Uncovering Trend Rules

Paul Beekhuizen, PhD *)

&
Winfried G. Hallerbach, PhD *)

this version: May 7, 2015

Abstract

Trend rules are widely used to infer whether finahmarkets show an upward or downward
trend. By taking suitable long or short positiomise can profit from a continuation of these
trends. Conventionally, trend rules are based ovimgcaverages (MAs) of priceather than
returns, which obscures how much weight is assigoelifferent historical time periods. In this
paper, we show how to uncover the underlying hisabrveighting schemes of price MAs and
combinations of price MAs. This leads to surprisamgl useful insights about popular trend rules,
for example that some trend rules have invertearmnétion decay (i.e., distant returns have more
weight than recent ones) or hidden mean-reversattenqms. This opens the possibility for
improving the trend rule by analyzing the addedigailf the mean reversion part. We advocate
designing trend rules in terms of returns instefgarices, as they offer more flexibility and allow

for adjusting trend rules to autocorrelation paisdan returns.
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Introduction

Trend rules are widely used to time financial mé&ske/hen historical price patterns persist to
some extent into the future they can be exploibgorédict the future direction of prices. Trend
rules have their origin in technical analysisd are based on technical indicators computed fro
historical prices. Undoubtedly the most populahtecal indicators are moving averages (MAS)
and combinations of MAs. The simplest trend rulesusneN-period MA and prescribes taking a
long (short) position when the current price is\ab(below) this MA, thus capitalizing on the
persistence of the trend. More complex trend rutescombinations of long term and short term
MAs, or even multiple hierarchically stacked MAssimed to incorporate the acceleration or
deceleration of a trend.

It is general practice to define MAs in terms dte levels? This is surprising. Firstly,
trend (or time series momentum) implies a degrgeeddistence in pricmovementand hence
focuses on positive or negatighangedn prices, rather than pridevels Indeed, a trend implies
some dependence structure in the time seriestofns®

Secondly, using some combination of past priceltefas is done when using MAs of
prices) obscures the weighting scheme assignesptarate historical periods because price levels
cumulate returns over different historical periofigeturn, in contrast, is unambiguously linked
to a specific time period. Using trend rules defimeterms of returns therefore allows one to
acknowledge the differences in importance or wegiyn to historical time periods. This is
important as there will be some degreéenébrmation decayendering the more distant history
less relevant than the more recent past. In addlities important to know whether some implied
historical weights are positive or negative, thilmwang for the distinction between trend
persistence and mean-reversion.

Because of this greater transparency, we favodtiedicators defined in terms of
returns. The contribution of our paper is that Wwevs how to uncover the weighting schemes
implied by conventional price MAs, both in a theaal and an empirical fashion.

The analysis of weighting schemes in terms ofrnstueveals surprising and useful

information about trend rules. As a first example,analyze trend rules that combine a short and

Y In fact, trend rules are the only “objectifiablethnical analysis rules that can be subjectethtistcal
testing (as compared to “fuzzy” head-and-shoul@gtepns, support lines and other graphical patterns
attributed to historical price moves). See for egnBrock, Lakonishok, and LeBaron (1992), Lo and
McKinlay [1999], or more recently Zakamulin [2014].

2 An exception is Okunev and White [2002] who anelyzznd rules in foreign exchange markets and use
MAs defined in terms of returns.

% In addition, price level series are generallygnéted of order one and hence have undesirablstistait
properties. It is therefore not without reason fireincial econometrics focuses on relative fiiffiedences

in prices or differences in log prices (viz. retskn



a long price MA. Except for the special case whbesshort MA has length 1 (so the current
price is compared to a MA of past prices), suchgtiave a hump-shaped weighting scheme: the
weight of the most recent returns start low anddase up to a maximum, whereafter the weights
decline again. Combinations of multiple trend ruiesy even lead to multiple humps.

Secondly, we analyze trend rules with a skip menith such rules, the long MA is
calculated over the period starting when the shiédrtends. We show that such trend rules are
simply rescaled versions of trend rules withoukig period, but with a longer window over
which the long MA is computed.

