ignore any premia for jump risk,
an issue to be examined shortly.

Table 2: IS-GMM Estimates of the SVJ and Nested Models.

�v �v �v � �s �v �1 � �J ��

5.3 0.0242 0.38 �0:57 4:4 � 0 � 0
SV0

(1.9) (0.0044) (0.04) (0.05) (1.8)
7.1 0.0137 0.32 �0:53 8:6 7.6 � 0

SV
(2.1) (0.0023) (0.03) (0.06) (2.3) (2.0)
7.1 0.0134 0.28 �0:52 3:1 � 0 27.1 �0:3% 3.25% �18:0%

SVJ0
(1.9) (0.0029) (0.04) (0.07) (2.9) (11.8) (1.7%) (0.64%) ( 1.6%)
7.5 0.0135 0.28 �0:49 �1:5 �7:5 55.8 �0:5% 2.70% �17:1%

SVJ
(2.0) (0.0026) (0.04) (0.09) (6.9) (11.6) (54.3) (1.3%) (0.73%) ( 1.6%)

Data: Weekly spot and options data, S&P 500 index, Jan. 1989 to Dec. 1996.

Table 3 shows that, although allowing for a volatility-risk premium leads to a signi�cant
improvement of the overall goodness of �t, the joint test on E(~�n) = 0 is still strongly rejected
(with a p-value of 10�5) in the SV model.

Indeed, a disconcerting feature of the SV model is that its parameter estimates imply an
explosive stochastic-volatility process under the risk-neutral measure,25 with an estimated
risk-neutral mean-reversion rate of �̂�v = �̂v��̂v < 0. Although such behavior is not explicitly
ruled out by arbitrage arguments, it leads the SV model to severely over-price long-dated
options, as will be shown in Section 4.6.

Figure 2 plots the time series of option-implied volatility V SV 0 and V SV , backed out using
the IS-GMM estimates #̂SV 0 and #̂SV of the SV0 and SV models, respectively. While the
observed patterns of V SV 0 and V SV are similar, V SV 0 runs at a relatively higher level. The
same �nding is re
ected in estimated long-run mean �v of the stochastic-volatility. We �nd
the estimate

p
�v = 15:6% for the SV0 model, and

p
�v = 11:7% for the SV model.26 During

the same period, the annualized sample standard deviation of the S&P 500 weekly return
is 11.4%. This is consistent with our previous �nding that, assuming the SV0 model at its
estimated parameters, the volatility implied by option prices is higher than that observed in
the spot market.

Both the SV0 and SV models show evidence of \volatility asymmetry." That is, the
correlation coeÆcient � between the short-run returns and changes in volatility is estimated

25This is largely due to an overstated volatility-risk premium associated with the large value of �̂v , which
also causes condition (C.2) to be violated. As a result, a Novikov-like suÆcient condition (laid out in

Appendix C) for the martingality of � is not satis�ed, and there is no guarantee of the existence of a

risk-neutral measure Q.
26We report these numbers in the form of

p
�v, since

p
V is the \volatility process" in the conventional

sense of the relative \instantaneous" standard deviation.
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Figure 2: Time-series of option-implied volatility fV SV 0
n g, fV SV

n g, fV SV J0
n g, and fV SV J

n g,
backed out from the joint time-series fSn; Cng of spot and option prices, using the IS-GMM
estimates of the SV0, SV, SVJ0, and SVJ models.
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Table 3: Goodness-of-Fit Tests on Fundamental Moment Conditions

~� SV0 SV SVJ0 SVJ

y1 1:46 �0:59 0:27 0:46
y2 �3:98�� �1:56 �0:60 �0:71
y3 0:77 �0:29 �0:65 �0:50
y4 �1:45 0:27 �0:36 �0:21
v1 �1:91 1:80 0:95 0:92
v2 �2:28� 1:24 0:59 0:52

In
d
iv
id
u
al
T
es
ts

yv 2:47� �0:10 0:60 0:74

all y 28:2�� 8:1 1:8 1:4
�2(4) (10�5) (0.09) (0.77) (0.84)
all v 9:1� 11:4�� 3:2 3:1
�2(2) (0.01) (0.003) (0.20) (0.21)
all 59:9�� 31:6�� 7:6 7:1

Jo
in
t
T
es
ts

�2(7) (10�10) (10�5) (0.37) (0.42)

� and �� indicate signi�cance under a 5% and 1% test,

respectively. For individual tests, only the test statistics

(standard normal in large sample) are reported. The p-
values for the �2 joint tests are reported in parentheses.

to be signi�cantly negative for both models.27 Although the point estimates for � vary from
model to model, the order of magnitude of these estimates is the same for all the models
considered here, even for those with jumps. Similar results are reported by Bakshi, Cao,
and Chen [1997] for the options market, and by Andersen, Benzoni, and Lund [1998] for the
spot market.28

Moving from the SV0 model to the SV model, we also notice a decrease in the estimated
volatility coeÆcient �v of the volatility process, and an improvement in the goodness of �t
associated with �v2, which tests how well the volatility of volatility is �t. (As one moves
to the jump models of SVJ0 and SVJ, this decrease in �v and improvement in the �t of
�v2 are more evident.) Both Bates [1997] and Bakshi, Cao, and Chen [1997] report that
in order to explain the volatility \smiles" and \smirks" found in the cross-sectional options
data, this volatility parameter �v has to be set to a level that is too high to be consistent
with the time-series property of the volatility process. Our SV0 estimate of �v is very close
to that found in Bakshi, Cao, and Chen [1997], and the inconsistency reported in both

27The economic mechanism behind this negative correlation is a subject of growing interest. Possible

explanations considered in recent studies include volatility feedback (Campbell and Hentschel [1992] and Wu

[1998]), di�erences of opinion among investors (Hong and Stein [1999]), and investor uncertainty over the

true drift rate of dividends (David and Veronesi [1999]).
28Using joint spot and options data on the S&P 500 market Chernov and Ghysels [1999] report estimates

for � that is one order of magnitude smaller (in absolute value). Using time-series data of the S&P 500

index, Eraker, Johannes, and Polson [1999] report positive but insigni�cant estimates for �, a puzzle that

remains to be resolved.
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Bates [1997] and Bakshi, Cao, and Chen [1997] is also re
ected in our goodness-of-�t test
associated with �v2. In this paper, however, we uncover this inconsistency from a time-series
investigation of spot and near-the-money short-dated option prices. Another related point
has recently been raised by Jones [1999], who reports that the volatility of volatility is higher
during more volatile markets, a phenomenon the Heston [1993] model cannot accommodate.
In order to allow a more relaxed volatility structure of volatility, Jones [1999] suggests a
stochastic-volatility model in the class of constant elasticity of variance.29 It is unclear how
such a model will perform in the presence of jump and jump-risk premia. In particular, as
we include jump and jump-risk premia in the SVJ0 and SVJ models, we do not �nd any
evidence of mis-speci�cation for volatility of the volatility process.

4.3.2 Introducing Jumps in Returns: the SVJ0 and SVJ Models

Moving from the pure-di�usion models, SV0 and SV, to the jump-di�usion models, SVJ0
and SVJ, our �rst observation is a much improved overall goodness of �t. As reported in
Table 3, p-values of the joint test of the hypothesis that E(~�n) = 0 are 0.34 and 0.42 for
the SVJ0 and SVJ models, respectively. In contrast to the pure-di�usion models considered
earlier, the SVJ0 and SVJ models are not rejected by the joint time-series data.

The most interesting aspect of the SVJ0 and SVJ models is the premia for jump risk.
Focusing �rst on the SVJ0 model, we see from Table 2 that the risk-neutral mean �� of the
relative jump size is estimated to be �18%, while its counterpart � for the data-generating
process is estimated to be �0:3%. This implies that, when weighted by aversion to large
price movements, negative jumps are perceived to be more negative (�� � � is estimated
at �17:6%, with a standard error of 2:2%). Actual daily returns of comparable magnitude
occurred only once, when the market jumped �23% on October 19, 1987. It seems, however,
that fear of such adverse price movements is re
ected in option prices, through a large jump-
risk premium.

