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Abstract
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We discuss the five different, yet interconnected areas of quantitative finance where lin-
ear factor models play an essential role: multivariate estimation theory, asset pricing theory,
systematic strategies, portfolio optimization, and risk attribution.
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models.
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1 Introduction

Linear factor models (LFM’s) play a key role in five broad areas of finance: multivari-
ate estimation, asset pricing theory, alpha search, portfolio optimization, and risk attribu-
tion/hedging, see Figure 1.

In this article we present an in-depth critical review of both the theory and the applications
of LFM’s. Then we present the numerous pitfalls that lurk behind these apparently simple
models. As a result of our discussion, we also question the very necessity of LFM’s and point
in the direction of better modeling alternatives.

Figure 1: Overview of Linear Factor Models.

In Section 2 we provide a detailed account of the theory of LFM’s. In particular, we
discuss two distinct classes of LFM’s that are often incorrectly identified as one single class.
The first class are dominant-residual LFM’s, which include time-series, cross-sectional, and
statistical LFM’s as special cases. As we shall see, these three sub-classes follow naturally
from the same common generalized maximization principle. The second class, distinct from
dominant-residual LFM’s, are systematic-idiosyncratic LFM’s.

In Section 3 we focus on the five applications of LFM’s in finance. In multivariate es-
timation theory, LFM’s are dimension-reduction techniques to obtain statistically effi cient
estimates in large markets. In the theory of asset pricing, CAPM and APT are constraints
on the first moments of global LFM’s for all the securities in the market. In the design of
quantitative strategies, LFM’s can be used to extract from the market and mix predictive sig-
nals that yield "alpha". In portfolio optimization, LFM’s induce a structure on the securities
covariances that allows for the implementation of fast risk minimization algorithms. In risk
attribution, LFM’s allow a manager to best interpret and analyze his projected P&L, or hedge
the exposure to given risk factors. In each application we point out that, to the surprise of
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many, almost none of the above applications need LFM’s and actually better implementation
can be achieved without LFM’s.

Often times confusion arises on the variables to which LFM’s apply, such as past returns
or log-changes in implied volatility, or future projected P&L’s. Confusion also arises on the
assumptions on which LFM’s rely, such as the independence of the variables across time, or
among the simultaneous residuals. This leads to suboptimal implementations of quantitative
financial models. In Section 4 we analyze these pitfalls.

In the appendix we prove all the technical results. The code for the empirical case studies
in this paper and additional case studies is available for download at symmys.com/node/336.

2 Theory of LFM’s

In this section we define LFM’s and we discuss the most important features of different classes
of LFM’s. To better grasp the theory, we illustrate the main points and caveats by means of
easy-to-interpret low-dimensional simplified examples.

There exist three broad categories of LFM’s, see Figure 2.

Figure 2: Types of Linear Factor Models.

In Section 2.1 we cover the first category, namely dominant-residual LFM’s, which include
time-series, cross-sectional, and statistical LFM’s as special cases. As we shall see, surprisingly
all these three sub-categories of LFM follow naturally from the same optimization, under
different constraints.

In Section 2.2 we discuss the second category, namely systematic-idiosyncratic LFM’s,
which at times are incorrectly assumed to overlap with dominant-residual LFM’s.

In Section 2.3 we discuss the third category, namely pure exogenous LFM’s.
In Section 2.4 we discuss factor analysis, which is sometimes considered similar to principal

component analysis, but which in reality is fundamentally different because it is not a LFM.
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LFM’s can be used to decompose different types of variables, namely the i.i.d. invariants
that drive the dynamics of the market, such as changes in yield spreads for bonds, or log-
changes in implied volatility for options; or the projected P&L’s over a future period of a set
of securities or portfolios; or the returns of the same securities over an arbitrary period. In
order to cover LFM’s in full generality in this theoretical section, we denote these random
variables by X, which we call "the market". In the applications in Section 3 we will specify
in detail the variables X.

Key definition. A LFM is a decomposition of the market X ≡ (X1, . . . , XN )′ as a
linear combination of factors plus residuals, as follows X1

...
XN

 ≡
 a1

...
aN

+

 b1,1 · · · b1,K
...

. . .
...

bN,1 · · · bN,K


 Z1

...
ZK

+

 U1
...
UN

 , (1)

or in matrix notation
X ≡ a + bZ + U. (2)

In this expression a ≡ (a1, . . . , aN )′ are N constants; Z ≡ (Z1, . . . , ZK)′ are K factors,
i.e. random variables correlated with the market X; b ≡ {bn,k}k=1,...,K

n=1,...,N is a N ×K matrix
of factor loadings, i.e. coeffi cients that transfer the randomness of the factors Z into the
market X; and U ≡ (U1, . . . , UN )′ are N random residuals.

The randomness recovered by the LFM is

Y ≡ a + bZ. (3)

The different components of a LFM X,a,b,Z,Y,U can be specified in one of two
ways. First, with the joint distribution fX,Z of market and factors, and with coeffi cients
a and b, we then derive the distribution of the recovered randomness Y ≡ a + bZ and of
the residuals U ≡ X−Y

(fX,Z,a,b)⇒ (fY, fU) . (4)

Second, with the joint distribution fZ,U of factors and residuals, and with coeffi cients a
and b, we then derive the distribution of the recovered randomness Y ≡ a + bZ and of
the market X ≡ Y + U

(fZ,U,a,b)⇒ (fY, fX) . (5)

Notice that the market dimension N is not necessarily larger than the number of factors
K. However, when N � K, LFM’s represent a dimension reduction technique useful for
instance to estimate the projected P&L of all the stocks in the world, see Section 3.1. In the
opposite extreme case where N = 1 < K, LFM’s represent a risk attribution tool useful for
instance for optimal hedging and parsimonious interpretation of the P&L, see Section 3.5.

We emphasize that in our framework the market X, the factors Z, the recovered ran-
domness Y and the residuals U in a LFM are simultaneous random variables with fully
general distributions, that are by no means restricted to normal. The random variables
(X,Z,Y,U), which we denote by capital letters, are not past observations of financial data
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{xt, zt,yt,ut}t=1,...,T , which we denote by lower-case letters. We expand on this confusion be-
tween forward-looking modeling versus backward-looking data manipulations in Section 4.1.
Needless to say, the connection between random variables and data is important, and we will
delve into it in the applications to estimation in Section 3.1.

2.1 Dominant-residual LFM’s

A dominant-residual LFM for a market X is a decomposition X ≡ a+bZ+U as in (2), where
the recovered market randomness Y ≡ a + bZ is optimized according to a fitness target or
objective T {X,Y} function to explain the largest portion of the original randomness in the
market X under a potential set of constraints C.

Key definition. A dominant-residual LFM for a market X is a decomposition

X ≡ a + bZ + U, (6)

where
(a,b,Z) ≡ argmax

(α,β,Z̄)∈C
T
{
X, α+ βZ̄

}
. (7)

A dominant-residual LFM (6) is always specified as in (4), by first determining the
joint distribution fX,Z of the market and the factors and the coeffi cients a and b using
(7), and then deriving the distribution of the recovered randomness Y ≡ a + bZ and of
the residuals U ≡ X−Y

(fX,Z,a,b)⇒ (fY, fU) . (8)

In the dominant-residual formulation (7) the fitness target T is fully general. A useful
target is the conditional-value-at-risk (CVaR), which has applications to hedging, see Section
3.5.

A second, fundamental, target is the multivariate r-square. To introduce it, we re-
call the standard definition of the univariate r-square provided by a "model" set of data
{y} ≡ {yj}j=1,...,J to an "original" set of data {x} ≡ {xj}j=1,...,J , namely r

2 ({x} , {y}) ≡
1− V̂ ({x− y}) /V̂ ({x}), where V̂ denotes the sample variance of the data.

In our approach, the original market and the model market are not data, but rather random
variables with a fully general distribution. Accordingly, we replace the sample variance V̂
with the distributional variance V, thereby obtaining the distributional r-square R2{X,Y } ≡
1−V{X − Y } /V{X}.

Then, we generalize the distributional r-square to a multivariate environment. Denoting
by Cv{X} the covariance matrix of the entries of X and by tr the trace of a matrix, i.e. the
sum of the diagonal elements, we obtain the following definition, see also [Meucci, 2005]: the
multivariate distributional r-square is a measure of fitness defined as

R2{X,Y} ≡ 1− tr (Cv{X−Y})
tr (Cv{X}) . (9)

Since tr (Cv{X}) is proportional to the average variance among the N entries in the mar-
ket 1

N

∑N
n=1 V{Xn}, the numerator in (9) is always positive, and only zero if the vector Y
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replicates X exactly. As in the univariate case, the denominator is a normalization term that
makes the distributional r-square scale-independent.

In the dominant-residual formulation (7) not only the fitness target T , but also the con-
straints C are fully general. For instance, the constraints can include the least absolute
shrinkage and selection operator (LASSO), see e.g. [Hastie et al., 2009] for more on the sub-
ject.

Another useful constraint is the "few-out-of many", or cardinality constraints, used to
select the most effective factors or hedging products, see the applications in Section 3.5.

Here we highlight a constraint that becomes useful when the fitness target in the dominant-
residual LFM definition (6)-(7) is the r-square (9). In that case the constant vector a does
not affect the optimization (7), and thus it cannot be determined by the optimization. To
determine a we impose the constraint that the residualsU ≡ X−a−bZ have zero-expectation

C ⊇ {a ≡ E{X} − b E{Z}} . (10)

There are three different classes of dominant-residual LFM’s widely used in the industry:
time-series, which we discuss in Section 2.1.1, cross-sectional, which we cover in Section 2.1.2,
and statistical, which we discuss in Section 2.1.3.

As we shall see, the differences between these three classes of LFM’s are solely determined
by the specification of the constraints C in the dominant-residual definition (7), refer to
Figure 2. Researchers at times perceive these three classes of LFM’s as recipes. By seeing
them embedded in the general, flexible, modular dominant-residual framework (6)-(7) with
general targets and constraints we can extend each class to a wealth of theoretically sound
LFM’s better suited for each situation.

2.1.1 Time-series LFM’s

The first of the three sub-classes of dominant-residual LFM’s are time-series LFM’s.

Key definition. A standard time-series LFM for a market X is a dominant-residual
decomposition X ≡ a + bZ + U with exogenously specified factors Z, where the fitness
target is the multivariate distributional r-square. Thus, a time-series model is defined by
the general framework (7) as

(a,b,Z) ≡ argmax
(α,β,Z̄)∈C

R2
{
X, α+ βZ̄

}
, (11)

under the no-expectation constraint (10) on the residual and the additional constraint
that the factors Z be fully specified exogenously

C :

{
α ≡ E{X} − β E

{
Z̄
}

Z̄ ≡ Z
(12)

As we show in Appendix A.1, the standard time-series optimization (11)-(12) can be solved
explicitly for b, yielding

b ≡ Cv{X,Z}Cv{Z}−1 . (13)
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Notice how to compute the optimal loadings b in (13) and thus specify the time-series LFM
we need the joint distribution fX,Z of the market X and the factors Z.