Thirdly, the weighting scheme of the popular (botnplex) MACD rule turns out to have
a hump-shaped information decay as well. Moreavégs as much negative weight as positive
weight. As negative weights imply a mean reverside (positive past returns imply negative
signals), the MACD rule is in fact just as muchiend rule as it is a mean reversion rule.

All these phenomena are hidden by definitiongrmss of prices, but revealed by the
analysis of return weights. The increased undedgtgrof these trend rules allows one to
improve these trend rules. For example, usingeheam weights it is possible to separately
analyze the trend and mean reversion parts of R€Mrule, and it allows one to assess the
impact of the implied mean reversion in combinagiohmultiple MA rules.

Apart from uncovering these phenomena, we exteadheoretical analyses by showing
how the underlying weighting scheme of an impleredritend strategy can be uncovered from
historical data. We illustrate this by revealing theighting scheme implied by a trend rule
applied to the S&P 500 index. The practical imglma of this analysis is that, given only trend
returns in a single market, we can determine thghtiag scheme that was used to construct the

trend signals.

Price Moving Averages (MAS)
Consider a stock market index, a currency or sotimerandex series with historical log price

series{ pt} 4 We measure time in periods of equal unit lendifs (tan be days, weeks, months).

At timet, a simple price MA based dtime periods then takes the form:

1 N
MA(N) =5 2 R (1)
i=0

* We use log prices since a change in log prices doedepend on the initial price level. Hencehange
in log prices is equivalent to a return. After alichange of 10 index points when the index isi¢@uite
different from a 10 point change when the indek,&)0. In practice trend rules are sometimes défore
price levels and later scaled by dividing by anrage price level. This does not materially afféet t

weighting scheme or the conclusions of this papérrunnecessarily complicates the theoretical déon.
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Hence, the timéprice can be written alA(L), .

Typical trend rules combine a MA over a short pervith a MA over a longer period. A

(M,N)-trend indicator then is computed as:

trend( M, N), = MA M), - MA N (2)
with M < N . A special case i81 =1, in which case the current price is compared ¢oMA of
log prices over the pablt periods.

When the short moving average increases aboveops thelow the long moving average,
there is a cross-over. When the trend indicatotch@s from positive to negative, this is
interpreted as a sign that the momentum of the etanlay have become negative. Shorting the
market will be profitable when the prediction inddsecomes true. As an alternative to these
directional betsalsoproportional betscan be taken, in which the size of the positiopethels not

only on the sign of the trend indicator but alsdterspecific value (strength of trertl).

Analyzing MAs defined in prices

When MAs or trend indicators are defined in terrh@ax) price levels, the question arises what
the underlying weighting scheme of past periodiisrder to uncover this weighting scheme,
we express each past log price level as the difterdetween the current log price level and the

sum of intermediate log price changes:
i-1
Poi = R 2K 3
j=0

wherer, = p, — p,_; is the log return. When applying eq.(3) to eadbeplevel comprised in the
MA(N) of eq.(1), we obtain the scheme as depicted hitix1.

® For the expected return, standard deviation afuirimation Ratio of directional versus proportional
market timing strategies, we refer to Hallerbaddl{Z)].
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Exhibit 1: The diagram of price changes for a simple moviverage pricéMA(N).

term 1 term 2 term 3 term 4 term N
t t-1 t-2 t-3 . t-N-1 _
P Pr-1 Pr-2 Pe+1-N
=Pk =Pk =Pk =P~k
T T -1
~Ti-2 ~Ti-2
“h-n-2

Combining egs.(1) and (3) is equivalent to sumnailhghe terms in Exhibit 1 and dividing by
This yields the expressidn:

=z

1 N1 =I
MA(N); "N D Ri=R- (TI) f1-i (4)
i=0

i=1

Eq.(4) shows that ®IA(N) represents the difference between the curreniicg level and a
specific weighted sum of past returns.