It should be noted that because we have set the jump-timing risk premium ��1��1 to zero,
it is likely that the estimated premium for jump-size risk, measured in terms of �� � �, has
absorbed some risk regarding timing risk. Alternatively, there may be some other aspects
of the market price of jump risk that we have mis-speci�ed, such as assuming that the risk-
neutral and actual variance of jump sizes is the same. Consequently, in interpreting the
above result, the reader should be cautioned that such a risk premium, measured in terms
of �� � �, re
ects not only investors' fear regarding the size of jumps, but also their fear
regarding other types of jump risks. In particular, aversions to both jump size and jump
timing are realistic and potentially important. Our approach, however, does not provide a
clear picture of how investors' jump-risk aversion is split between jump size and jump timing.
We adopt this approach only out of the concern over our ability to separately identify ��1��1
and �� � �, since both � and �1 are known to be diÆcult to pin down from the S&P 500
index data with the usual GMM approach.

The time-t instantaneous mean rate of return associated with the jump-risk premium is
�1(����)Vt, while that associated with the premium for usual return risk is �sVt. Measuring
the average volatility level by its long-run mean

p
v, the SVJ0 model estimates imply that

29Alternatively, one can introduce a second volatility factor.
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the average mean excess rate of (cum-dividend) return demanded for jump risk is 6.4% with
a standard deviation of 1.6%, while that demanded for usual return risk is 4.2% with a
standard deviation of 3.8%. This shows that a signi�cant portion of the equity risk premium
is assigned as a premium to compensate for investors' aversion towards jumps. Again, this
premium could be a \lumped" e�ect including investors' aversion toward jump-size risk, as
well as jump-timing risk.

The SVJ model relaxes the constraint �v = 0 from the SVJ0 model to accommodate a
premium for volatility risk. Table 2 shows that while the point estimates of �� and � di�er
only slightly from their SVJ0 counterparts, the estimate for �1 is roughly twice that for
the SVJ0 model. The SVJ estimates of the volatility parameters �v, �v, and �v stay close
to their respective SVJ0 counterparts, indicating similar volatility dynamics for these two
models.30 Combining the evidence, we conclude that, moving from the SVJ0 model to the
SVJ model, the estimated \instantaneous" jump-risk premium �1(����)Vt roughly doubles
in magnitude. From the negative SVJ-model estimates of the risk-premium coeÆcients �s

and �v, we see that the SVJ model compensates for this \overstated" (relative to the SVJ0
model) jump-risk premium by negative premia for volatility and conventional return risks.31

As we extend our analysis to cross-sectional options data in Section 4.6, this \overstated"
jump-risk premium shows up in the form of exaggerated volatility \smirks" implied by the
estimated SVJ model. It is plausible that the relaxed parameter �v is compensating for some
form of mis-speci�cation, although this is diÆcult to interpret.

The goodness-of-�t tests reported in Table 3 do not show a signi�cant preference between
the SVJ0 and SVJ models. Let Hn(�

v) denote the \optimal" moment associated with �v, as
described in Section 3.3. Using the moment condition E[Hn(�

v)] = 0, which is true under
the SVJ model, we perform a Lagrange-multiplier test of SVJ0 against SVJ, using the SVJ0-
model estimates. The SVJ0 model (that with �v = 0) is not rejected against the SVJ model
at traditional con�dence levels. (The p-value is 0.55.)

4.3.3 Testing the Constant Component of the Jump Arrival Intensity

In order to further investigate the possible presence of a constant component �0 of the
jump-arrival intensity, we test the SVJ0 model against the alternative that the jump-arrival
intensity is �0+�1V . The test is of the Lagrange-multiplier style, and based on the moment
condition E [Hn(�0)] = 0, where Hn(�0) is the \optimal" moment associated with �0. The
hypothesis that �0 = 0 is not rejected at traditional con�dence levels. (The p-value is 0.12.)

Because of our earlier constraint that the \risk-neutral" jump-arrival intensity coeÆcients
��0 and �

�
1 be the same as their respective data-generating counterparts �0 and �1, the jump-

arrival intensity �0+�1Vt plays two di�erent roles: (1) it dictates the jump arrival times under
the data-generating measure;32 (2) it reconciles the dynamics implied by spot and option
prices by introducing a premium for jump risk. The LM test performed here hinges more on

30Similarly, the option-implied volatilities V SV J0 and V SV J are close in magnitude and pattern, as shown

in Figure 2.
31Similar to the case for the SV model, a disconcerting feature of the SVJ model is that the relatively

large value of j�v j (relative to �v) causes the Novikov-like condition (C.2) to be violated.
32For evidence of state-dependent jump times under the data-generating measure, see Johannes, Kumar,

and Polson [1998].
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its latter role as the jump-risk \pricer," showing that the missing constant component �0 in
the SVJ0 model does not result in any signi�cant tension in the system.

4.4 A Comparative Study of Premia for Jump and Volatility Risks

The previous analysis makes it clear that, in order to �t the joint time-series of spot and
option prices, certain types of risk premia, beyond simple compensation for short-run return
uncertainty, must be introduced. The SVJ0 model incorporates jump-risk premia, while the
SV model considers volatility-risk premia. This section o�ers a comparative examination of
these two risk premia.

We introduce a concept of relative risk premia, which measures the relative di�erence in
prices between an option priced with and without risk premia. Speci�cally, letting #̂SV J0

denote the IS-GMM estimate of # for the SVJ0 model, we \turn o�" the jump-risk premium
component of #̂SV J0 by letting $SV J0 denote the parameter vector #̂SV J0, changed only by
letting �� = �. Similarly, letting #̂SV denote the estimate of # for the SV model, we \turn
o�" the volatility-risk premium component of #̂SV by letting $SV be a copy of #̂SV , changed
only by letting �v = 0. For an option with time � to expiration and strike-to-spot ratio
k, the date-n relative jump-risk premium �J

n(� ; k) and the relative volatility-risk premium
�V
n (� ; k) are de�ned by

�J
n(� ; k) =

cSV J0n � cSV J0n

cSV J0n

; �V
n (� ; k) =

cSVn � cSVn
cSVn

; (4.2)

where, letting f denote the option-pricing function de�ned by (2.11), and letting V SV J0
n and

V SV
n denote the SVJ0 and SV model estimates of the date-n option-implied volatilities, we

de�ne

cSV J0n = f(V SV J0
n ; #̂SV J0; r�n ; q

�
n ; � ; k) ; cSVn = f(V SV

n ; #̂SV ; r�n ; q
�
n ; � ; k) ;

cSV J0n = f(V SV J0
n ; $SV J0; r�n ; q

�
n ; � ; k) ; cSVn = f(V SV

n ; $SV ; r�n ; q
�
n ; � ; k) :

Intuitively, cSV J0n and cSVn are the respective \risk-premium-free" versions of cSV J0n and cSVn .
Fixing strike-to-spot ratio k = 1, Figure 3 plots time-series of f�J

n(� ; k) ;�
V
n (� ; k)g for a

list of times � to expiration. Figure 3 shows that jump-risk and volatility-risk premia respond
quite di�erently to market volatility. The relative jump-risk premium is highly responsive to
market volatility for short-dated options, becoming less responsive for long-dated options.
On the other hand, the relative volatility-risk premium is relatively unresponsive to mar-
ket volatility for short-dated options, reaching maximum responsiveness for medium-dated
options, then becoming less responsive for long-dated options.

Figure 3 also shows that the relative volatility-risk premium increases much faster with
maturity than does the relative jump-risk premium. Moreover, these two risk premia are
considerably di�erent in magnitude for short-dated and long-dated options. In particular,
for long-dated options, the relative volatility-risk premia are signi�cantly higher them their
jump counterparts, which is consistent with our �nding (see Section 4.6) that the SV model
severely over-prices long-dated options. Here we see that the over-pricing is due to an
overstated volatility-risk premium.
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Figure 3: The relative jump-risk premium �J
n(� ; k) implied by the SVJ0 model, and the

relative volatility-risk premium �V
n (� ; k) implied by the SV model, for options with strike-

to-spot ratio k = 1, and times to expiration of 15, 30, 60, 90, 120, and 240 days. See
Section 4.4 for a de�nition of relative risk premia.
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While it may be dangerous to draw conclusions based on this sort of extrapolation to \out-
of-sample" options with substantially longer times to expiration, the risk-premium behavior
implied by the SV model appears to be counter-intuitive. On the other hand, the risk-
premium behavior implied by the SVJ0 model seems more intuitive.