Then, using the expression for b in (13), we obtain a from (12). Thus, the factor-recovered
market Y ≡ a + bZ becomes

Y ≡ E{X}+ Cv {X,Z}Cv{Z}−1 (Z− E{Z}) . (14)

This equation shows that the recovered randomness lives in a K-dimensional plane, embedded
in the N -dimensional space of the original market X, see Figure 3.

As we prove in Appendix A.1, the distributional r-square provided by the recovered market
(14) reads

R2{X,Y} = 1
N tr

(
Cr{X,Z}Cr{Z}−1 Cr{Z,X}

)
, (15)

where Cr{Z,X} are theK×N correlations between factors and market and Cr{Z} are the N×
N correlations among factors. This expression supports the intuition that a good model must
display high overall correlations between the factors Z and the market X. Furthermore, the
factors should be as uncorrelated among each other as possible. If there are high correlations
among the factors, or if there is high collinearity, the matrix Cr {Z}−1 would be ill-defined.
Geometrically, this means that the plane of the recovered market (14) is not properly defined,
see Figure 3.

Figure 3: Factors in time-series factor model should not be collinear.

With the expression for the randomness Y recovered by the LFM (14) we can compute
the residuals U ≡ X−Y. As we show in Appendix A.1, the residuals are uncorrelated with
the factors, i.e. Cr{Un, Zk} = 0. However, the residuals are not uncorrelated among each
other, i.e. Cr{Un, Um} 6= 0 and thus the residuals are not idiosyncratic. We discuss further
this pitfall, which can give rise to incorrect risk estimates, in Section 4.5.
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To illustrate the concept of standard time-series models, we assume a two-dimensional
market with one external factor X1

X2

Z

 ∼ N

 0
0
0

 ,

 1 0.5 0.6
0.5 1 0.7
0.6 0.7 1

 . (16)

We maximize the distributional r-square as in (11)-(12). Then we obtain

a = (0, 0)′, b = (0.6, 0.7)′ (17)

Then the joint distribution of the residuals and the LFM-recovered randomness reads U1

U2

Y

 ∼ N

 0
0
0

 ,

 0.64 0.08 0
0.08 0.51 0

0 0 1

 . (18)

Notice that Cr{Un, Z} = Cr{Un, Y } = 0, but Cr{U1, U2} = 0.08 6= 0. We refer to the code
at symmys.com/node/336 for more details.

Using the general dominant residual framework (6)-(7) we can construct generalized time-
series LFM’s by replacing in (11)-(12) the r-square with arbitrary fitness targets T and by
adding arbitrary constraints C. These generalizations make the correlations of the factors
with the residuals non-zero, Cr{Un, Zk} 6= 0, in addition to the correlations among residuals
being non-zero, Cr{Un, Um} 6= 0. We discuss this pitfall further in Section 4.5.

To illustrate a generalized time-series model, we continue with the above case study,
but in addition to (12) we include the constraint that the loadings be bound from below
by b ≡ 0.8 and from above by b ≡ 1.2

b ≤ b1, b2 ≤ b. (19)

Now
b = (0.8, 0.8)′ (20)

and the joint distribution of residuals and recovered market reads U1

U2

Y

 ∼ N

 0
0
0

 ,

 0.68 0.1 −0.2
0.1 0.52 −0.1
−0.2 −0.1 1

 . (21)

Notice that now Cr{Un, Z} = Cr{Un, Y } 6= 0. We refer to the code at sym-
mys.com/node/336 for more details.

Time-series LFM’s bear this name because in some applications the joint distribution
of X and Z is estimated as the empirical distribution stemming from a time-series of data
fX,Z ⇐⇒ {xt, zt}t=1,...,T . In this case the loadings (13) become the coeffi cients of an ordinary
least square regression, as in the application (61) below.

However, the term "time-series" is a bit of a misnomer, because all the other approaches,
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including the cross-sectional approach of Section 2.1.2, ultimately rely on time-series analysis
for estimation purposes.

Time-series LFM’s are also known as macroeconomic LFM’s, because in some applications
the factors are macroeconomic variables, such as interest rates, stock market returns, etc.

2.1.2 Cross-sectional LFM’s

The second of the three sub-classes of dominant-residual LFM’s are cross-sectional LFM.

Key definition. A standard cross-sectional LFM for a market X is a decomposition
X ≡ a + bZ + U where the loadings b are specified exogenously. Then, the factors Z
are extracted from the market by means of a linear transformation defined by a K × N
matrix c as Z ≡ cX, in such a way to maximize the multivariate distributional r-square
of the LFM.

Accordingly, a cross-sectional LFM is defined by the general framework (7) as

(a,b,Z) ≡ argmax
(α,β,Z̄)∈C

R2
{
X, α+ βZ̄

}
, (22)

under the usual no-expectation constraint on the residual (10), the exogenous specifica-
tion of the loadings b, and the requirement that the factors be extracted by a linear
transformation

C :


α ≡ E{X} − β E

{
Z̄
}

β ≡ b
Z̄ ≡ cX

(23)

where c must be optimized.

As we show in Appendix A.2, the optimization (22) under the constraints (23) can be
solved explicitly and reads2

c ≡
(
b′b
)−1

b′. (24)

Using the factor-extraction matrix (24) and the constraint for a in (23) we can write the
factor-recovered market Y ≡ a + bZ as

Y = E{X}+ b
(
b′b
)−1

b′ (X− E{X}) . (25)

As we show in Appendix A.2, the distributional r-square provided by the recovered market
reads

R2{X,Y} =
tr (Cv{Y})
tr (Cv{X}) . (26)

This result is intuitive: the r-square is the ratio of the average variance of the factor-recovered
randomness Y over the average variance of the original market X.

After obtaining Y in (25) we can compute the residuals U ≡ X−Y. Contrary to common
belief, the residuals are not uncorrelated with the factors, i.e. Cv{Un, Zk} 6= 0, and thus the

2Typically, in the cross-sectional approach the market X is normalized beforehand to display similar volatil-
ity X→ σ2−

1
2X, where σ2−

1
2 is either a diagonal matrix of inverse standard deviations, or it is a root of the

inverse covariance (σ2−
1
2 )2 ≡ σ2−1. This yields the extraction matrix c ≡ (b′σ2−1b)−1b′σ2−1
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factors Z are not systematic. Furthermore, the residuals are not uncorrelated among each
other, i.e. Cv{Un, Um} 6= 0, and thus the residuals U are not idiosyncratic. We discuss this
issue further in Section 4.5.

To illustrate the concept of cross-sectional models, we consider a two-dimensional mar-
ket X. (

X1

X2

)
∼ N

((
0
0

)
,

(
1 0.1

0.1 0.2

))
. (27)

Then, instead of imposing factors exogenously, we specify the loadings b ≡ (1, 1)′ and we
extract the one factor Z from the market, in such a way to maximize the distributional
r-square as in (22)-(23).

Then the extraction coeffi cients in (24) read c = (0.5, 0.5) and the factor distribution
follows as Z ∼ N (0, 0.35). Then a ≡ (0, 0)′ follows from the constraint in (23). Finally
the joint distribution of the recovered randomness Y ≡ a + bcX and of the residuals
U ≡ X−Y reads U1

U2

Y

 ∼ N

 0
0
0

 ,

 0.25 −0.25 0.2
−0.25 0.25 −0.2

0.2 −0.2 0.35

 . (28)

Notice that Cr{Un, Z} = Cr{Un, Y } 6= 0 and Cr{U1, U2} 6= 0. We refer to the code at
symmys.com/node/336 for more details.

As we did for time-series LFM’s, using the general dominant-residual framework (6)-(7)
we can construct generalized cross-sectional LFM’s by replacing in (22)-(23) the r-square with
arbitrary fitness targets T and by adding arbitrary constraints C.

To illustrate a generalized cross-sectional model, we continue with the above case study.
For illustration, we add the arbitrary constraint that the factor Z be uncorrelated with the
market spread, i.e. Cv{X2 −X1, Z} ≡ 0. Since X2 −X1 = (−1, 1) X and since from the
last constraint in (23) we have Z = cX this new constraint reads

(−1, 1)

(
1 0.1

0.1 0.2

)
c ≡ 0, (29)

The constraint (29) is linear in c and therefore the computation of the optimal cross-
sectional factor becomes an instance of quadratic programming, which can be easily solved
numerically. The result reads c = (0, 0.75)′ and U1

U2

Y

 ∼ N

 0
0
0

 ,

 .9625 −.0125 −.0375
−.0125 .0125 .0375
−.0375 .0375 .1125

 . (30)

We refer to the code at symmys.com/node/336 for more details.

The LFM (22)-(23) is known as "cross-sectional" because the factor-extracting coeffi cients
(24) are the same as those of a cross-sectional regression. However, we emphasize that at no
point did we run a regression on data. Instead, we maximized the r-square of the distribution
of the factor model.
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Cross-sectional LFM’s are also known as "fundamental" LFM’s, because, when applied to
the equity market, the loadings are often defined in terms of fundamental book variables, see
the applications in Section 3.1.2.

2.1.3 Statistical LFM’s

The third of the three sub-classes of dominant-residual LFM’s are statistical LFM’s.

Key definition. A principal component analysis (PCA) LFM for a market X is a
decomposition X ≡ a + bZ + U that maximizes the multivariate distributional r-square
without constraints on the loadings b, and the only constraint on the factors Z that they
be extracted from the market by a linear transformation, defined by a K × N matrix c
as Z ≡ cX.

Thus the parameters (a,b,Z) of a PCA LFM are defined according to the general
framework (7) as

(a,b,Z) ≡ argmax
(α,β,Z̄)∈C

R2
{
X, α+ βZ̄

}
, (31)

under the usual no-expectation constraint on the residual (10) and the factor-extraction
constraint

C :

{
α ≡ E{X} − β E

{
Z̄
}

Z̄ ≡ cX
(32)

where c must be optimized.

As we show in Appendix A.3, the optimization (31) under the constraints (32) can be
solved explicitly. To write the solution, first, we compute the covariance matrix of the market
and we perform its spectral decomposition

Cv{X} ≡ e diag(λ2) e′. (33)

In this expression λ2 are the decreasing, positive eigenvalues

λ2 ≡
(
λ2

1, . . . , λ
2
N

)′
; (34)

and e is the juxtaposition of the respective eigenvectors

e ≡ (e1| . . . |eN ) . (35)

The eigenvectors are orthogonal, i.e. e′men = 0, and they are normalized to have length 1, i.e.
e′nen = 1. Therefore ee′ = e′e = iN , the identity matrix. Next, we define a N ×K matrix as
the juxtaposition of the first K eigenvectors

ēK ≡ (e1| . . . |eK) . (36)

Then the loadings b and the statistical factors Z that solve the dominant-residual optimization
(31)-(32) read

b = ēK (37)

Z = ē′KX (38)
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Using the expression for b in (37), for Z in (38), and for a in (32) we can write the
factor-recovered market Y ≡ a + bZ as

Y = E{X}+ ēK ē′K (X− E{X}) . (39)

As we show in [Meucci, 2005] the recovered randomness Y has an intuitive geometrical inter-
pretation: it is the orthogonal projection of the market X onto the hyperplane spanned by
the first K eigenvectors, see Figure 4.