When using eq.(4) for MIA(M) and substituting this result in the definitiontioé (M,N)-
trend indicator, we obtain:

trend( M, N);, = MA M)t MA Ny

N-1,

{pt M l rt+1 |:| |:pt_ (%)'ﬂl—i} (5)
i=1 i=1

N-1 M-1

(%) a1 = D (MT_i)rHl—i

i=1

[

We conclude that the MA in log prices has a spetiifiear weighting scheme in terms of returns:

trend( M, N)t Z W1 (6)

where the weights are given by the following expi@s:

® An entirely analytic and less intuitive derivatifmilows from inserting (3) into (1) and interchamg the
double sum.



|\I/|_ Iﬁ for 1<i<M -1
W= | )
1-— forM<i<N-1
N
In practice such trend rules are often scaled biglitig by a long-term (e.g. 10 years) standard
deviation, in order to combine them with differéinte series rules, be it trend or otherwise.
When viewing this trend rule as a weighted sumetdnns directly, it makes sense to normalize
these weights rather than dividing by a standaxgatien. By doing so, the trend rule becomes a

weighted average of past returns. In this casewtights become (see Appendix):

2 ('——'—j for 1<i<M -1
N-M

2 [(p- 1 forM <i <N -1.
N-MU N

A special case is the ()-trend indicator:
N-1, Nt
trend(1, N), = . (N51) pag =%(N -1 (258 ¢, 1 ®)
i=1 i=1

where the last equality shows the normalized wsighithe past returns.

Analyzing weighting schemes
In this section, we analyze the weightst@nd( M, N)-rules in more detail. We show that
trend( M, N) -rules carry an implied belief in short-term meanarsion if they are compared
with trend(1, N) -rules.

In Exhibit 2, we display the weighting schemesdreind( M, N) -rules, as given by eq.(7).
The trend(1, N)-rules display a linear declining weight, which iiep a linear discounting of
past returns. Thaend( M, N)-rule, withM >1, however, shows a surprising hump in the

weighting scheme: returns &fl periods ago have a higher weight than returns theelast
period. Furthermore, from eq.(7), we see that:

trend(M, N) = trend1, N - trend1, M 9)

so the difference between usingrand( M, N)-rule or atrend(1, N)-rule is given by
—trend(1, M). Trend rules with negative weights are in fact mesgversion rules (i.e., positive
past returns imply negative future returns and viesa). As a result, if one faces the choice

between arend( M, N) and atrend(1, N), choosing thetrend( M, N) -rule implies belief in

short-term mean reversion.
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Exhibit 2: Weighting schemes ¢fendM,N) rules.

Trends with a skip period
Because the short and long MA inrand( M, N) -rule share an overlap of the first periods, a

skip period is sometimes used in the calculatiotheftrend rule. With a skip period, the MA of
the previousM periods is compared with the MA of th¢ periodsbefore thatj.e., from N + M
periods ago up td1 periods ago. In this section, we show that addisgjja period is equivalent
to prolonging the longest MA froml toN + M, apart from a scaling factor:

M +N

trendgyip,(M, N) = trend( M, N+ M), 9)

A trend rule with a skip period is defined asdolk:

1 M 1 N-1
trendgyip(M N} == 2 Pri =5 2 Prw-i (10)
i=0 i=0
For such rules, we can derive the weighting sch&méarly to how we derived eq.(7). We
obtain:
M+N-1
trendgip(M,N) = > Wik, (11)
i=1
with:
|\I/|_ for1<isM -1
= 12
. N+M<i (12)

forM<isN+M-1



For the first pasi periods the weight increases linearly and aftat ithdecreases linearly.
Indeed, this weighting scheme shows remarkableglsece to the hump-shaped weighting
scheme of thérend( M, N+ M) -rule. We proceed by rewriting the weights of the

trend( M, N+ M) -rule in eq.(7):

i i N i

- = — for1<i<M -1,

M N+M N+M M _ (13)

1ot _ N N+M-i
N+M N+M N

which is indeed identical to (12), apart from tlealgg factor.

VVi=

forM<isN+M -1,

Combining multiple trend rules

By combining multiple trend rules, an investor cemefit from diversification. Looking at the
weighting schemes of the individual trend rulesybeer, reveals additional insights in such
cases. After all, the weighting scheme of the ayei&E multiple trend rules is simply the average
of the weighting schemes. We show that this cath fedaump-shaped weighting schemes (cf. the

trend( M, N) -rule). If the different trend rules are suitabhosen, multiple humps might even

occur. Rather than trying to obtain diversificattbnough the combination of multiple trend rules
which induce non-monotonic information decay, weparse to choose a weighting scheame
priori.