4.5 Diagnostic Tests

In the spirit of goodness-of-�t tests of fundamental moment conditions, this section reports
the results of further diagnostic tests of the SVJ and nested models. Section 4.5.1 uses extra
conditioning information to test the fundamental moment conditions, and reports some
evidence of model mis-speci�cation for term structure of volatility. Section 4.5.2 focuses
on the third and fourth moments of stochastic volatility, and �nds evidence of jumps in
stochastic volatility.

4.5.1 Tests of En(�n+1) = 0 with Conditional Information

This section tests the moment conditions En(yn�n+1) = 0 (lag-y tests), and En(�n�n+1) = 0
(lag-� tests). The test results are reported in Table 4.

The \lag-y" tests are designed mainly to look for any impact of excess returns y on the
dynamics of V , possibly missed by our model speci�cation. As reported in Table 4, the lag-y
tests do not indicate mis-speci�cation of this sort.

Table 4: Diagnostic tests of fundamental moment conditions

SV0 SV SVJ0 SVJ SV0 SV SVJ0 SVJ

� lag- � E(�n �n+1) = 0 lag-y E(yn �n+1) = 0
y1 �0:63 �0:34 �0:58 �0:62 �0:70 �0:66 �0:73 �0:74
y2 1:38 0:38 0:43 0:51 0:39 0:22 �0:11 �0:19
y3 �0:35 0:21 �0:48 �0:59 �0:60 �0:42 �0:75 �0:79
y4 1:72 0:25 �0:26 �0:26 1:47 1:27 0:68 0:51
v1 �2:37� �2:62�� �2:04� �2:19� 1:58 1:45 1:44 1:39
v2 �1:68 �1:73 �1:21 �1:25 0:81 0:70 0:74 0:69

In
d
iv
id
u
al
T
es
ts

yv �0:48 �0:13 �0:35 �0:31 �0:22 �0:01 0:22 �0:28
all y 3:4 0:49 1:1 1:4 4:2 3:8 3:1 2:8
�2(4) (0.49) (0.97) (0.89) (0.83) (0.38) (0.43) (0.54) (0.59)
all v 7:3� 7:9� 7:4� 9:4�� 5:3 4:8 4:9 5:2
�2(2) (0.03) (0.02) (0.02) (0.01) (0.07) (0.09) (0.09) (0.07)
all 14:3� 9:9 9:4 10:9 10:7 8:5 8:0 8:0

Jo
in
t
T
es
ts

�2(7) (0.05) (0.20) (0.23) (0.14) (0.15) (0.29) (0.33) (0.34)

� and �� indicate signi�cance under a 5% and 1% test, respectively. For the individual tests, only

the test statistics (standard normal in large sample) are reported. The p-values for the joint �2 tests
are reported in parentheses.

30



Using the moment condition En(�n �n+1) = 0, \lag-�" tests investigate whether or not the
fundamental moments � are indeed serially uncorrelated. The 7 individual lag-� tests reject
the null that En(�

v1
n �

v1
n+1) = 0, but do not reject the other 6 moment conditions. The sample

estimate of corr(�v1n ; �
v1
n+1) is negative and signi�cant. To see the implication of this �nding,

we recall that �v1n = V #
n �M5(V

#
n�1; #), where, for any v 2 R+,

M5(v; #) = exp(��v�t)v + (1� exp(��v�t)) �v :
It then follows that the unconditional stationary correlation can be calculated as33

corr(�v1n ; �
v1
n�1) = corr

�
Vn+1 � Vne

��v�t ; Vn � Vn�1e
��v�t

�
:

Using the fact that the one-step auto-correlation corr(Vn; Vn�1) is exp(��v�), we have
corr(�v1n ; �

v1
n�1) = e��v�t

�
e�2�v�t � corr (Vn+1; Vn�1)

�
. A negative and signi�cant sample esti-

mate of corr(�v1n ; �
v1
n�1) therefore indicates that the data call for corr(Vn+1; Vn�1) > exp(�2�v�t).

This is in contrast to the model-prescribed two-step auto-correlation corr(Vn+1; Vn�1) =
exp(�2�v�t). In other words, the stochastic volatility model is not capable of �tting si-
multaneously one- and two-step auto-correlations. The reason is quite simple: The model
prescribes a term-structure of volatility, corr(Vn; Vn+m) = exp(�m�v�t), which \dies" too
quickly, relative to the data. Multiple volatility factors with di�erent rates of mean-reversion
could generate a richer term-structure of volatility. Some examples include the two-factor
square-root model of Bates [1997] and a stochastic-volatility model with stochastic long-run
mean suggested by DuÆe, Pan, and Singleton [1999].

4.5.2 Tests of Higher Moments of Volatility

In this section, we test the third and fourth moments of the stochastic-volatility process,
looking for evidence of jumps in volatility, as conjectured by Bates [1997]. The test statistics
are constructed from

En(�
v3
n+1) = 0 ; �v3n = (V #

n )
3 �M8(V

#
n�1; #) ;

En(�
v4
n+1) = 0 ; �v4n = (V #

n )
4 �M9(V

#
n�1; #) ;

(4.3)

where M8(Vn; #) = En(V
3
n+1) and M9(Vn; #) = En(V

4
n+1) are the third and fourth conditional

moments of V .
Table 5 reports test results on the conditions En(�

v3
n+1) = 0 and En(�

v4
n+1) = 0 and

their respective heteroskedasticity-corrected versions, E(~�
v3
n+1) = 0 and En(~�

v4
n+1) = 0. The

heteroskedasticity-corrected (~�) tests evidently have more asymptotic power than their re-
spective uncorrected (�) counterparts, although both sets of tests build on the same moment
conditions (4.3). In particular, the sample estimates of the moment conditions En(~�

v3
n+1) = 0

and En(~�
v4
n+1) = 0 are found to be positive and signi�cantly di�erent from zero for SVJ0

and SVJ models, indicating the possibility of jumps (with positive mean jump size) in the
stochastic-volatility process.34

33Here, correlation is with respect to the stationary distribution. That is, the volatility process is assumed

to start from its ergodic distribution, as opposed to the Dirac measure (with V0 = v) that has been assumed

in our empirical setting. For a large sample, this di�erence does not a�ect the discussion that follows.
34Examples of jump in stochastic volatility can be found in DuÆe, Pan, and Singleton [1999]. Empirical

�ndings with respect to such jumps-in-volatility models can be found in Eraker, Johannes, and Polson [1999].
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Table 5: Tests on the Higher Moments of Stochastic Volatility

SV0 SV SVJ0 SVJ

E(� v3n ) = 0 �0:69 0:85 0:70 0:54
E(� v4n ) = 0 �0:38 0:65 0:62 0:53

joint 4:3 2:4 0:6 0:3
�2(2) (0.12) (0.31) (0.72) (0.86)

E(~� v3n ) = 0 �0:58 1:46 2:17� 2:59��

E(~� v4n ) = 0 0:95 1:68 2:67�� 3:75��

joint 37:1�� 4:0 7:3� 15:6��

�2(2) (10�10) (0.14) (0.03) (0.0004)

� and �� indicate signi�cance under a 5% and 1% test, respectively. For the

individual tests, only the test statistics (standard normal in large sample)

are reported. The p-values for the joint �2 tests are reported in parentheses.

Jumps in stochastic volatility provides a plausible explanation of how the model \under-
shoots" the data in terms of the third and fourth moments of V . Such a jump explanation
is quite intuitive given the \spikes" in option-implied volatility shown in Figure 2. This,
however, is not the only possible explanation. Other promising speci�cations are regime-
switching in the stochastic volatility, and two-factor stochastic-volatility models, both of
which generate fat-tailed transition distributions for stochastic volatility.