Figure 4: PCA as projection on location-dispersion ellipsoid.

We recall that the eigenvectors can be interpreted as the directions of the principal axes
of the location-dispersion ellipsoid defined by the market expectation vector E{X} and the
market covariance matrix Cv{X}, and that the square root of the eigenvalues is the length of
the principal axes, see Figure 4 and refer to [Meucci, 2010d] for more details. Therefore, the
factor recovered market Y is the orthogonal projection of the market X onto the hyperplane
spanned by the first K principal axes of the location-dispersion ellipsoid.

As we show in Appendix A.3, the distributional r-square provided by the recovered market
(39) reads

R2{X,Y} =

∑K
k=1 λ

2
k∑N

n=1 λ
2
n

. (40)

As a consequence, the steeper the spectrum profile K →
∑K

k=1 λ
2
k, i.e. the larger the discrep-

ancy among the first eigenvalues, the lower the number K of factors required to obtain a large
r-square.

The eigenvalues display high discrepancy in highly correlated markets, such as the changes
of swap rates of different maturities. Therefore, PCA LFM’s are more effective in achieving
a large r-square with few factors in highly correlated markets.
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With the expression for the randomness Y recovered by the LFM (39) we can compute the
residuals U ≡ X−Y. The residuals are uncorrelated with the factors (38), i.e. Cr {Un, Zk} =
0. However, contrary to common belief, the residuals are not uncorrelated among each other,
i.e. Cr {Un, Um} 6= 0 and thus they are not idiosyncratic. We discuss this issue further in
Section 4.5.

To illustrate the PCA factor models, we consider the two-dimensional market(
X1

X2

)
∼ N

((
0
0

)
,

(
4.1 1.2
1.2 3.4

))
. (41)

We extract K = 1 factor Z. The extraction coeffi cients in (37) read e′1 = (0.8, 0.6) and the
factor distribution follows from (38) as Z ∼ N (0, 5). Then a follows from the constraint in
(32) and reads a ≡ (0, 0)′. Finally the joint distribution of residuals U ≡ X − a − e1e

′
1X

and recovered market Y ≡ a + e1e
′
1X reads U1

U2

Y

 ∼ N

 0
0
0

 ,

 0.9 −1.2 0
−1.2 1.6 0

0 0 5

 . (42)

Notice that Cr {Un, Z} = Cr {Un, Y } = 0 but Cr {U1, U2} 6= 0.

As we did for time-series and cross-sectional LFM’s, using the general dominant-residual
framework (6)-(7) we can construct generalized statistical LFM’s by replacing in (31)-(32) the
r-square with arbitrary fitness targets T and by adding arbitrary constraints C. In generalized
statistical models the factors and the residuals will not be uncorrelated, i.e. Cr {Un, Zk} 6= 0,
in a way similar to the time-series example (21).

Before concluding the theory of statistical LFM’s, we emphasize that factor analysis, which
we discuss in Section 2.4, is not a statistical LFM’s, although at times it is considered similar
to PCA statistical LFM’s. We expand on this pitfalls in Section 4.9.

2.2 Systematic-idiosyncratic LFM’s

In Section 2.1 we introduced dominant-residual LFM’s, which include time-series, cross-
sectional, and statistical LFM’s as special cases. Here we discuss a different class of models,
systematic-idiosyncratic LFM’s. These models, which play a fundamental role in the financial
theory of asset pricing, are often incorrectly assumed to be the same as dominant-residual
LFM’s.

Key definition. A systematic-idiosyncratic LFM for a market X is a decomposition
as in the general LFM (2)

X ≡ a + bZ + U, (43)

where the factors Z and the residuals U satisfy two types of constraints. First, the
residuals are idiosyncratic, in that they are uncorrelated with each other

Cr{Un, Um} = 0, n 6= m = 1, . . . , N . (44)
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Second, the factors Z are systematic, in that they are uncorrelated with the residuals

Cr{Un, Zk} = 0, n = 1, . . . , N, k = 1, . . . ,K. (45)

Systematic-idiosyncratic LFM’s are useful because they impose structure, especially in
markets X of large dimension. This is particularly apparent in the covariance matrix, which,
as a consequence of the conditions (44)-(45) is low-rank-diagonal

Cv{X}︸ ︷︷ ︸
N×N

= bCv{Z}︸ ︷︷ ︸
K×K

b′ + diag(V{U}︸ ︷︷ ︸)
N×1

. (46)

Therefore the market covariance contains onlyK (K + 1) /2+N elements of stochastic nature,
as opposed to general markets, which contain N (N + 1) /2 such elements.

To illustrate the concept of systematic-idiosyncratic LFM, assume we estimated a bi-
variate market with one factor X1

X2

Z

 ∼ N

 0
0
0

 ,

 4 3 3
3 5 3
3 3 3

 , (47)

and with coeffi cients
a = (0, 0)′, b = (1, 1). (48)

Then the joint distribution of the the residuals U ≡ X− a− bZ and the factor Z reads U1

U2

Z

 ∼ N

 0
0
0

 ,

 1 0 0
0 2 0
0 0 3

 . (49)

This shows that both the idiosyncratic condition (44) and the systematic condition (45)
are satisfied. However, even the smallest deviation from the specification (47) will prevent
this LFM from being systematic-idiosyncratic.

Systematic-idiosyncratic models do not exist in reality, because the requirements (44)-(45)
are too strict. Therefore, systematic-idiosyncratic LFM’s are only used as approximations of
the true market distribution.

In typical approaches, researchers identify a parsimonious set of factors Z and coeffi cients
a and b, often by means of a dominant-residual optimization (7). Then, they model the
residuals U ≡ X − a − bZ as idiosyncratic, even though they are not, by truncating the
correlations to zero. More formally, truncation turns any LFM, whether dominant-residual or
not, into a systematic-idiosyncratic LFM by exogenously setting to zero the co-dependence
among the residuals and between factors and residuals, in five steps.

First, a LFM X ≡ a + bZ + U is specified as in (4) by an estimated joint distribution
of the market and the factors fX,Z and by coeffi cients a and b. Second, the distribution of
the factors fZ alone is computed. Third, the distribution of the residuals fU ≡ fX−a−bZ is
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computed. Fourth, the marginal distributions of the residuals {fUn}n=1,...,N are computed.
Fifth, the joint distribution of factors and residuals fZ,U is specified by assuming independence
among the above marginal distributions

fZ,U ≡ fZfU1 · · · fUN . (50)

Sixth, the final market distribution is determined by the LFM X ≡ a + bZ + U as in (5).
The truncation (50) ensures that the LFM X ≡ a + bZ + U satisfies the systematic-

idiosyncratic conditions (44)-(45) and thus the market covariance is low-rank-diagonal as in
(46).

Truncations are performed routinely. However, truncating a LFM leads to incorrect esti-
mates of risk, see the applications in Section 3.1.

To illustrate the truncated model, suppose we have estimated the joint distribution
fX,Z of a bivariate market X ≡ (X1, X2)′ (say, two bonds returns) and one single factor Z
(say, change in 5-yr rate) by means of a joint normal model X1

X2

Z

 ∼ N

 0
0
0

 ,

 4 9.5 −1.8
9.5 25 −4.5
−1.8 −4.5 1

 ; (51)

and we set the coeffi cients a (in this case the "carry") and b (in this case the durations) as

a = (0, 0)′ , b = (−2,−5)′ . (52)

Then the truncated residuals and factors are normally distributed U1

U2

Z

 ∼ N

 0
0
0

 ,

 0.8 0 0
0 5 0
0 0 1

 . (53)

and the market distribution becomes(
X1

X2

)
∼ N

((
0
0

)
,

(
8.2 8
8 21

))
. (54)

A comparison of (54) with (51) shows that the truncation distorts the original market
distribution. For more details, we refer to the code at symmys.com/node/336.

2.3 Pure exogenous LFM’s

After the dominant-residual LFM’s discussed in Section 2.1 and the systematic-idiosyncratic
LFM’s discussed in Section 3, the third and final broad category of LFM’s used in practice
are pure exogenous models.

Key definition. A pure exogenous LFM for a market X is decomposition X ≡
a+bZ+U as in (2), where all elements of a, b and Z are imposed exogenously. Therefore
the randomness recovered by the LFM Y ≡ a + bZ is fully specified exogenously.
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Note that, since X and Y ≡ a + bZ are fully specified, so is the residual, U ≡ X −Y.
A pure exogenous LFM imposes no structure on X, because all the features of the generic
distribution of X are absorbed into the distribution of the residual. In some sense a pure
exogenous LFM is a "no model".

Pure exogenous LFM’s are used in practice, often as the first of a two-step approach
to market analysis. First, a pure exogenous LFM is used to extract the residuals. Then a
different LFM is used to analyze and impose structure on the distribution of the residuals.

For instance, Pure exogenous LFM’s are used in models for the bond market. For a set
of bond returns X, the carry a, the key-rate durations b, and the changes in key rates of the
yield curve Z, are subtracted from the returns to create the residuals U ≡ X− a− bZ. The
residuals are then modeled by a second LFM.

Another use of pure exogenous LFM’s is the traditional bottom-up approach to risk at-
tribution, which we discuss in Section 3.5.

2.4 Factor analysis

Factor analysis is an approximation technique for covariances.

Key definition. Factor analysis aims at approximating the market covariance by a
low-rank-diagonal covariance

Cv{X} ≈ bb′ + diag
(
δ2
)
, (55)

where b is a full-rank N×K matrix and δ2≡
(
δ2

1 , . . . , δ
2
N

)′ is a vector with positive entries.
Several methods are available to perform factor analysis, see e.g. [Rencher, 2002]. These

methods are routinely offered by software packages.

To illustrate factor analysis, consider the market

X =

 X1

X2

X3

 ∼ N

 0
0
0

 ,

 1 0.2 0.3
0.2 1 0.06
0.3 0.06 1

 . (56)

Factor analysis replaces the covariance matrix as follows

Cv{X} ≈

 1 0.2 0.3
0.2 1 0.0603

0.0603 0.3 1

 (57)

=

 0.1
0.2
0.3

 0.1
0.2
0.3

′ +
 0.005 0 0

0 0.96 0
0 0 0.9

 .
For more details, we refer to the code at symmys.com/node/336.