First, we combine the weighting scheme of tikend(1, N) -rules. The resulting trend
rule is the average of the two underlying tren@suln practice, such trend rules are often
combined after dividing by a long-term standardidigon (e.g. 10 years) to make their
volatilities comparable. This, however, does notenally affect the form of the weighting
scheme and hence our conclusions.

In Exhibit 3, we show the weighting scheme of tbmbination of a fast (1,40) and a
slow (1,250) trend rule. The weighting scheme risvaaurprising inflection point at 40. Instead
of such a discrete cut-off point, it might be mdesirable to choose priori a functional form
that reflects a more gradual information decayhs@agan exponential function.

Moreover, in Exhibit 4 we show the weighting schemha fast (5,40) and a slow
(50,250) trend rule. As shown before, such tremesrhave a hump-shaped weighting scheme
and an implied belief in short-term mean reverskxhibit 4 clearly shows that a combination of
such trend rules even has multiple humps. Althabghcombination of multiple trend rules

seems perfectly reasonable for price series, dyssaf the weighting scheme reveals that the



weight of returns increases between 1 and 5 pedgdsthen decreases and increases again

between 40 and 50 periods ago.

Trend(1,40)+Trend(1,250)

0 50 100 ; 150 200 250

== Trend(5.40)+Trend(50,250)

Exhibit 4: The weighting scheme of the average of a trend{®46 a trend(50,250) rule.

MACD

Another popular combination of trend rules is thAGD-rule (Moving Average Convergence
Divergence), proposed by Appel [2005] in the 19708 MACD rule comprises a combination
of three exponentially-weighted moving averages [EA®). In this section, we analyze the
weighting scheme of the MACD rule in more detaile how the functional form of the



weighting scheme and we show that the MACD rujassas much mean-reversion as it is trend:
the sum of negative weights is equal to the suposftive weights.

The MACD rule combines three EWMAs of a price serférst, a slow and a fast
EWMA of a price series are computed, and next tHhe&CH is defined as the difference between
these EWMAs:

MACD, = EWMA (p,,As) - EWMA( p,A;) (14)

where A, andA; are the persistence parameters of the slow ah&WMA, respectively,

N -1
see Appel
N+1( PP

[2005]). Finally, the signal at time, denoted bys , is an EWMA of the MACD (with a third

satisfying0< A. < 1. An N-period EWMA translates into a persistencelof

persistence parametdr), minus the MACD itself:
S = EWMA(MACD,, 1) ~-MACD, (15)

In the Appendix, we show that the signal of the MA@ile can also be written as a

weighted sum of returns:

t i i i _ i t
. . A=A Af A
= (AL =AY -@-2) == - =) Fp W 16
St iZ:::LEH 1[(5 f) ( )[1_/]//15 1_A//1fJ:l i:1t+|1| ( )
These weights are plotted in Exhibit 5. Clearlyjrathe case of multiple trend rules,
more distant returns have higher weights than tbst mecent returns. While this may be perfectly
desirable, this feature of the MACD rule is hiddrnthe definition in terms of EWMA rules, but

revealed by its weighting scheme.

Furthermore, Exhibit 5 illustrates that at somenpthie weights become negative. In fact,
in the Appendix we show that the sum of positivéghts is equal to the sum of negative
weights. As negative weights indicate mean revar§ositive past returns imply negative
signals), the MACD rule- although typically presented as a trend ruls just as much a mean

reversion rule as it is a trend rule.

10
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Exhibit 5: The weighting scheme of the MACD rule, with stard26, 12, and 9-day parameters, i.e.
A =25/27= 0.926 A; =11/13= 0.846 and1d =8/10 (see Appel [2005]). The sum of positive
weights is equal to the sum of negative weightshadothe MACD rule is just as much a mean reversio

rule as it is a trend rule (see Appendix).

Reverse Engineering

Besides revealing information about trend rulepressing trend rules as weighted sums of
returns also allows one to “reverse engineer” tnedrns. That is, from the returns of a trend
rule, we car- with large confidence discover the trend rule that was used to genéhnate
returns. The latter can even be done after a piorifoplementation rule is taken into account
and after normalizing z-scores are taken, as iswwamin a multi-factor frameworkOur
methodology is similar to the returns-based styl@ysis introduced by Sharpe [1988].