4.6 Option-Implied Volatility \Smiles"

This section extends the time-series results to cross-sectional option data. Using the es-
timates #̂SV 0, #̂SV , #̂SV J0, and #̂SV J of the respective SV0, SV, SVJ0, and SVJ model
parameters, and constructing the corresponding date-n option-implied stochastic volatility
estimates V SV 0

n , V SV
n , V SV J0

n , and V SV J
n , we price the same cross-sectional set of options

that is observed in the market on each date n. We compare the model-implied and market-
observed option prices, examining the extent to which the parametric models, estimated
exclusively from the joint time-series fSn; Cng, correctly price the entire cross-section of
options.

A typical feature of the cross-sectional option data is the so-called volatility \smiles"
or \smirks,"35 whose pattern and shape vary from day to day. In the framework of our
parametric models, a plausible explanation for such time variation in smile curves is that
stochastic volatility varies from day to day. For this reason, we divide our sample days into
three groups | days of high, medium, and low volatilities.

We select the 10 most and 10 least volatile days from the weekly sample between January
1989 to December 1996, as measured by the Black-Scholes implied volatility of fCng. For

35See the pioneer work of Rubinstein [1994] for further details. A more recent examination of the S&P 500

options market can be found in Derman [1999].
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a comparison group of medium-volatility days, we select the ten successive days (at weekly
intervals) between September 20, 1996 and November 22, 1996. The average Black-Scholes
implied volatility (BS vol) for the days of high, medium, and low volatilities are 25.1%,
13.6%, and 8.7%, respectively. On each date n, we collect all bid and ask quotes of those call
and put options that are time-stamped between 10:00am to 11:00am. For 1996, the time-
window is reduced to 10:10am{10:20am, due to a surge in trading volume in 1996. Options
with less than 15 days to expiration are discarded. This set of cross-sectional data is then
�ltered through the Black-Scholes option-pricing formula to obtain the corresponding BS

vol, discarding any observation from which the BS vol cannot be obtained.36

Table 6 summarizes the cross-sectional pricing errors implied by the SV0, SV, SVJ0,
and SVJ models. The pricing errors are measured as the absolute di�erences between the
model-implied and market-observed Black-Scholes implied volatilities. (This avoids placing
undue weight on expensive options, such as deep-in-the-money or longer-dated options.) As
a reference to the degree of mis-pricing, we also report the average bid/ask spreads (di�erence
between o�er and ask prices, each measured in terms of BS vol). The positive and negative
signs in the parentheses indicate whether, on average, the model over-prices or under-prices,
respectively. The pricing errors and bid/ask spreads reported in Table 6 are obtained from
11,434 (high vol), 33,919 (medium vol), and 19,589 (low vol) sets of option data (bid/ask
quotes on both call and put options). Figures 4 and 5 plot the volatility smiles the most
and the least volatile days of our sample, respectively. Figure 6 plots the volatility smile on
a medium-volatility day.

4.6.1 Smiles with SVJ0

Among the four parametric models, the SVJ0 model best captures the \smirkiness" of the
cross-sectional data.

� On medium-volatility days, the SVJ0 model �ts the volatility \smirks" remarkably
well, across all times to expiration.

� The SVJ0 model under- and over-prices long-dated options on high- and low-volatility
days, indicating a stochastic-volatility process that mean-reverts back to its long-run
mean more slowly than suggested by the model. This is consistent with the time-series
�nding of \long memory" in volatility persistence, and again calls for a two-factor
volatility model. Similar �ndings on the long memory of stochastic volatility implied
by options data can be found in Stein [1989] and Bollerslev and Mikkelsen [1996].

� On high- and low-volatility days, the SVJ0 model under-prices the right side (with
k > 1:03) of the smile curve for short-dated options. As Figure 4 and Figure 5 clarify,
this mis-pricing corresponds to the \tipping-at-the-end" behavior, contributed mostly
by deep in-the-money puts. This \tipping-at-the-end" behavior seems to require more
randomness on the right tail of the underlying return distribution under the risk-neutral
measure than suggested by the estimated SVJ0 model. A possible solution is to allow
jumps in volatility, with jump arrivals that are more frequent, or with larger jump
amplitudes, when volatility is low.

36For example, this happens when the quoted option price is less than its intrinsic value.
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4.6.2 Smiles with SVJ

� The SVJ model exaggerates the \smirkiness" of short- and medium-dated options.
This exaggerated smirkiness implied by the SVJ model can be explained by its \over-
stated" jump-risk premium, which is roughly twice that estimated for the SVJ0 model.
(See Section 4.3.2.)

� On medium-volatility days, the SVJ model under-prices long-dated options. This can
be explained by the negative volatility-risk premium estimated by the SVJ model to
compensate for the \over-stated" jump-risk premium. For long-dated ones, the jump-
risk premium becomes less important while the volatility-risk premium becomes more
prominent. The negative volatility-risk premium estimated for the SVJ model therefore
dominates at the long end, and under-prices long-dated options.

� The SVJ model su�ers from the same mis-speci�cation for term structure of volatility
as the SVJ0 model. It therefore has the tendency to under-price and over-price long-
dated options on high- and low-volatility days. This e�ect, however, is mixed the above
two e�ects.

4.6.3 Smiles with SV

The SV model severely over-prices long-dated options. This over-pricing can be attributed to
an overstated volatility-risk premium that \blows up" the stochastic-volatility process under
the \risk-neutral" measure. This \explosive" nature of the \risk-neutral" volatility process
is reported for the SV model in Section 4.3.1. Although, there seems to be no theoretical
reason to rule out such behavior, its implication for long-dated options clearly rules out the
SV model as a sensible candidate.

5 Concluding Remarks

We have uncovered, from the joint time-series of the S&P 500 index fStg and of near-
the-money short-dated option prices fCtg, a jump-risk premium that is highly correlated
with market volatility. This jump-risk premium is important, not only in reconciling the
dynamics implied by fSt; Ctg, but also in explaining changes over time in volatility \smiles"
and \smirks."

We have examined four arbitrage-free stochastic-volatility models, two with jumps in
returns and two without jumps. The joint time-series data fSt; Ctg strongly reject the pure-
di�usion model of Heston [1993], but do not reject either of the two jump-di�usion models.
Key to this goodness of �t of the jump-di�usion models is the presence of non-trivial jump-
risk premia that respond quickly to market volatility. Our �ndings for the four models can
be summarized as follows:

The SV0 Model: The Heston [1993] model, without volatility-risk premia, fails to accom-
modate the dynamics of fStg and fCtg. In particular, given the level of volatility
observed in the spot market, this model severely under-prices options.
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The SV Model: The Heston [1993] model, with volatility-risk premia, is still strongly re-
jected by the joint time series of spot and option prices. By introducing volatility-risk
premia, this model partially resolves the \under-pricing" problem of the SV0 model,
but with an unrealistically high level of volatility-risk premia. Given the estimated
volatility-risk premia, the stochastic volatility is explosive (negative mean-reversion)
under the \risk-neutral" measure. Consequently, long-dated options are severely over-
priced by this model.

The SVJ0 Model: Among the four models examined, this variant of the Bates [1997]
model, incorporating premia for jump risk, is found to best characterize both the
transition behavior of the joint time series fSt; Ctg and the behavior of \smiles" and
\smirks." Even for this model, our diagnostic tests indicate mis-speci�cation for the
term structure of volatility, as well as poor �ts for the third and fourth conditional
moments of volatility. Both �ndings appear to call for a stochastic-volatility model
with two factors | one strongly persistent, the other quickly mean-reverting and highly
volatile. The second �nding also indicates the possibility of jumps in volatility.