We emphasize that factor analysis is not a LFM, because it does not decompose the market
as X = a + bZ + U. As a matter of fact, it is impossible to extract the hidden factors Z from
the market.
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Figure 5: Applications of Linear Factor Models.

However, we introduced factor analysis here because at times it is confused with a sta-
tistical LFM, similar in nature to principal component analysis, and at times it is confused
with a systematic-idiosyncratic LFM, because for such LFM’s the covariance matrix is low-
rank-diagonal as in (55). We expand on the confusion between factor analysis and LFM’s in
Section 4.9.

3 Applications of LFM’s

The theoretical LFM’s introduced in Section 2 play a prominent role in five different areas of
risk and portfolio management: multivariate estimation, asset pricing theory, search for alpha,
risk minimization, and risk attribution, refer to Figure 5. In Sections 3.1-3.5 we discuss these
five applications respectively.

In reality, we argue that LFM’s are not necessary, and actually they are better avoided, in
most of the practical applications. The details of this unified no-LFM approach to quantitative
finance are discussed in [Meucci, 2011a].

3.1 Multivariate estimation

Estimation is the process of fitting a distribution fε to the past observations of the invariants
ε, i.e. the variables that drive the market prices, and that display an almost identical, inde-
pendent distribution through time (for a stock, the invariant is its log-return; for an option the
invariants include simultaneous changes in all the entries of the log-implied volatility surface,
but never the return of the option price; for more on invariants, refer to [Meucci, 2005]).
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Key point. Standard multivariate estimation techniques are statistically ineffi cient
when the number N of joint simultaneous invariants ε ≡ (ε1, . . . , εN )′ is large. In this
context, LFM’s are used to impose structure on the distribution of the invariants, thereby
achieving dimension reduction

ε ≡ a + bZ + U. (58)

The most standard types of estimation LFM’s (58) applied in the industry are truncated
systematic-idiosyncratic that stem from time-series, cross-sectional, or principal compo-
nent LFM’s. Other types of estimation LFM’s (58) include statistical-inspired models
based on random-matrix-theory.

In the remainder of this section we discuss all the LFM’s for multivariate estimation
mentioned above. However, in the end, the following caveat will become apparent.

Warning. LFM’s fail to provide accurate estimates of portfolio risk numbers. For-
tunately, we can avoid using LFM’s for estimation, and yet achieve effi cient and very
accurate risk estimates. For more details on no-LFM multivariate estimation refer to
[Meucci, 2011a].

3.1.1 Truncated time-series LFM’s

Time-series truncated LFM’s are widely used in the industry, see e.g. [Straumann and Garidi, 2007].
In such models, the distribution fε of the invariants ε is estimated by means of the LFM (58),
where the K factors Z are observable financial variables which also behave as invariants, such
as industry sector returns, and where residuals and factors are made artificially independent
by means of a truncation. More precisely, time-series truncated LFM’s proceed as follows.

First, we collect the joint time-series {εt, zt}t=1,...,T of the invariants and the factors, which
yields the joint empirical distribution of invariants and factors

f ε,Z ⇐⇒ {εt, zt}t=1,...,T . (59)

Now that we have the joint distribution of ε and Z, we compute b in (58) as the coeffi cients
of the dominant-residual model (11) relative to the joint distribution f ε,Z

(a,b) ≡ argmax
(α,β)∈C

R2{ε, α+ βZ} . (60)

Without imposing constraints on β, (60) and using the empirical distribution (59), the time-
series loadings (13) coincide with the standard ordinary least square (OLS) regression coeffi -
cients

b =
(

1
T

∑T
t=1 (εt − ε) (zt − z)′

)(
1
T

∑T
t=1 (zt − z) (zt − z)′

)−1
, (61)

where ε ≡ 1
T

∑T
t=1εt and z ≡ 1

T

∑T
t=1zt, refer to [Meucci, 2005] for the proof. Then we set

a ≡ ε − bz as in (12) to ensure that the residuals have zero expectation. The fact that
we obtain the OLS coeffi cients (61) contributes to the confusion that LFM’s are regression
models, see the pitfalls in Section 4.
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Next, we compute the past realizations of the residuals that follow from the coeffi cients a
and b computed above, i.e. ut ≡ εt−a−bzt. This yields the marginal empirical distribution
of each residual

fUn ⇐⇒ {un,t}t=1,...,T . (62)

Notice that so far all calculations, and in particular the loadings b in (60), have been performed
according to the dominant-residual paradigm.

Finally, we impose by truncation as in (50) that Z and U be independent and that the
entries of U be independent of each other, i.e.

fZ,U ≡ fZfU1 · · · fUN , (63)

This concludes the full specification of the invariants distribution fε ≡ fa+bZ+U, which follows
from the LFM (58) as in (5).

The truncation (63) guarantees that the systematic-idiosyncratic conditions (44)-(45) are
satisfied by the invariant distribution fε. In particular, the global covariance becomes of
low-rank-diagonal type as in (46), namely

Cv{ε}︸ ︷︷ ︸
N×N

= bCv{Z}︸ ︷︷ ︸
K×K

b′ + diag(V{U})︸ ︷︷ ︸
N×1

. (64)

Notice that, due to the truncation, the invariants distributions fε is not the empirical
distribution f ε that follows from the original time-series (59). As a result, the risk, as measured
by the standard deviation, of a single invariant can be significantly different from the risk of
the historical realizations of the invariant

Sd{εn} 6= [( 1
T

∑T
t=1ε

2
t,n −

(
1
T

∑T
t=1εt,n

)2
]
1
2 . (65)

Figure 6: Cross-correlations among residuals in S&P 500 time-series LFM.
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To illustrate the time-series approach, we consider as invariants εt the N = 500 weekly
stock returns in the S&P 500. As factors zt we set the weekly returns on the K = 10
MSCI US sector indices "Energy", "Materials", "Industrials", "Consumer Discretionary",
"Consumer Staple", "Healthcare", "Financials", "IT", "Telecommunications", "Utilities".

We fit the OLS loadings b and the constant a as in (61) and thereafter and we compute
the residuals ut ≡ εt − a − bzt. The N (N − 1) /2 ≈ 120, 000 cross-correlations of these
residuals are not null, see Figure 6.

Then we truncate the model and compute the covariance (64). Next, we compute the
risk of two portfolios, equal-weight and long-short pair, as it follows from the truncated
covariance and the non-truncated historical covariance

equal-weight w long/short w

truncated Sd{w′ε} .0331 .1328
historical Sd{w′ε} .0333 .0796

(66)

As we see, the truncated LFM does a good job at modeling the risk of the equal-weight
portfolio, whereas it does not estimate properly the long-short risk. For more details, we
refer to the code at symmys.com/node/336.

We suggest here a simple enhancement of the time-series truncated approach. Using the
flexible dominant-residual specification (60) we can apply useful constraints to the loadings
b. Of particular relevance in this context is the LASSO constraint C ⊇ {

∑
|bn,k| ≤ ξ}, that

shrinks statistically non-significant loadings to zero.

3.1.2 Truncated cross-sectional LFM’s

Truncated cross-sectional LFM’s are especially popular in the industry, see e.g. [Menchero et al., 2008].
In these models, the distribution fε of the invariants ε is modeled by a LFM ε ≡ a + bZ + U,
where the K factors Z are not observable financial variables, but rather they are extracted
from the invariants by a dominant-residual optimization. Then the residuals and the factors
are made artificially independent by means of a truncation. More, precisely, cross-sectional
truncated LFM’s proceed as follows.

We start, as in the time-series approach, by collecting the past observations of the invari-
ants εt to compute the empirical distribution, where the invariants are typically normalized
to display similar volatility

f ε ⇐⇒ {εt}t=1,...,T . (67)

We recall that the empirical distribution f ε is not our desired final estimate fε, because it
lacks structure and thus it is statistical ineffi cient.

Then we specify exogenously the loadings b in (58) in terms of observable characteristics of
the invariants. For instance, if the invariants are stock returns, the loadings are often defined in
terms of accounting variables such as price-earnings rations, see e.g. [Fama and French, 1993].

Next, we extract the factors Z ≡ cε from the invariants ε as in the cross-sectional
dominant-residual model (22)-(23)

(a, c) ≡ argmax
(α,γ)∈C

R2{ε, α+ bγε} (68)
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Without imposing constraints on γ, (68) yields as in (24) the typical cross-sectional factor
realizations3

zt = cεt =
(
b′b
)−1

b′εt. (69)

Telecom Utilities Energy Cons.Discr. Industria l
91% 98% 61% 88% 70%

Healthcare Financials IT Materials Cons.Staple
68% 72% 84% 64% 80%

Figure 7: Correlations of time-series and cross-section industry factors.

To illustrate, we consider again as invariants εt the returns of the N = 500 stocks in
the S&P 500 and we extract sector-specific factors by means of binary exposures

bn,k ≡
{

1 if stock n is in sector k
0 if stock n is not in sector k,

(70)

where we partition the stocks into the same K = 10 sectors as in the time-series case
study in Section 3.1.1. Then we extract the cross-sectional factor realizations 69. Given
the structure of the loadings (70), the factors zt must returns must resemble the returns
of the industry indices that appear in the time-series truncated case study. Indeed, the
correlations among the factors from the two LFM’s is large, see Figure 7 and refer to the
code at symmys.com/node/336 for more details.

Then we follow the theoretical cross-sectional specification (23) to set the coeffi cient a ≡
ε− bz, where ε ≡ 1

T

∑T
t=1εt and z ≡ 1

T

∑T
t=1zt. Next we compute the past realizations of the

residuals ut ≡ εt−a−bzt. From these, we compute the marginal distribution of each residual

fUn ≡ {un,t}t=1,...,T . (71)

Finally, we perform the truncation as in (50), setting the residuals to be independent of each
other and of the factors

fZ,U ≡ fZfU1 · · · fUN . (72)

This concludes the full specification of the invariants distribution fε ≡ fa+bZ+U, which follows
from the LFM (58) as in (5).

Again, due to the truncation (72), the invariants distributions fε is not the empirical
distribution (67). As in the time-series truncated model in Section 3.1.1, the truncation
guarantees that the systematic-idiosyncratic conditions (44)-(45) are satisfied. As a result,
the global covariance of the invariants achieves the desired low-rank-diagonal structure as
in (64). However, the truncation creates problems in estimating the risk of non-diversified
portfolios.

3Since the invariants εt are typically normalized before extracting the factor realizations by a suitable matrix
σ2, then zt ≡ (b′σ2−1b)−1b′σ2−1εt
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Figure 8: Correlations among residuals and between residuals and factors in cross-sectional
LFM.

Continuing with our cross-sectional example in the S&P 500, we compute the constant
a and the residuals ut ≡ εt− a−bzt. As in the time-series case study, the N (N − 1) /2 ≈
120, 000 cross-correlations of these residuals are not null. Furthermore, the NK correlations
of residuals and factors are not null, either, see Figure 6.