We illustrate this reverse engineering fo\aA(5,45)-rule applied to daily S&P 500
data, obtained from Bloomberg, starting on 1-Jab0l&nd ending on 31-March-2014
(comprising 16,165 days). We take a z-score oMk€5,45)-rule using the 1,300-day average
and standard deviation. We further defir@gnalthat is equal to O if the trend score is less than
0.3 in absolute value and equal to the sign oftuge otherwise. The latter rule serves as a
simple implementation rule that translates theesanto long, short, and neutral positions.
Finally, we multiply the scores and the signalghmyreturn of the next day to obtain the return

series of the trend rul@g.q e ¢ aNd Iigngy ¢

" The z-score of a score is computed as the isitiate minus its average, divided by its standaviatien.
The z-transformation makes scores from different@®s mutually comparable and thus allows summing
or averaging different scores into an overall score

11



Given only these trend returns and the marketmetwe uncover the underlying trend
rule by running the following regression for scoasswell as signals:
Yo =a+ B+t Brig (17)

Herer; is the market return of dayand y, is either the observed scorg /r, or the
observed signalgig,,; /1 attimet 2 The regression coefficients represent the empirica

weights of the trend strategy.

We obtain estimates for the coefficients in ef).¢hrough ordinary least squares
regression withT = 260, for both the score and signal returns. The ewglitveighting scheme
is plotted in Exhibit 6, along with the theoretieaights of &rend5,45)-rule. The empirical
weighting scheme matches the theoretical weighits glosely, especially for the scores. For the
signals we see some noise around the theoreticgghtgebut the empirical weights still match
the theoretical weights quite closely.

The more non-linear the transformations appliethéotrend scores, the less accurate the

implied weights will be. The simple implementatiare with neutral positions used in this

section is also a non-linear transformation aneaaly reduces thB? of the regression from

94% for score returns to 67% for signal returnsrédMmomplex non-linear transformations will

further reduce th&k? and hence the confidence we have in the impliédit® Yet, even with
the implementation rule used in this section, theeaulying trend rule is convincingly identified.
Applying linear transformations, in particular taking moving aw=s of moving averages, will

not affect the accuracy of the implied weights sitite regression itself is also linear.

8 As this is a controlled experiment, we know thr teturns of the trend series are a multiple eféturns
of the market. In a non-controlled experiment, woelld need to make sure thit is not close to 0, as the

empirical weights would blow up.
12
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Exhibit 6: Implied weighting schemes ofteend5,45) rule applied to daily S&P 500 data since Jan
1950. The implied weighting schemes are obtainesltfh eq. (17) with T = 260. “Score” refers to the
implied weighting scheme of the trend score retutsignal” to that of the trend signal returns, and
“theoretical” to the theoretical weights ofrend5,45) rule, cf. eq.(6). All weighting schemes are

normalized so that the sum of all weights equal/un

Summary and conclusions

Althoughit is general practice in trend analyses to use MAsrms of price levels, we propose
defining trend indicators in terms of returns. $imeturns are unambiguously linked to separate
time periods, trend rules formulated in terms o@imes offer direct insight into the weight given
to past time periods. This transparency allowgudging not only the degree of information
decay implied by a trend rule, but also offers #dbeinderstanding of the implied patterns of
trend persistence and mean-reversion. We showeddancover the weighting schemes implied
by conventional price MAs (including the impactao$kip period) and we revealed the illusion of
diversification resulting from combining differemAs.

We also analyzed the weighting scheme of the lpopACD trend rule, revealing that
this rule is as much a trend rule as it is a measrsion rule. Finally, we supplemented our
theoretical analyses by showing how to empiricaltigover the underlying weighting scheme of
a trend strategy applied to a single market. Osultg allow for evaluating the contribution of the
implied trending and reverting patterns to the genfance of a trend rule. In addition, the focus
on return weights offers greater flexibility in gffging weighting schemes, opening the
opportunity to improve a given trend rule by tunitgweights to autocorrelation patterns in the
data. We leave this as a route for future research.

13



Appendix
In this Appendix, we expressMA(N,M)in terms of normalized weights and we derive the

weighting scheme for the MACD trend rule.