The SVJ Model: This model nests of all the model speci�cations considered, but does not
perform as well as the SVJ0 model. In particular, the SVJ model overstates the level
of jump-risk premia (relative to that estimated for the SVJ0 model), compensating for
its \overstated" jump-risk premia with negative volatility-risk premia. Such overstated
jump-risk premia result in exaggerated volatility \smirks" for short- and medium-dated
options, and in a tendency for the SVJ model, through its negative volatility-risk
premia, to under-price long-dated options. Like the SVJ0 model, the SVJ model
su�ers from its mis-speci�cation of the term structure of volatility, and provides poor
�ts for the higher conditional moments of volatility.

Finally, this empirical study also suggests that an important component of the equity
risk premium can be attributed to investors' aversion to jump risk. Examining the S&P 500
index and options markets jointly, our estimates of the SVJ0 model imply that, in sample
and on average, the excess mean rate of return demanded for jump risk is 6.4% per year,
while that demanded for the usual \di�usive" return risk is 4.2% per year. As shown in
Mehra and Prescott [1985], the overall equity risk premium is too high to be assigned by a
power-utility maximizer using aggregated consumption data. (See Rietz [1988] for a \peso"
explanation.) In order to capture the large premium demanded for jump risk, it may be
fruitful to explore utility models showing potentially extreme aversion to big losses (as in,
for example, Gul [1991]).
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Figure 4: Smiles curves on a \high-volatility" day. All observations are observed between 10:00am to 11:00am on October 16,

1990. The call options are marked by `�,' and the put options by `�'.
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Appendices

A Technical Speci�cation of the SVJ model

Amore precise speci�cation of the state processX = (lnS; V; r; q) de�ned by (2.1) and (2.2) is
via its in�nitesimal generatorD. For any smooth bounded function f : R�R+�R+�R+ ! R
with bounded derivatives, ff(Xt) �

R t
0
Df(Xu) du : t � 0g is a martingale with Df(x)

de�ned, at any x = [ln s; v; r; q]>, by

Df(x) = fx(x) (K0 +K1 x) +
1

2
tr [fxx(x)K2 ]

+ (�0 + �1v)

Z
R

�
f(x+ [z; 0; 0; 0]>)� f(x)

�
d�(z) ;

where �(�) is the cumulative distribution of a normal random variable with mean �J and
variance �2J , and where

K0 =

0
BB@
��0��
�v�v
�r�r
�q�q

1
CCA ; K1 =

0
BB@
0 �s � 1

2
� �1�

� 1 �1
0 ��v 0 0
0 0 ��r 0
0 0 0 ��q

1
CCA ; K2 =

0
BB@

v �v� v 0 0
�v� v �2v v 0 0
0 0 �2r r 0
0 0 0 �2q q

1
CCA :

Similarly, for the state process X = (lnS; V; r; q) under the \risk-neutral" measure Q
de�ned in Section 2.3, an alternative speci�cation can be achieved through its in�nitesimal
generator D� de�ned by

D�f(x) = fx(x) (K0 +K�1 x) +
1

2
tr [fxx(x)K2 ]

+ (�0 + �1v)

Z
R

�
f(x+ [z; 0; 0; 0]>)� f(x)

�
d��(z) ;

where ��(�) is the cumulative distribution of a normal random variable with mean ��J and
variance �2J , and where

K�1 =

0
BB@
0 �1

2
� �1�

� 1 �1
0 ��v + �v 0 0
0 0 ��r 0
0 0 0 ��q

1
CCA :

B The State-Price Density and No Arbitrage

This appendix focuses on the relationship between the state-price density and no arbitrage,
and shows that our model is arbitrage free. Let S and B be the respective gain processes
of the underlying security and the bank account, de�ned in Section 2.2. Let � be the state-
price density process de�ned by (2.3), chosen so that the de
ated gain processes S� and B�
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are local martingales. Now let C =
�
C(1); : : : ; C(n)

�
denote the process process of any n

options, priced by the state-price density �, as in (2.9). The de
ated option price process
C� = �C is also a local martingale; indeed, it is a martingale. Letting � be a self-�nancing
trading strategy with respect to X =

�S;B; C(1); : : : ; C(n)
�
, we show in this appendix that

if � satis�es the full-collateralization (no-credit) constraint �t �Xt � 0, for all t, then � is not
an arbitrage.37

A de
ater is a strictly positive semi-martingale (RCLL). For example, the state-price
density � is a de
ater. We �rst establish in Lemma B1 the result of numeraire invariance
for an arbitrary de
ater Y . This result extends from the Ito processes considered in DuÆe
[1996] to general semi-martingales, so that jumps can be considered. Similar results can
be found in Huang [1985] and, independently, Protter [1999]. As usual, a trading strategy
is a predictable process � such that

R
� dX is well de�ned as a stochastic integral, and is

self-�nancing if, for all t, �t �Xt = �0 �X0 +
R t
0
�s dXs. (See Harrison and Pliska [1981].)

Lemma B.1 (Numeraire Invariance) Suppose Y is a de
ater. A trading strategy � is

self-�nancing with respect to X if and only if � is self-�nancing with respect to the de
ated

process XY = XY .

Proof: Let wt = �0 � X0 +
R t
0
�s dXs, t 2 [0; T ]. Let wY be the �-de
ated process de�ned

by wY
t = wt Yt. We note that wt = �t � Xt is implied by either: (1) assuming that � is X

self-�nancing, or (2) assuming that � is XY self-�nancing. Using Ito's Formula for semi-
martingales (Protter [1990]),

dwY
t = Yt� dwt + wt� dYt + d[w; Y ]ct +�wt�Yt ;

where [w; Y ]c denotes the continuous part of the cross-variation process [w; Y ]. Using the
result that �wt = �t ��Xt (Protter [1990], Theorem 18, page 135), we have wt� = wt��wt =
wt � �t�Xt. It then follows that wt� = �t �Xt�, and that

dwY
t = Yt��t dXt + �t �Xt� dYt + �t � d[X; Y ]ct + �t ��Xt�Yt

= �t �
�
Yt� dXt +Xt� dYt + d[X; Y ]ct +�Xt�Yt

�
= �t dX

Y
t :

Thus, �t �XY
t = �0 �XY

0 +
R t
0
�s dX

Y
s if and only if �t �Xt = �0 �X0 +

R t
0
�s dXs, establishing

the result.

Proposition B.1 (No Arbitrage) If � is self-�nancing with respect to X and �t �Xt � 0,
and if � is a de
ator such that X� is local martingale, then � is not an arbitrage.

Proof: By Lemma B.1, since � is self-�nancing with respect to X, � is also self-�nancing
with respect to X�. That is, �t �X�

t = �0 �X�
0 +

R t
0
�s dX

�
s . We know that

R
� dX� is local

martingale because X� is. It then follows from the self-�nancing property of � that f�t �X�
t g

is also a local martingale. Moreover, f�t �X�
t g is a nonnegative local martingale, as �t �Xt � 0

37A self-�nancing strategy # is an arbitrage if �0 �X0 < 0 and �T �XT � 0, or �0 �X0 � 0 and �T �XT > 0.
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implies �t � X�
t � 0. Since a local martingale that is bounded below is a supermartingale

(Revuz and Yor [1991], page 117), we know that E(�T �X�
T ) � �0 �X�

0 . Therefore � is not an
arbitrage with respect to X�. By Lemma B.1 and the de�nition of an arbitrage, � is not an
arbitrage with respect to X.

C A SuÆcient Condition for the Martingality of �

We provide a Novikov-like suÆcient condition for the exponential local martingale � de�ne
by (2.5) to be a martingale.

Proposition C.1 (i) A suÆcient condition for �, de�ned by (2.5), to be a martingale is

that

Ex

�
exp

�Z T

0

�t � �t dt
��

< 0 ; (C.1)

where Ex denotes expectation with respect to initial condition x 2 R+ for V , and � is the

market price of Brownian shocks de�ned by (2.4). (ii) Condition (C.1) holds if

1

1� �2

 
(�s)2 + 2� �s

�v

�v
+

�
�v

�v

�2
!
<

�
�v

�v

�2

: (C.2)

Proof: We �rst show (i). Using the fact that U�
i and U�

j are independent for i 6= j, that,
for any i, U�

i is independent ofW and of the jump times fTig, and that E (exp (U�
i )� 1) = 0,

we have, for 0 � t � s � T ,

Et (�s) = Et

"
E
�
�
Z s

0

�u dWu

�
exp

 X
i;Ti�s

U�
i

!#
= �tEt

�
E
�
�
Z s

t

�u dWu

��
;

where Et denotes Ft-conditional expectation, and E denotes the stochastic exponential. Us-

ing Novikov [1972], under (C.1),
n
E
�
� R t

0
�u dWu

�
: 0 � t � T

o
is a martingale. Then (i)

follows immediately from the fact that Et

�E �� R s
t
�u dWu

��
= 1 for any 0 � t � s � T .