Then we truncate the model and compute the risk of two portfolios, equal-weight and
long-short pair, as it follows from the truncated covariance and the non-truncated historical
covariance

equal-weight w long/short w

truncated Sd{w′ε} .0334 .1430
historical Sd{w′ε} .0333 .0796

(73)

As it was the case for the truncated time-series LFM (66), the truncated cross-sectional
LFM does a good job at modeling the portfolio risk, whereas it does not estimate cor-
rectly the risk of a long-short position. For more details, we refer to the code at sym-
mys.com/node/336.

As for time-series LFM’s, also for cross-sectional LFM’s we can generalize the above ap-
proach. Using the flexible generalized dominant-residual specification (68) we can apply con-
straints to the extraction coeffi cients as in (29) or replace the r-square target with alternative
optimality criteria, as in the "Factors on Demand" approach in [Meucci, 2010b].
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3.1.3 Statistical LFM’s: truncated-PCA and RMT-PCA

Statistical truncated LFM’s are most commonly used in the fixed income market, where the
joint invariants ε are the changes in yield to maturity for select tenors on a given yield or
swap curve. In this context, the first K ≡ 3 principal components are responsible for a large
percentage of total risk, as measured by the multivariate r-square (40). The residual is then
completely truncated, as it accounts for only a few percent of the total randomness in the
market.

For a detailed account of the PCA truncated model in fixed income, its geometrical inter-
pretation in terms of the location-dispersion ellipsoid, and the parallel between the principal
movements shift-slope-butterfly and oscillations with different frequencies over the curve, we
refer the reader to the discussion in [Meucci, 2005].

A different breed of statistical LFM’s that are not truncated is based on random matrix
theory (RMT), which applies when the dimension of the invariants, typically stock returns,
is large.

The idea behind RMT is to use the PCA approach with two enhancements: first, an
advanced statistical test determines the number of significant principal factors K; second, the
residuals are not truncated.

Figure 9: Marchenko-Pastur profile of pure-noise covariance eigenvalues.

To implement RMT, we start as usual from the realizations of the invariants, which we
normalize to display unit variance, and we compute the empirical distribution

f ε ⇐⇒ {εt}t=1,...,T . (74)

Then we compute the eigenvalues λ2≡
(
λ2

1, . . . , λ
2
N

)′ of the sample covariance matrix, which
is actually a correlation matrix because the standard deviations are 1, and we compare them
with the eigenvalues of a market of equal size with uncorrelated entries, i.e. purely noisy.
The profile of the noisy eigenvalues can be computed due to the Marchenko-Pastur theorem,
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see Figure 9 and refer to the code at symmys.com/node/336. The deviations of the empirical
eigenvalues λ2

k from the Marchenko-Pastur eigenvalues determines the numberK of significant
non-noisy factors, see [Potters et al., 2005] and [Gatheral, 2008] for more details. The benefits
of this approach include the use of a lower number K of factors than in time-series or cross-
sectional models.

Then we replace the smallest N −K eigenvalues with their average λ̃2(
λ2

1, . . . , λ
2
N

)
7→
(
λ2

1, . . . , λ
2
K , λ̃

2, . . . , λ̃2
)
. (75)

The rationale of (75) is that the principal directions identified by the smallest eigenvalues are
spurious, and thus it makes more sense to assume isotropy, refer to Figure 4.

Then we proceed as in (31) to extract the realizations of the first K principal factors by
means of the PCA dominant-residual model zt ≡ d + ē′Kεt, where ēK ≡ (e1| . . . |eK) is the
matrix of the first K eigenvectors and d guarantees that the factors have zero mean. The
scenarios zt yield the empirical distribution of the principal factors

fZ ⇐⇒ {zt}t=1,...,T . (76)

For the residuals, we can assume a normal distribution, due to the law of large numbers. To
summarize

U ∼ N
(
0, λ̃2ẽK ẽ′K

)
, (77)

where ẽK ≡ (eK+1| . . . |eN ) is the matrix of the last N −K eigenvectors.
Finally we specify the joint distribution of factors and residuals by imposing that they are

independent
fZ,U ≡ fZfU. (78)

This concludes the full specification of the invariants distribution fε ≡ fa+bZ+U, which follows
from the LFM (58) as in (5).

Notice that (78) does not constitute a truncation: the residuals preserve the correlations
they inherited from the PCA decomposition (77). Since this statistical LFM is not truncated,
i.e. it is not forced into a systematic-idiosyncratic LFM, it provides better estimates than
time-series or cross-sectional truncated LFM’s.

To illustrate the RMT-inspired statistical LFM, we consider again as invariants εt the
returns of the N ≡ 500 stocks in the S&P 500. This market size is large enough to be
treated by RMT.

First, we estimate with the Marchenko-Pastur filter that K = 10 significant factors
should be used. Then we estimate the invariants distribution fε according to the above
process.

Then we compute the risk of two portfolios, equal-weight and long-short-pair, as it
follows from the RMT model and the historical covariance

equal-weight w long/short w

RMT Sd{w′ε} .0333 .0641
historical Sd{w′ε} .0333 .0796

(79)

The RMTmodel does a good job at modeling the portfolio risk, whereas it does not estimate
correctly the long-short risk. However, this effect is less pronounced than with truncated
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LFM’s both time-series, see (66), and cross-sectional , see (73). For more details, we refer
to the code at symmys.com/node/336.

As we did for time-series and cross-sectional LFM’s, we can generalize also statistical
LFM’s. We can apply constraints in the generalized dominant-residual specification to the
extraction coeffi cients in (31), or replace the r-square target with alternative optimality cri-
teria, see the "Factors on Demand" approach in [Meucci, 2010b].

3.2 Asset pricing theory

Asset pricing theory aims at establishing relationships among the returns, or, better, the
P&L’s generated by a set of securities. In this section we review the most popular results in
asset pricing theory, namely the Capital Asset Pricing Model (CAPM) by [Sharpe, 1964] and
[Lintner, 1965], and the Arbitrage Pricing Theorem (APT) by [Ross, 1976], and we discuss
their connections with LFM’s. For more details on CAPM and APT we refer the reader to
[Ingersoll, 1987].

The following summarizes our discussion, which we state loosely here, but which we mo-
tivate precisely further below.

Key point. The CAPM is a result on the P&L’s generated by N securities from
the current time T to an investment horizon T + τ in the future, which we denote by
Π ≡ (Π1,T→T+τ , . . . ,ΠN,T→T+τ )′.

The derivation of CAPM-like results does not rely on LFM’s at any point. Instead,
such results always hold, regardless the structure or distributions of Π. However, one can
interpret CAPM-like results as a constraint on the coeffi cients a in a one-factor dominant-
residual LFM Π ≡ a + bZ + U, which under no circumstance is systematic-idiosyncratic.

On the other hand, the derivation of the APT assumes a multi-factor systematic-
idiosyncratic LFM Π ≡ a + bZ + U to start with. The APT result can be interpreted as
a constraint on the first moments of the variables in this LFM.

Note that the theory of asset pricing is typically formulated in terms of returns, rather
than P&L’s. However, the formulation in terms of P&L is more accurate and more general.
Indeed, the P&L is an undisputable quantity that is defined for all securities. On the other
hand, returns are not unequivocally defined, especially for leveraged assets such as swaps and
futures. Furthermore, returns are often incorrectly mistaken for invariants. We expand on
this pitfall in greater detail in Section 4.2.

3.2.1 The Capital Asset Pricing Model (CAPM)

Let us consider a market with N securities. We denote the projected P&L’s of the securities
from the current time T to the future investment horizon T+τ byΠ ≡ (Π1,T→T+τ , . . . ,ΠN,T→T+τ )′,
and their current value by p ≡ (p1,T , . . . , pN,T )′.

We denote an arbitrary portfolio by the holdings in each security h ≡ (h1, . . . , hN )′. Notice
that holdings are number of shares or contracts, not portfolio weights. Also, we denote by d
the current budget. Then the projected portfolio P&L is Πh ≡ h′Π. Similarly, the budget
constraint reads h′p ≡ d.
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With these inputs we can always compute the portfolio hSR that maximizes the Sharpe
ratio, i.e. the ratio of the portfolio expected P&L over the portfolio standard deviation

hSR ≡ argmax
h′p≡d

{
E{Πh}
Sd{Πh}

}
. (80)

Let us denote by r the risk-free return over the investment horizon. Then the following identity,
which links the expected outperformance of the securities to the expected outperformance of
the maximum-Sharpe-ratio portfolio, is always true

E{Π} − rp =
Cv{Π,ΠhSR}

V{ΠhSR}
(E{ΠhSR} − rd) . (81)

Some practitioners consider (81) to be the CAPM. Instead, (81) is a constraint on the
distribution of the P&L’s, which always holds true without any assumption on the size of the
market N , the distribution of P&L’s Π, or the investors’s preferences. This is a generalization
of the critique in [Roll, 1977], on which we expand in Section 4.8.

On the other hand, the CAPM is an equilibrium result that requires assumptions on the
investors’s preferences. More precisely, the CAPM states that if all the investors maximize a
subjective trade-off between a portfolio P&L expectation E{Πh} and its standard deviation
Sd{Πh}, then the equilibrium portfolio for all the investors he is the maximum-Sharpe-ratio
portfolio hSR defined in (80). Thus, if the assumptions of the CAPM are satisfied, then from
the general result (81), the following equilibrium relationship must hold, i.e. the CAPM

E{Π} − rp =
Cv{Π,Πhe}

V{Πhe}
(E{Πhe} − rd) . (82)

Now, let us discuss the relationship between LFM’s and CAPM. The reader will have
noticed that no LFM is required to derive, or follows from, the general CAPM-like identity
(81) or the specific CAPM result (82). However, we can interpret (81)-(82) as a constraint on
the constant coeffi cient of a dominant-residual LFM.

To see this, first let us define as risk factor the P&L of the maximum-Sharpe-ratio portfolio,
i.e. Z ≡ ΠhSR = h′SRΠ. Then, let us define a standard dominant-residual time-series LFM
(11) for the projected P&L’s Π = a + bΠhSR + U, where b maximizes the r-square as in (13)
and thus reads in this context b ≡ Cv{Π,ΠhSR} /V{ΠhSR}; and a makes the expectation of
the residuals U null as in (12), i.e. a ≡ E{Π} − b E{ΠhSR}. Using the general CAPM-like
identity (81) as well as the maximum r-square b in the expression for a we obtain the following
dominant-residual time series LFM

Π = r(p− dCv{Π,ΠhSR}
V{ΠhSR}

)︸ ︷︷ ︸
a

+
Cv{Π,ΠhSR}

V{ΠhSR}︸ ︷︷ ︸
b

ΠhSR︸ ︷︷ ︸
Z

+ U. (83)

We emphasize that under no circumstance are the residuals in the time-series LFM (83)
idiosyncratic, see also the pitfalls Section 4.5.