Rewriting MA(N,M) in terms of normalized weights
Specifically, the sum of the return weights in &yi:
Mz—ll( i ) N%/l:—l( i j le NJ% -1 N-1j
_—— |+ 1-— | = —+ 1- —
it\M N i=M N i3 1 N (18)
1 1 1
==(M-1)+N-=(N-1)==(M-N
>(M-1) > (N=1)=2( )

Dividing the return weights in (7) by the expressabove gives the normalized weights.

Thereturn weighting schemeimplied by the MACD trend rule
We now derive the return weighting scheme of theQArule. It comprises three exponentially
weighted moving averages (EWMAS) of a price segigd is computed in three steps.

In the first step, we calculate the differencenssin a fast and a slow price EWMA. We
define the value of the slow EWMA at tilteas m, , and likewise the fast EWMA at timteas

m; ; . Their persistence parameters dgeand A¢ , respectively. We assume the (log) price

index is zero at time 0, so that:

P =r+..tr (19)
For the slow EWMA, we have:

-1 t=k

M, =(1- AS)ZASpH (1- AS)ZASZr (20)
Interchanging the double sum yields:
K t 1- /11: u+l t U+l
m=-A)Y 1 ZA =AY =R A (21)
u=l k= S =1

t
Likewise, we find tham; = > r,1- ;") . The MACD at time t is defined as the difference
u=l

betweenm; ; andmg :

° Although the MACD algorithm does not prescribe tilee to take prices or log prices, we use log price
for the ease of derivation. Using regular pricessdoot significantly affect the weights, but le&alslight
inaccuracies as a result of multiplying returndeathan adding them.

14



t
MACD; = > r,(Ag "= AT (22)
u=1

In the second step, we calculate the EWMA of th&OD itself (with a third persistence
parameterd ). The EWMA of the MACD is:
EWMA(mM; ( —mg ,A) = EWMA(m; (,A) ~EWMA(m (,4) (23)

so we proceed by rewritifgVMA(m , A) :

t-1 t-k
EWMA(mg ,A) = (1- A)ZA Mg = @-A) Y A*> r1-A5k
k=0 k=0 u=1

=(1—/1)Zt:r {ZA" —AY “*12 }

u=1 k=0 kOS

/]t u+l - 1- (/] /A )t—u+1
=(1-A r|—r—— vz 2%
= )2 { a0 1= 1)

(24)

-0 A=)
=(1-2)) hai- -3

Here, the last equality follows from substitutingt —u +1. Likewise, we have:

(25)

t
EWMA(mM¢ ,4) = (1_")24””‘1{ 1-4 1-1/2
f

1-A0 Ap=A
i=1

The EWMA of the MACD is thus given by:
EWMA(MACD, A) =EWMA(m; 4, ) ~EWMA( my, A)

A=A A=A (26)
=A-A)> -
= )Z t 1{1 AlAg 1-A1A;

In the third and final step, we calculate the MAGIDBnal at time t, denoted b§, as the

difference between the MACD and the EWMA of the MAC
S, = MACD,- EWMA(MACD,, A)

t . . /1i _/1i /1If _Ai t
=) fyiog| (A -A)-@Q-2)] == - =) W (26)
Etﬂl[ S f l_/”/]s l—/i//]f 2t+|1|

i=1
Using this weighting scheme, we can also showttt@MACD rule incorporates as
much mean reversion as it incorporates trend. tigodar, the sum of positive weights is equal to

the sum of negative weights. We prove this by shgwhat the total sum of weights is equal to O.

Evaluating all sums in eq.(26) and rewriting imnadiy yields:

15



[oe]

. i 2N Aé—ﬂi_/‘if‘)'i
E\M—Z[(ﬂs An)-a A){l—/ﬂ)ls 1—/1/;|fﬂ

i=1

:1_1_(1_/])/15(1_1J_/]f 1 1
1-A, 1-A; A=A\ 1Ay 1-A) A=A 1-A; A 27)

:i__l_(l_/]) /15 /]s_/] _ /]f /]f -1
1-As 1-Aq As=A) A-A)(A-A) @¢-A4) Q-A¢)A-A)
_ 1 1 Ag N As

1-A, 1-A; 1-A, 1-A;

So the sums of positive and negative weights aresiddhe same.
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