Next, we show that (ii) holds. Letting

L2 =
1

1� �2

 
(�s)2 + 2� �s

�v

�v
+

�
�v

�v

�2
!
;

(C.1) is equivalent to

Ex

�
exp

�Z T

0

1

2
L2Vt dt

��
<1:

Under (C.2), 
 =
p
1� L2 �2v=�

2
v is real-valued and 0 < 
 � 1. We conjecture (based on the

aÆne structure of V ) that,

Ex

�
exp

�Z T

0

1

2
L2Vt dt

��
= exp [�(T ) + �(T )v] ; (C.3)
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where

�(T ) =
�v

�2v

(1� 
2)(1� exp(�
�vT ))
(1 + 
)� (1� 
) exp(�
�vT ) ; �(T ) = �v�

Z T

0

�(t) dt :

We are done if we can show this conjecture holds. A suÆcient condition is that38

Ex

�Z T

0

e2�(t)VtVt dt

�
=

Z T

0

Ex(e
2�(t)VtVt) dt <1 : (C.4)

The equality holds, by Fubini, assuming that suptE
x(e2�(t)VtVt) < 1. To show this, we

consider the probability density px(t; v) = P x(Vt 2 dv) of Vt, found in Feller [1951]. One can
show, that for large v 2 R+, the asymptotic behavior of p

x is

px(t; v) � exp (�!(t) v) ; !(t) =
2�v
�2v

(1� exp (��vt))�1 :

The integrability condition (C.4) follows from the fact that 2�(t) < 2�v=�
2
v < !(t), and the

fact that f!(t) : 0 � t � Tg is bounded.

D Explicit Formulae for A, B, �, �v, �r, and �q

The coeÆcients B and A of (3.14) are de�ned by

B(uy; uv) =� a (1� exp(�
�))� uv [2
 � (
 � b)(1� exp (�
�)]
2
 � (
 + b) (1� exp(�
�))� uv�2v (1� exp(�
�)) ;

A(uy; uv) =� �v�v

�2v

�
(
 + b)� + 2 ln

�
1� 
 + b+ �2v uv

2

(1� e�
�)

��

+

�
exp

�
uy�J +

u2y�
2
J

2

�
� 1� uy�

�

�
�0� ;

(D.1)

and where b = �v�uy��v, a = �u2y� 2uy [�
s � 1=2� �1�

�]� 2�1
�
exp(uy�J + u2y�

2
J=2)� 1

�
,

and 
 =
p
b2 + a�2v .

The coeÆcients �v and �v of (2.10) are de�ned by

�v(c; t; #) =� a (1� exp(�
vt))
2
v � (
v + b) (1� exp(�
vt))

�v(c; t; #) =� ��v�v
�

�2v

�
(
v + b) � + 2 ln

�
1� 
v + b

2
v

�
1� e�
v�

���

+ �0 t

�
exp

�
c��J +

c2�2J
2

�
� 1� c��

�
;

(D.2)

where b = �v�c� ��v, a = c(1� c)� 2�1 [exp(c�
�
J + c2�2J=2)� 1� c��], and 
v =

p
b2 + a�2v .

The parameters superscripted by � denote the risk-neutral counterparts of those under the
38See, for example, DuÆe, Pan, and Singleton [1999] for details.
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data-generating measure P . For example, ��v = �v� �v and �v� = �v�v=�
�
v are the risk-neutral

mean-reversion rate and long-term mean, respectively, and ��J = ln(1 + ��) � �2J=2 is the
risk-neutral counterpart of �J . While the square root and logarithm of a complex number
z are not uniquely de�ned, for notational simplicity the results are presented as if we are

dealing with real numbers. To be more speci�c, we de�ne,
p
z = jzj1=2 exp

�
i arg(z)

2

�
and

ln(z) = ln jzj+ i arg(z), where for any z 2 C, arg(z) is de�ned such that z = jzj exp(i arg(z)),
with �� < arg(z) � �.

The coeÆcients �r and �r are de�ned by

�r(c; t; �r) = � 2(1� c) (1� exp(�
rt))
2
r � (
r � �r) (1� exp(�
rt))

�r(c; t; �r) = ��r�r
�2r

�
(
r � �r) � + 2 ln

�
1� 
r � �r

2
r

�
1� e�
r�

���
;

(D.3)

with 
2r = �2r + 2(1� c)�2r .
Next, �q and �q are de�ned by

�q(c; t; �q) = � 2c (1� exp(�
qt))
2
q � (
q � �q) (1� exp(�
qt))

�q(c; t; �q) = ��q�q
�2q

�
(
q � �q) � + 2 ln

�
1� 
q � �q

2
q

�
1� e�
q�

���
;

(D.4)

with 
2q = �2q + 2c�2q .
Finally, we let �(c; t; #; �r; �q) = �v(c; t; #) + �r(c; t; �r) + �q(c; t; �q):

E Option Pricing via Numerical Integration

The improper probabilities P1 and P2 de�ned by (2.12) are key to determining the time-t
price Ct of an option with time � to expiration and strike-to-spot ratio k. This appendix
provides a fast numerical scheme, with error analysis, for the inversion (2.12), assuming that
the transform  (c; v; r; q; �) de�ned by (2.10) is explicitly known. It should be noted that,
whenever applicable, all of expectations and probability calculations in this appendix are
taken with respect to the risk-neutral measure Q.

Fixing today at time t, we write, for national simplicity,  (c) =  (c; Vt; rt; qt; �), where
Vt, rt, and qt are today's volatility, risk-free short rate, and dividend yield. First, consider
P1 =  (1) ~P1 ; where as can be seen from the CIR discount formula,

 (1) = Et

�
exp

�
�
Z t+�

t

qs ds

��
= exp (�q(1; �; �q) + �q(1; �; �q) qt) ; (E.1)

where �q and �q are as de�ned in (D.4). E�ectively,  (1) is the dividend analogue of a
\� -period bond price." Thus de�ned ~P1 is a real probability that can be calculated through
the standard L�evy inversion formula

~P1 = P
�
~X1 � �x

�
=

1

2
� 1

�

Z 1

0

Im
�
~ 1(u) exp (�iu�x)

�
u

du ; (E.2)
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where �x = (rt � qt)� � ln k, and where the random variable ~X1 is uniquely de�ned by its
characteristic function ~ 1(u) via

~ 1(u) =
 (1� iu) exp(iu(rt � qt)�)

 (1)
: (E.3)

In practice, the L�evy inversion (E.2) is carried out via some form of numerical integration.