3.2.2 The Arbitrage Pricing Theory (APT)

Unlike in the CAPM, one of the premises of the APT is that the market at a specific horizon
is distributed as systematic-idiosyncratic LFM

Π = a + bZ + U, (84)
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where Π ≡ (Π1,T+τ , . . . ,ΠN,T+τ )′ denotes the projected P&L’s of the securities, the loadings
b and the factors Z ≡ (Z1, . . . , ZK)′ can be hidden or observable, and the residuals U satisfy
(44)-(45), namely

Cv{Un, Zk} = 0, Cv{Un, Um} = 0. (85)

Furthermore, without loss of generality, we can assume that the residuals have zero expectation

E{Zk} = 0, E{Un} = 0. (86)

Let us denote by p ≡ (p1,T , . . . , pN,T )′ the current value of the securities. The APT states
if the market is systematic-idiosyncratic as in (84)-(85) and large, i.e. N →∞, the following
constraint holds on the expected outperformance of the securities in excess of a risk-free
investment at the rate r

E{Π} − rp = bλ, (87)

where the coeffi cients λ ≡ (λ1, . . . , λK)′ are known as risk premia.
To identify the risk premia in terms of the market (84), we construct a pseudo-inverse of

b, i.e. a K ×N matrix b+ such that b+b = iK as follows

b+ ≡
(
b′σ2b

)−1
b′σ2, (88)

where σ2 is an arbitrary symmetric and positive definite K×K matrix4. Then pre-multiplying
the APT result (87) by b+ we readily obtain

λ = E{b+Π} − rb+p. (89)

From (89) we see that λ are called risk premia because they are the expected excess
performance of K portfolios with holdings the rows of b+, which generate the K P&L’s
Z̃ ≡ b+Π. Such portfolios are called factor-replicating portfolios because in a large market
the P&L’s Z̃ replicate exactly the factors Z, except for a constant term

Z̃
N→∞≈ Z + b+a. (90)

In
Now, let us turn to the relationship between LFM’s and APT. In this respect, the APT

result (87) can be interpreted as the constraint that any systematic-idiosyncratic LFM (84)-
(85) imposes, in the limit of large markets N →∞, on the constant coeffi cient a of the LFM,
namely (

iN − bb+
)
a =

(
iN − bb+

)
rp. (91)

3.3 Search for "alpha"

The search for alpha aims at identifying predictive signals in the market, in order to construct
risky portfolios that outperform a risk-free investment.

4 It is suffi cient that σ2 be invertible, but symmetric and postive definite matrices perform better in practice
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Key point. Let us denote by Π ≡ (Π1,T+τ , . . . ,ΠN,T+τ )′ the projected P&L’s of
the securities that a manager considers for his portfolio; by p their current price, and by
α ≡ E{Π} − rp, the "alphas", i.e. the expected payoff of the securities in excess of the
risk-free investment.

The mainstream approach to alpha search, popularized by
[Rosenberg and Lanstein, 1985], [Fama and French, 1993], [Grinold and Kahn, 1999],
postulates that P&L’s follows a systematic-idiosyncratic LFM as in the APT (84)

Π = a + bZ + U. (92)

Then, as in (87) the alphas are a combination of signals bk ≡ (b1,k, . . . , bN,k)
′ mixed by

the risk premia λk
α = b1λ1 + · · ·+ bKλK . (93)

Detecting, constructing and testing the alpha-signals bk and the mixing weights λk are
the main tasks of quantitative portfolio managers.

The signals bk are typically defined in the form of security-specific characteristics. To
illustrate, consider the stock market, where for each stock n = 1, . . . , N we can observe ac-
counting characteristics such as price-earnings ratios. Alternatively, consider the fixed-income
market, where securities are swap contracts of different maturity and where the characteristic
of each contract n = 1, . . . , N can be the historical z-score of the slope of the curve for the
contract’s maturity.

Let us denote by cn,k the value of a generic such characteristic for stock n. Then, the
signal is set proportional to the characteristic, or, better, to a non-decreasing function s of
the characteristic

bn,k = σns (cn,k) . (94)

The security-specific proportionality constant σn is typically an estimate of the security’s
volatility. Two standard choices for the non-decreasing function s are: the sorting, which
associates with the characteristic cn,k its cross-sectional ranking among {ck,1, . . . , ck,N}; the
cross-sectional z-score of cn,k within {ck,1, . . . , ck,N}.

Once the signals bk in (93) have been determined, the respective mixing weights λk, called
information content in [Grinold and Kahn, 1999], can be set heuristically. Alternatively, the
mixing weights are interpreted as in the APT (89) as risk-premia associated with the factor-
replicating portfolios b+, defined as in (88), typically by means of an estimate of the covariance
matrix σ2≡ Ĉv{Π}. Then the risk premia are set by direct estimation from time-series analysis

λ ≡ Ê{b+Π} − rb+p. (95)

One further enhancement to define the mixing weights λk is to blend the views on the
factor-replicating portfolios in (95) with a neutral prior λ ≡ 0 using the approach by [Black and Litterman, 1992].

Warning. In practice, it is impossible to detect all the systematic signals b in the
LFM (92) in such a way that the residual U is truly idiosyncratic.
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Furthermore, in typical applications the dimension of the market is too small for the
asymptotic results of the APT to hold even in approximation, see also Section 4.10.

Fortunately, we do not need LFM’s to search for alpha. As a matter of fact, we
can perform alpha-searches by avoiding LFM’s completely: the information contained
in the predictive signals b and in the weights λ are weak relative ranking relationships,
rather than direct statements on the alphas. This kind of information is more effectively
embedded in the allocation process by the non-invasive Entropy Pooling approach in
[Meucci, 2008]. For more details on no-LFM alpha search and how it fits with the other
no-LFM applications we refer to [Meucci, 2011a].

3.4 Portfolio optimization

In its simplest form, portfolio optimization is the process of reducing the variance of a portfolio
P&L, while satisfying constraints on expected performance and other investment constraints.

Key point. In the mainstream approach to portfolio optimization, the projected
P&L’s of the securities are modeled as a systematic-idiosyncratic LFM as in (43)

Π ≡ a + bZ + U. (96)

Then as in (46) the covariance matrix of the P&L’s is low-rank-diagonal

Cv{Π}︸ ︷︷ ︸
N×N

= bCv{Z}︸ ︷︷ ︸
K×K

b′ + diag(V{U}︸ ︷︷ ︸)
N×1

. (97)

The low-rank-diagonal structure (97) allows for fast algorithms to minimize risk.

To illustrate the importance of the low-rank-diagonal structure, let us consider a simple
case where risk is minimized with only one constraint on the portfolio performance in excess
of the risk-free rate. Let us denote the holdings of each security in an arbitrary portfolio by
h ≡ (h1, . . . , hN )′; let us denote the securities excess performance by α ≡ E{Π}− rp; and let
us require an excess performance αp from the portfolio. Then the optimization problem reads

h∗ ≡ argmin
h′α=αp

{
h′Cv{Π}h

}
, (98)

where α is typically specified as in (93). By applying the first order conditions to the La-
grangian of (98) we obtain

h∗ = αp
Cv{Π}−1α
α′ Cv{Π}−1α . (99)

Inverting the covariance matrix in (99) is challenging when the market is large. However, if
the covariance is low-rank-diagonal as in (97), using the matrix inversion lemma we only need
to invert two small K ×K matrices

Cv{Π}−1 = 1
V{U} −

1
V{U}b

[
b′ 1

V{U}b + Cv{Z}−1
]−1

b′ 1
V{U} , (100)
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where 1
V{U} denotes a diagonal matrix of inverse variances. In real applications, the variance

minimization (98) is more heavily constrained. However, the low-rank-diagonal structure (97)
still allows for the implementation of fast algorithms, see e.g. [Boyd and Vandenberghe, 2004].

The standard approach to obtain the systematic-idiosyncratic LFM (96) that induces the
low-rank-diagonal covariance (97) proceeds as follows. First, a global LFM is estimated for
all the invariants, which include returns for stock, changes in yield for bonds, log-changes in
implied volatilities surfaces for options, etc.

ε ≡ a + bZ + U. (101)

The LFM (101) is typically estimated by truncating a dominant-residual cross-sectional or
time-series LFM into a systematic-idiosyncratic LFM, as discussed in Section 3.1. Then the
invariants ε are mapped into the projected P&L’s of the securities Π by means of linear
pricing approximations

Π ≈ θ + diag(δ) ε, (102)

where θ and δ are N × 1 vectors of suitable coeffi cients. For instance, for stock-like securities,
where the invariants are the compounded returns, (102) follows from a Taylor expansion of the
exponential, see (110)-(112) below; for government bonds, where the invariants are changes
in yields for relevant points of the curve, (102) is the "carry-duration" approximation; for
vanilla options on stocks, where the invariants are the compounded returns of the underlying
and the log-changes in implied volatility, (102) is the "theta-delta-vega" approximation; etc.

The coeffi cients of the linear pricing map the systematic-idiosyncratic LFM (101) into a
LFM for the projected P&L’s

Π ≡ θ + diag(δ) a︸ ︷︷ ︸
a

+ diag(δ) b︸ ︷︷ ︸
b

Z + diag(δ) U︸ ︷︷ ︸
U

. (103)

The LFM (103) has the systematic-idiosyncratic structure required by (96).

Warning. The two-step LFM (101)-(103) presents shortcomings. First, the
systematic-idiosyncratic truncation distorts the risk numbers, see (54) for the theory and
(66)-(73) for applications. Second, the linear pricing approximation (102) does not cor-
rectly model the randomness of non-linear securities, such as options. Furthermore, if the
expected payoff of the securities is determined by a LFM as in (92), using a LFM for the
covariance can create suboptimal portfolios, see [Lee and Stefek, 2008]

Fortunately, it is not necessary to rely on the two-step LFM for portfolio optimization.
As a matter of fact, we can perform effi cient risk minimization without resorting to trunca-
tions or linear approximations, by avoiding LFM’s completely. We refer to [Meucci, 2011a]
for more details on no-LFM portfolio optimization and how it fits with the other no-LFM
applications.

3.5 Risk attribution

Risk attribution is the process of expressing the projected P&L of a portfolio into a few key
drivers.
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Key point. Let us denote by Πh the projected P&L of a portfolio with holdings
h. Risk attribution is a LFM that expresses Πh as a linear combination of risk factors
Z ≡ (Z1, . . . , ZK)′ plus a possible residual

Πh = ah + bhZ + Uh. (104)

Risk factors can be industry sector returns or more general style factors.