Letting I1(u) = Im
�
~ 1(u) exp(�iu�x)

�
denote the integrand, we approximate by

~P1 � 1

2
� 1

�

[U1=�u1]X
n=0

I1((n+ 1=2)�u1)

n + 1=2
; (E.4)

where [x] is an integer such that [x] � 1 < x � [x]. Two types of errors are introduced by
this numerical scheme. For any U1 <1, there is a truncation error. For any �u1 > 0, there
is a discretization error. To achieve any desired precision Æ for ~P1, we can select a cuto�
level U1 such that

truncation error =

���� 1�
Z 1

U1

I1(u)

u
du

���� � Æ : (E.5)

We can select a step size �u1 such that

discretization error � max

�
P

�
~X1 < �x� 2�

�u1

�
; P

�
~X1 > �x+

2�

�u1

��
� Æ ; (E.6)

where the �rst inequality follows from a Fourier analysis. See, for example, Davies [1973].
To control for the truncation error, we take advantage of the fact that I(u) is explicit, and

study its asymptotic behavior for large u. In particular, we can show that, for large enough u,
jI1(u)j � exp (�uA1 + A0) where A1 = (v + �v����)

p
1� �2=�v, and A0 = (v + �v����) (���

�v�)=�
2
v+ln (4(1� �2)) ���v�=�2v . For the desired accuracy Æ, we can therefore choose U1 such

that
1

�A1U1

exp (�A1U1 + A0) � Æ:

To control for the discretization error, we focus on the probabilities P
�
~X1 < �x� 2�=�u1

�
and P

�
~X1 > �x + 2�=�u1

�
, which sample further into the left and right tails as �u1 ap-

proaches to zero. Given that the mean �X1 and variance �2X1
of ~X1 are �nite, the tail

probabilities can be controlled by Chebyshev's inequality:

P

�
j ~X1 � �X1

j > �X1p
Æ

�
< Æ: (E.7)

We can therefore establish an upper bound in probability for the two tail events f ~X1��X1
>

�X1
=
p
Æg and f ~X1��X1

< ��X1
=
p
Æg. The discretization step �u1 can be chosen such that

2�

�u1
= max

�
�x� �X1

; �X1
� �x
�
+
�X1p
Æ
: (E.8)
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To calculate the mean and variance of ~X1, we again take advantage of its explicitly known
characteristic function ~ 1( � ). Speci�cally, for any u 2 R, the moment-generating function

of ~X1 is E
h
exp

�
u ~X1

�i
= ~ 1(�iu), from which its mean and variance can be derived

accordingly.
The numerical integration scheme used for P2 is similar. Details are omitted, and are

available upon request.

F Conditional Moments of the SVJ Model

Let (S; V; r; q) be the state process de�ned by (2.1) and (2.2). For a �xed time horizon �,
and for some arbitrary non-negative integers i and j, this appendix provides a computational
method for Ft-conditional moments of the form Et

�
yit+�V

j
t+�

�
; where yt = lnSt� lnSt���R t

t��
(ru � qu) du is the time-t �-period excess return.39 The joint moments of y and V can

be calculated recursively by40

Et

�
y0t+�V

m
t+�

�
=

m�1X
j=0

C
j
m�1Et

�
y0t+�V

j
t+�

�
p(0;m�j)y;v (Vt) ; m � 1 ;

Et

�
ynt+�V

m
t+�

�
=

n�1X
i=0

mX
j=0

Ci
n�1C

j
mEt

�
yit+�V

j
t+�

�
p(n�i;m�j)y;v (Vt) ; n � 1; m � 0 ;

(F.1)

where, for any n � 0 and 0 � i � n, Ci
n = n!=i!(n� i)!, and where

p(i;j)y;v (Vt) = A(i;j)
y;v +B(i;j)

y;v Vt ; (F.2)

where A(i;j)
y;v and B(i;j)

y;v are constants that can be derived in a recursive fashion, as follows.

We �rst derive B
(i;j)
y;v for i � 0 and j � 0. With \initial" values of B

(0;1)
y;v = exp(���),

B
(1;0)
y;v =

�
�s � 1

2
+ �1(J1 � ��)

�
f0, B

(2;0)
y;v = (1 + �1J2)f0 � f1B

(1;0)
y;v , and B

(1;1)
y;v = �v�f0 +

1
2
�f0f1 +

1
2
�2vf0B

(1;0)
y;v , the following formulas enable us to calculate B(i;j)

y;v recursively up to
any order. We have

B(0;m)
y;v =

m

2
f0�

2
vB

(0;m�1)
y;v ; m � 2 ;

B(n;0)
y;v = �1Jnf0 � 1

2

n�1X
i=1

Ci
nB

(i;0)
y;v fn�i ; n � 3 ;

B(n;1)
y;v =

1

2
�f0fn +

1

2
�2vf0B

(n;0)
y;v � 1

2

n�1X
i=1

Ci
nfiB

(n�i;1)
y;v ; n � 2 ;

B(n;m)
y;v =

m

2
�2vf0B

(n;m�1)
y;v � 1

2

nX
i=1

Ci
nfiB

(n�i;m)
y;v ; n � 1 ; m � 2 ;

39This is a slight abuse of notation, as the �-period excess return y de�ned by (3.1) is indexed by integer

n, while here y is indexed by time t.
40For pure aÆne di�usions, an alternative approach can be found in Liu [1997]. Das and Sundaram [1999]

provide central moments of y, up to the fourth order, for the special case of �1 = 0.
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where: J1 = �J , J2 = �2J+�
2
J , and Jn = Jn�1�J+(n�1)Jn�2�

2
J (for n � 3) are the moments

of the jump amplitude. The coeÆcients fi and gi are given by

g0 = 2 ; gn = 2
n +
1

f0

n�1X
i=1

�n�i gi ; n � 1 ;

f0 =
1� exp(���)

�
; f1 = g1 � (�
1 + �v�)f0 ; fn = gn � �
nf0 ; n � 2 ;

with


1 = �
��v
�

�2�
�
�

�v
+ �s � 1

2
+ �1(J1 � ��)

�
; 
2 = �
21 �

��v
�

�2 �
1� �2 + �1J2

�
;


n = �
n�1X
i=1


i
n�iC
i
n�1 �

��v
�

�2
�1Jn ; n � 3

�0 =
exp(���)

�
; �n = ���

n�1X
i=0

Ci
n�1
n�i�i ; n � 1 :

Next, we derive A
(i;j)
y;v for i � 0 and j � 0. Again, with \initial" values of A

(0;1)
y;v = ��vf0

and A
(1;0)
y;v = (��0�� + �0J1)� � (�
1 + �v�) (�� f0) ��v=�

2
v , the following formulas enable

us to calculate A
(i;j)
y;v recursively up to any order. We have

A(0;n)
y;v =

n� 1

2
�2vf0A

(0;n�1)
y;v ; n � 2 ;

A(n;0)
y;v = �0J

0
n�� ��v

�2v

�
�
n�+ f̂n � ĝn

�
; n � 2 ;

A(n;1)
y;v = ���v

2
f0fn � 1

2

n�1X
i=1

Ci
nfiA

(n�i;1)
y;v ; n � 1 ;

A(n;m)
y;v = ���v �2(m�1)v m!fn

�
f0

2

�m

� 1

2

n�1X
i=1

Ĉi
n(m)fiA

(n�i;m)
y;v ; n � 1 ; m � 2 ;

where for n � 1, Ĉ0
n(m) = m, Ĉn

n(m) = 1, and, for 0 < i < n, Ci
n(m) = Ci

n�1(m)+Ci�1
n�1(m).

(Notice that, Ci
n = n!=i!(n� i)! de�ned previously, is a special case of Ci

n(m), with m = 1.)
The coeÆcients f̂ and ĝ are de�ned by

f̂1 = f1 ; f̂n = fn � 1

2

n�1X
i=1

Cn�i
n�1f̂ifn�i ; ĝ1 = g1 ; ĝn = gn � 1

2

n�1X
i=1

Cn�i
n�1ĝign�i :

G Tests of Moment Conditions

This appendix is closely related to the test of over-identifying restrictions developed by
Hansen [1982] (in particular, Lemma 4.1 of Hansen [1982]). Let En(�n+1) = 0 be the m = 7
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moment conditions under consideration, and let #̂N be the exactly-identi�ed IS-GMM esti-
mators, obtained from the \optimal" moment condition En(Hn+1) = 0. To test En(�n+1) = 0
we construct its sample analogue by

GN(#̂N ) = 1

N

X
n�N

�n(#̂N); (G.1)

where �n(#̂N ) denotes evaluating the moments � at the IS-GMM estimator #̂N . Using ar-
guments similar to those following Assumption 3.5 in Section 3, one can show that, under
typical technical regularity conditions,

p
N GN(#0) is asymptotically normal. Applying a

standard mean-value expansion,

GN(#̂N ) = GN (#0) + @GN (#)
@#

����
�#N

�
#̂N � #0

�
; (G.2)

where �#jN is can be shown between #j0 and #
j
N , for j 2 f1; : : : ; n#g. Moreover, for suÆciently

large N and with probability arbitrarily close to one, we can write

#̂N � #0 = �
 
@GN (#)

@#

����
�#N

!�1
GN(#0) ; (G.3)

where GN = (N)�1
P

nHn is the sample analogue of the \optimal" moments. We know
that @GN (�#N)=@# converges to a constant full-rank matrix d0 in probability, under Assump-
tion 3.6, using the fact that #̂N is estimated under an exactly identi�ed IS-GMM setting.