In mainstream applications, the risk attribution (104) is achieved by means of a "bottom
up" approach. First, a global truncated LFM ε ≡ a + bZ + U is estimated as in (101) for
the invariants ε, such as returns for stock, log-changes in implied volatilities for options, etc.,
with suitable coeffi cients

(
a,b

)
, factors Z and residuals U.

Next, the invariants LFM ε ≡ a + bZ + U is mapped into a second, separate LFM
Π ≡ a+bZ+U for the projected P&L by means of linear pricing approximations as in (103).
Notice that in this second LFM for the P&L’s the factors Z are the same as in the estimation
LFM ε ≡ a + bZ + U.

Finally, the portfolio P&L is computed as Πh ≡ h′Π, which yields bottom-up a third LFM

Π ≡ h′a︸︷︷︸
ah

+ h′b︸︷︷︸
bh

Z + h′U︸︷︷︸
Uh

. (105)

This way we obtain the desired attribution LFM (104).

Warning. The mainstream three-step bottom-up attribution LFM (101)-(103)-(105)
presents shortcomings. First, it is suboptimal to use for attribution the same factors Z
used for for estimation. Second, the attribution should be tailored top-down to the port-
folio, instead of being inherited bottom-up from the securities. Third, the shortcomings
of the systematic-idiosyncratic truncation for estimation discussed in Section 3.1 apply.
Finally, the shortcomings of the linear approximation for pricing (102) apply.

Fortunately, we do not need to rely on an estimation LFM to perform attribution.
Furthermore, we can use Factors on Demand (FoD) in [Meucci, 2010b] to widely broaden
the spectrum of applications of attribution. For instance, we can set Z as the returns of
potential hedging instruments, and compute the portfolio-specific hedges bh that minimize
the downside CVaR of the hedged portfolio Πh − bhZ. Also, we can create an optimal,
parsimonious LFM for portfolios of arbitrary non-linear instruments in terms of arbitrary
on-the-fly risk factors Z. We refer to [Meucci, 2011a] for more details on this no-LFM
approach to risk attribution and how it ties to the other no-LFM applications.

4 Pitfalls of LFM’s

As we saw in the discussion so far, LFM’s are ubiquitous in finance. LFM’s appear deceptively
simple to grasp and to implement. As a result, numerous pitfalls lurk behind LFM’s. This is
evident in the content of the following box, which at first impression might appear correct,
but which in reality is fraught with inaccuracies.
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Pitfalls. A LFM is a regression of the past (1) returns(2) rt→t+1 ≡ ln (pt+1/pt), or
equivalently(3) rt→t+1 ≡ pt+1/pt − 1, of a set of stocks(4) on a set of factor returns(5)

zt→t+1:
rt→t+1 = a + bzt→t+1 + ut→t+1. (106)

The factors zt→t+1 are systematic(6) and the residuals ut→t+1 are idiosyncratic(7). The
coeffi cients a and b do not depend on the time-step(8).

LFM’s are dimension reduction techniques(9), validated (10) by asset pricing theory. If
zt→t+1 is a broad stock index, (106) is the CAPM (11). If zt→t+1 is a vector with multiple
entries, (106) is the APT (12).

LFM’s are necessary(13) for multivariate estimation, in the form of cross-sectional,
time-series or statistical LFM’s, such as principal components and factor analysis(14).

LFM’s are necessary(15) for alpha search, to extract the alpha-generating factors
zt→t+1 from the securities returns rt→t+1 by means of factor-mimicking portfolios(16).

LFM’s are necessary(17) for portfolio optimization, to invert the covariance matrix of
returns and thus implement optimization algorithms.

LFM’s are necessary(18) for risk attribution, to see how the estimation factors affect
the portfolio return.

Below we discuss the above pitfalls.
In order to properly analyze the above issues, we reproduce here the actual definition of

LFM (2). A LFM for a variable X ≡ (X1, . . . , XN )′ is a decomposition of X as a linear
combination of factors Z ≡ (Z1, . . . , ZK)′ plus residuals U ≡ (U1, . . . , UN )′, as follows

X ≡ a + bZ + U. (107)

The LFM is fully specified by the vector a ≡ (a1, . . . , aN )′, the matrix b ≡ {bn,k} and the
structure in the joint distribution fX,Z,U of the random variables X, Z, and U.

To help the reader put the different pitfalls in perspective, we provide a subjective ranking
of the relative importance of the pitfalls, which we denote as follows:

[?] = academic remark
[??] = caveat
[? ? ?] = crucial issue.

(108)

4.1 LFM’s are not a regression on past data(1) [??]

A LFM (107) is a predictive model for future yet-to-be realized simultaneous random variables
X, rather than models for a panel of past realized data {xt}t=1,...,T .

In particular, for estimation, LFM’s model the next-step invariants X ≡ εT→T+1, such
as returns or log-yield changes. For asset pricing, alpha search, optimization, and attribut-
ion/hedging, LFM’s models the projected P&L’s X ≡ ΠT→T+τ between the current time T
and a future investment horizon T + τ .

When LFM’s are used for estimation, only one of the many possible applications of LFM’s,
LFM’s do operate on past data. In particular, when the future distribution of the random
invariants is modeled as the empirical distribution stemming from past data, one obtains
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the regressions (61) and (69). However, it is important to keep in mind that the empirical
distribution is but one of the many possible ways to model the future distribution of the
invariants: different distributional assumptions would give rise to non-regressive formulas for
time-series and cross-sectional LFM’s.

4.2 LFM’s are not about securities returns(2-3) [??]

Often LFM’s are thought of as models for the securities returns. Instead, the variables X for
the LFM’s (107) are either invariants X ≡ εT→T+1 or P&L’s X ≡ ΠT→T+τ . Hence, X are not
returns. Before we discuss further this pitfall, we need to define precisely the above variables,
refer to [Meucci, 2011b] for more details.

Definition. The profit and loss (P&L) Πt→t+τ generated by a security or a portfolio
over an arbitrary period is the difference between the value of the portfolio at the end of the
period, Pt+τ , and the value of the portfolio at the beginning of the period, Pt, plus the sum
of any intermediate endogenous cashflows, CFt→t+τ ,

Πt→t+τ ≡ Pt+τ − Pt + CFt→t+τ . (109)

Definition. The linear return Rt→t+τ of a security or, more in general, a portfolio over
an arbitrary period is the P&L generated, Πt→t+τ , divided by a normalizing quantity which
is known at the beginning of the period, the basis denominator Dt

Rt→t+τ ≡
Πt→t+τ
Dt

. (110)

For stocks, the basis denominator is typically the market value, i.e. Dt ≡ Pt. More in general,
the basis allows us to define returns for leveraged products. For instance, for swaps a standard
basis is the duration.

Definition. The compounded return Ct→t+τ of a security or, more in general, a portfolio
over an arbitrary period is the ratio of the portfolio value at the end of the period over the
value at the beginning of the period, when defined

Ct→t+τ ≡ ln
Pt+τ
Pt

. (111)

Notice a first pitfall: when the time to the horizon τ is short, the securities are not volatile,
and the basis denominator is the market value, linear and compounded returns are similar

Rt→t+τ = Pt+τ
Pt
− 1 = e

ln
Pt+τ
Pt − 1 = eCt→t+τ − 1 ≈ Ct→t+τ (112)

Definition. The invariants εt→t+1 ≡ (ε1,t→t+1, . . . , εN,t→t+1)′ are a possibly large set
of N simultaneous shocks that occur over a given unit time step t → t + 1 and that fully
determine the joint dynamics of the prices over the given time step. The invariants are iden-
tically and independently distributed (i.i.d.) variables: the simultaneous invariants εt→t+1 ≡
(ε1,t→t+1, . . . , εN,t→t+1)′ have the same joint N -variate distribution fε at all times t, and
invariants εt→t+1 and εs→s+1 across different time steps are independent.

Notice a second pitfall: for a stock with price Pt the natural invariant is its compounded
return εt→t+1 ≡ Ct→t+1. For an option with price Pt the natural invariants include the log-
changes of the whole implied volatility surface, but the compounded return of the option is
not an invariant εt→t+1 6= Ct→t+1.
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Now, let us turn to more pitfalls, related to LFM’s.
For the application "multivariate estimation", discussed in Section 3.1, we must formulate

the LFM’s on the invariants X ≡ εT→T+1. For stocks, compounded returns are invariants
and thus linear returns are invariants

Ct→t+1 i.i.d.⇒ Rt→t+1 = eCt→t+1 − 1 i.i.d. (113)

In general markets, such as options, returns are not invariants, whether compounded or linear.
Hence, for most securities, no estimation can be performed based on past returns. Thus, it is
incorrect to set X ≡ RT→T+1 in a LFM (107) for estimation, see also [Meucci, 2010c].

For the applications "asset pricing", "search for alpha", "portfolio optimization", and
"risk attribution", discussed respectively in Sections 3.2-3.5, we advocated the formulation of
LFM’s in terms of future P&L’s X ≡ ΠT→T+τ .

By choosing a suitable basis in the definition of returns (110), in principle any result on
the future P&L’s ΠT→T+τ can be transformed into a result for future linear returns RT→T+τ .
However, it is better to avoid using linear returns for these applications, for four reasons.

First, returns are often confused with invariants, which is only true for stocks, see (113).
Hence, one is tempted to link results on future P&L’s ΠT→T+τ with past returns, which is
incorrect. For instance, past returns on an option bear no connection with the future P&L of
the option.

Second, linear returns are often confused with compounded returns, due to the approxima-
tion (112). However using the compounded returns X ≡ CT→T+τ in a LFM (107) for asset
pricing, alpha search, optimization, or attribution must be avoided because, unlike linear
returns, compounded returns do not aggregate across securities and they are not investable.

Third, commonly accepted results in terms of returns are not properly specified in general
markets. For instance, the CAPM-like expression (81), which we report here in terms of
returns

E{R} − r =
Cv{R,RhSR}

V{RhSR}
(E{RhSR} − r) , (114)

is incorrect for, say, swaps, and one must instead use the P&L formulation (81).
Fourth, the formulation of a LFM in terms of P&L’s X ≡ ΠT→T+τ emphasizes the impor-

tance of the investment horizon in the definition of the model. This feature is often neglected
when stating the model in terms of returns, mainly because the distribution of the returns
is incorrectly assumed to be independent of the horizon, except for a square-root-of-horizon
scale factor which does not affect the LFM, see also Section 4.6 below.

4.3 LFM’s are not about stocks(4) [??]

The different applications of LFM’s (107) in finance, namely estimation, asset pricing, alpha
search, optimization, and attribution, were originally developed for the most liquid market,
namely the stock market, where X ≡ R, the return of the stocks, see also the pitfalls in
Section 4.2.

The formulation X ≡ ε for estimation in terms of fully general invariants and the formula-
tion X ≡ Π for asset pricing, alpha search, optimization, and attribution allows us to extend
the applications of LFM’s to all tradable asset classes.