Substituting (G.3) into (G.2), we obtain

p
NGN (#̂N) a�

p
N

0
@GN (#0)� @GN (#)

@#

����
�#N

 
@GN (#)

@#

����
�#N

!�1
GN(#0)

1
A ; (G.4)

where
a� means \asymptotically equivalent in distribution to." Thus, GN(#̂N ) is asymptot-

ically normal with some covariance matrix 
. An estimator 
N of 
 can be obtained by
estimating the covariance matrix of the right hand side of (G.4).

The m moment conditions can be tested either individually or jointly. We can test the i-
th moment condition by using the fact that

p
NGiN (#̂N )=

p
(
N )ii is asymptotically standard

normal. We can test any subgroup of moment conditions, indexed by I, by using the fact
that, in large sample, N(GIN (#̂N))>((
N )I)

�1GIN(#̂N ) is distributed as a �2 random variable
with #(I) degrees of freedom.

H Proof of Proposition 3.1

Fixing some # 2 �,

lim
N
GN(#) = lim

1

N

X
n�N

H(Xn; #; Yn) = lim
N

1

N

X
i

X
n2A

(i)

N

H(Xn; #; Yn)

= lim
N

X
i

#A
(i)
N

N
G

(i)
N (#)

X
i

lim
N

#A
(i)
N

N
lim
N
G

(i)
N (#) =

X
i

wiG
(i)
1 (#) :
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Letting G1(#) =
P

iwiG
(i)
1 (#), we have shown that GN(#) converges a.s. to G1(#) as

N !1. Next, we show that this convergence is uniform in #. We have

sup
#

jGN(#)�G1(#)j = sup
#

����X
i

#A
(i)
N

N
G

(i)
N (#)�

X
i

wiG
(i)
1 (#)

����
�
X
i

sup
#

����#A
(i)
N

N
G

(i)
N (#)� wiG

(i)
1 (#)

����
�
X
i

sup
#

�����#A(i)

N
G

(i)
N (#)� wiG

(i)
N (#)

���� + jwiG
(i)
N (#)� wiG

(i)
1 (#)j

�

�
X
i

 
sup
#

jG(i)
N (#)j

����A
(i)
N

N
� wi

����+ sup
#

wi jG(i)
N (#)�G(i)

1 (#)j
!

which converges almost surely to zero, by (3.10) and (3.11).

I Geometric Ergodicity of (y; V; r; q)

In this appendix, we show that fyn; Vn; rn; qng is geometrically ergodic. We �rst show that
any square-root process satisfying the Feller condition is geometrically ergodic. This result
applies to V , r, and q separately. Next, we show that fyn; Vng is geometrically ergodic under
certain parameter restrictions. As r and q are independent, and independent of fyn; Vng,
steps one and two therefore establish the geometric ergodicity of (y; V; r; q).

The geometric drift condition of Meyn and Tweedie [1993] plays a central role in estab-
lishing geometric ergodicity in both steps one and two. Letting X denote the measurable
state space of a Markov chain whose one-step transition probability is P (x;A), (de�ned for
any x 2 X and any A in the �-�eld of subsets of X) the geometric drift condition is stated
as following.

Geometric Drift Towards C (Meyn and Tweedie [1993] page 367) There exists

an extended-real valued function f : X ! [1;1], a measurable set C, and constants � > 0
and b <1 such that

�f(x) � ��f(x) + b111C(x) ; x 2 X ; (I.1)

where �f(x) =
R
P (x; dy)f(y)� f(x) denotes the \drift operator."

Intuitively, (I.1) requires that, when the process wanders far out into the state space, it is
pulled back fast enough.

Proposition I.1 (Square-Root Process) Let X be a square-root process de�ned by

dXt = �(�x�Xt) dt+ �
p
Xt dWt ;

where �, �x, and � are positive constants, and W is a standard Brownian motion. Suppose

that X satis�es the Feller condition �� > �2=2. Then the Markov chain fXng sampled from

X with an arbitrary discrete time interval �t is geometrically ergodic.
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Proof Letting f(x) = 1 + x and � = (1� exp(���t))=2 > 0, we have

�f(x) + �f(x) = E (Xn+1jXn = x)� x+ � (1 + x)

= x exp (���t) + �x (1� exp (���t))� x + � (1 + x)

= (2�x+ 1)� � x� :

Letting C = (0 ; 2�x+ 1] and b = (2�x + 1)�, we have (I.1). Using Theorem 15.0.1 of Meyn
and Tweedie [1993], the geometric ergodicity of fXng follows from the fact that fXng is
irreducible and aperiodic, and C is a compact set (thus a petite set for this chain).

Proposition I.2 (The Joint Process of Return and Volatility) For a �xed time

interval �t > 0, let fyng be the �t-period return de�ned in (3.1). Suppose that the volatility

process V satis�es the Feller condition, and, moreover, that

�2
1 + exp(���t)
1� exp (���t) �

�
�s � 1

2
+ � (�J � ��)

�2

> 0 : (I.2)

Then the bi-variate Markov chain fyn; Vng is geometrically ergodic.

Proof Letting f(y; v) = y2 + v2 + 1, we have

�f(yn; Vn) = E
�
y2n+1 jVn

�� y2n + E
�
V 2
n+1 jVn

�� V 2
n ;

where, using the results in Appendix F,

E
�
y2n+1 jVn

�
= A(2)

y +B(2)
y Vn +

�
A(1)
y +B(1)

y Vn
�2

E
�
V 2
n+1 jVn

�
= A(2)

v +B(2)
v Vn +

�
A(1)
v +B(1)

v Vn
�2
;

where B
(1)
v = exp(���) and B

(1)
y =

�
�s � 1

2
+ �(�J � ��)

�
(1� exp(���t)) =�. Letting

Æ = �2 (1 + exp(���t))=(1� exp (���t))� ��s � 1
2
+ � (�J � ��)

�2
, we further de�ne

a2 = 1� �B(1)
y

�2 � �B(1)
v

�2
=

�
1� exp (���t)

�

�2

Æ ;

a1 =
1

2

�
B(2)
y +B(2)

v

�
+ A(1)

y B(1)
y + A(1)

v B(1)
v ; a0 = A(2)

y + A(2)
v +

�
A(1)
y

�2
+
�
A(1)
v

�2
;

where a2 > 0 follows from (I.2). Letting � = min(a2=2; 1=2), so that 0 < � � 1=2 and
� � a2=2, we have

�f(y; v) + �f(y; v) = �(a2 � �)v2 + 2a1v + a0 � (1� �) y2 + �

< ��v2 + 2a1v + a0

� ��(v + a1)
2 + �a21 + a0 :

It is easy to check41 that a0 > 0, we therefore have �a21 + a0 > 0. Letting

C = f0g �
�
0;

r
a21 +

a0

�
� a1

�
41In order for A

(2)
y +B

(2)
y Vn = Var(yn+1jVn) � 0 to hold almost surely, it must be that A

(2)
y � 0. Moreover

A
(1)
v > 0 and A

(2)
v > 0.
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and b = �a21+a0, we see that �f(y; v)+�f(y; v) � b for (y; v) 2 C, and �f(y; v)+�f(y; v) �
0 for y 6= 0 (trivially) and v >

p
a21 + a0=� � a1. We have therefore shown that (I.1) holds

for fyn; Vng. Using Theorem 15.0.1 of Meyn and Tweedie [1993], the geometric ergodicity
of fyn; Vng follows from the fact that it is irreducible and aperiodic, and C is a compact set
(thus a petite set for this chain).
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