For instance, we can use a LFM to impose structure on the joint distribution of the log-
changes of all the implied volatility surfaces ε ≡ a + bZ + U, or we can use a LFM to model
the joint distribution of the P&L of swap and futures contracts Π ≡ a + bZ + U.
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4.4 LFM’s "factors" are not "factors returns"(5) [?]

The term Z ≡ (Z1, . . . , ZK)′ on the right hand side of a LFM decomposition (107) in general
are "factors", i.e. fully general random variables, not "factor returns", i.e. the normalized
P&L’s of tradable instruments. To understand why, let us separate the case when Z is set
exogenously, as in time-series LFM’s, from the case when Z is implied endogenously from the
market X, as in cross-sectional LFM’s.

When set exogenously, as in time series LFM, the factors Z can be in principle any random
variables, including returns, linear or compounded, but also prices, square prices, etc. For
estimation purposes, Z have to be invariants. Thus, for estimation, Z can be returns only if
the underlying are stock-like securities.

When extracted endogenously from the marketX, as in cross-sectional LFM’s or statistical
LFM’s, the factors Z can be interpreted as returns only when the market in the LFM (107)
are linear returns of a set of securities, i.e. X ≡ R Then the factors Z are extracted from the
market X as in (23) and (32) by means of a K ×N matrix c

Z ≡ cR. (115)

Then the K rows of c can be interpreted as the weights of K portfolios, and thus the factors
Z can be interpreted as the returns of K factor portfolios.

Notice that we do not obtain factor returns if in the LFM (107) we set X ≡ C, the
compounded returns, because linear combinations of compounded returns are not returns, see
[Meucci, 2010c]. Also, we do not obtain factor returns if in the LFM (107) we set X ≡ ε, i.e.
generic invariants, such as changes in log-implied-volatility.

4.5 LFM’s are not systematic-idiosyncratic(6-7) [? ? ?]

We recall that the generic LFM X = a + bZ + U is systematic-idiosyncratic if, as in (44),
the factors Z are uncorrelated with the residuals U and, as in (45), the residuals U are
uncorrelated with each other

Cv{Un, Zk} = 0, Cv{Un, Um} = 0. (116)

Here we show that systematic-idiosyncratic LFM’s cannot and should not be implemented
in practice for two reasons: empirically, the assumptions underlying systematic-idiosyncratic
LFM’s deviate significantly from real markets; operationally, systematic-idiosyncratic LFM’s
call for inaccurate P&L computations.

From an empirical point of view, systematic-idiosyncratic LFM’s do not accurately de-
scribe the markets. As we proceed to show, for a generic market X, regardless what factors
Z are isolated and what loadings b are used, the residuals U ≡ X − a − bZ always appear
correlated, in violation of (116). As a result, most commercially available LFM’s, which are
estimated with the dominant-residual criterion (time-series, cross-sectional, or statistical),
and then treated as systematic-idiosyncratic LFM’s after truncating the correlations of the
residuals as discussed in Section 3.1, yields incorrect risk computations, see (66), (73) and
(79).

First, let us start with a market X where the factors Z are specified exogenously, as
in time-series LFM’s. Is it possible to determine factor loadings b such that the residuals
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U ≡ X− a− bZ satisfy the systematic-idiosyncratic requirements (116)? The answer is no.
To do so, we would have to satisfy

Cv{Xn −
∑

kbn,kZk, Xm −
∑

jbm,jZj} ≡ 0 for all n > m (117)

Cv{Xn −
∑

jbn,jZj , Zk} ≡ 0 for all n, k. (118)

The constraints (117) are N (N + 1) /2 equations and the constraints (118) are NK equations,
whereas b only contains NK entries: the system is overdetermined and the solution does not
exist. Of course, it is possible to satisfy a subset of all the requirements. For instance,
remarkably the maximum r-square solution b ≡ Cv{X,Z}Cv{Z}−1 obtained in (13) satisfies
(118), as we prove in Appendix A.1. However, (117) cannot be satisfied and thus the residual
is not idiosyncratic, as we saw in the time series simplified example (18), as well as in the
stock market case study in Figure 6.

Second, let us now consider a market X where the factors Z are extracted from the market
as in cross-sectional or statistical LFM’s, i.e. Z ≡ cX, where c is aK×N matrix. Is it possible
to determine extraction coeffi cients c and possibly factor loadings b such that the residuals
U ≡ X − a − bcX satisfy the systematic-idiosyncratic requirements (116)? The answer is,
again, no. Indeed, to do so, we would have to satisfy

Cv{Xn −
∑

k,pbn,kck,pXp, Xm −
∑

j,qbn,jcj,qXq} ≡ 0 for all n > m (119)

Cv{Xn −
∑

j,qbn,jcj,qXq,
∑

pck,pXp} ≡ 0 for all n, k. (120)

These N (N + 1) /2 +NK equations overdetermine the 2NK entries of b and c. As a result,
cross-sectional LFM’s are not systematic-idiosyncratic, as we saw in the simplified example
(28), as well as in the stock market case study in Figure 8. Similarly, PCA residuals are
correlated, see (42)

From an operational point of view, systematic-idiosyncratic LFM’s are problematic, be-
cause they are very sensitive to pricing transformations and thus force modelers to resort to
inaccurate P&L proxies.

To illustrate this problem, let us consider the simple case of stock-like securities, where
the compounded returns are invariants, i.e. C = ε. Even if the compounded returns were
to follow a systematic-idiosyncratic LFM, then the linear returns, which as in (112) satisfy
R = eC−1, or the P&L’s, which in terms of the current prices p read Π = pR, do not follow
a systematic-idiosyncratic LFM, see [Meucci, 2009].

More in general, let us assume that the invariants ε of a given market are estimated using
a systematic-idiosyncratic LFM, although we know from the introduction to this section that
such LFM is inaccurate. Only the inaccurate linear pricing approximation (102) yields a
systematic-idiosyncratic LFM for the projected P&L’s of the securities.

Fortunately, systematic-idiosyncratic LFM’s are not necessary, see Section 4.11 below and
references therein. Therefore, we can safely avoid the truncations of Section 3.1 and of the
linear approximations (102).

4.6 LFM’s are not horizon-independent(8) [??]

In standard applications, when specifying a LFM on the P&L’s ΠT→T+τ ≡ a + bZ + U
typically little attention is paid to the fact that coeffi cients, factors and residuals all depend
on the horizon.
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In particular, the factor loadings bT→T+τ depend on the whole span between the current
time and the investment horizon. This dependence becomes important when evaluating a fund
manager’s performance based as the risk-adjusted excess P&L ΠT→T+τ − bT→T+τZT→T+τ ,
where the benchmark is, say, the return of a global equity index, see Kepos (2011).

In order to account for the horizon, one must embed a suitable projection step for all the
random variables involved. For more details and code, refer to [Meucci, 2010a].

4.7 LFM’s are not a dimension reduction technique(9) [?]

LFM’s (107) are dimension reduction techniques when used to estimate the distribution of
the invariants X ≡ ε in large dimensional markets.

LFM’s are not a dimension reduction technique when used as in (104) to compute the
optimal hedge or to attribute the risk in the portfolio P&L to a few key drivers Πh = ah +
bhZ + Uh. Indeed, in this latter case, the LFM actually increases the dimension of the
problem, from the univariate P&L Πh of the portfolio to the K > 1 hedges/risk drivers Z.

4.8 LFM’s are not APT and CAPM(10-11-12) [? ? ?]

The APT and CAPM are often loosely described as two conceptually similar LFM’s, whereby
the CAPM has one factor and the APT has several factors. In reality, APT and CAPM are
profoundly different and their connections to LFM’s present many pitfalls.

In the APT, one assumes that the securities projected P&L’s follow a multi-factor systematic-
idiosyncratic LFMΠ = a+bZ+U, and that there are infinitely many securities in the market.
Then the APT result (87) follows, which can be interpreted as a constraint on the coeffi cients
a of the LFM. As discussed in Sections 4.5 and 4.10 respectively the two assumptions of the
APT are unrealistic.

In the CAPM, no assumptions are made on the distribution of the securities P&L’s Π. In
particular, no assumption is made that Π follow a LFM. The general CAPM-like result (81)
is thus always true, regardless the distribution of Π or the size of the market. Although no
LFM is needed to derive CAPM-like results, such results can be interpreted as a constraint
on the coeffi cients a of a suitable dominant-residual LFM Π = a + bZ + U, which is never
systematic-idiosyncratic, see (83).

We emphasize that the financial theory of asset pricing does not endorse the use of LFM’s,
and in particular systematic-idiosyncratic LFM’s: in the APT, systematic-idiosyncratic LFM’s
are an unrealistic assumption; in the CAPM, no systematic-idiosyncratic LFM’s ever appear.

Aside from the above caveats on the relationship between asset pricing and LFM’s, it is
worth repeating how some general pitfalls highlighted for LFM’s, also apply to CAPM and
APT.

First, both CAPM and APT apply to the joint P&L’s of a set of securities, which are
unequivocally defined, rather than returns, whose definition for leveraged non-equity securities
is subjective. It is possible to express CAPM and APT equivalently in terms of linear returns
using suitable bases as in (110), but never in terms of compounded returns. Refer also to
Section 4.2 for a similar pitfall in LFM’s.

Second, despite similarities in appearance, neither CAPM nor APT bear any connection
with estimation theory or with regression analysis. The variables involved are yet to be realized
P&L’s, or equivalently linear returns. The past, dynamics of such variables is absolutely
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inessential to the formulation of CAPM and APT. Thus, both CAPM and APT hold exactly
regardless of any autocorrelation or any volatility clustering in the time series of the P&L’s
or the returns of the different securities. See also Section 4.1 for a similar pitfall in LFM’s.

Third, both CAPM and APT are often mistakenly assumed to only hold for the stock
market, mainly due to the wealth of empirical studies performed in this area and to the fact
that for stocks returns are defined in a straightforward manner. However, both APT and
CAPM hold for any tradable security, which include leveraged products such as swaps and
futures, as well as nonstandard products such as exotic options. See also Section 4.3 for the
same pitfall in LFM’s.

Fourth, both CAPM and APT are one-period models between the current time T and a
given investment horizon in the future T+τ . Therefore, there exist an infinity of simultaneous,
potentially completely different, versions of CAPM and APT, one for each horizon τ . For
instance, the risk-free rates rT→T+τ in CAPM and APT are the deterministic, linear returns
of different zero-coupon bonds that expire at the different horizons T + τ . Similarly, the
"betas" that appear in (83) are functions of the P&L’s ΠT→T+τ , or the linear returns RT→T+τ ,
between the current time T and the future horizon T + τ . Refer to Section 4.6 for a similar
pitfall in LFM’s and for connections with performance attribution.

4.9 LFM’s do not include factor analysis(14) [??]

We recall from (55) that factor analysis (FA) aims at approximating a covariance as low-rank-
diagonal

Cv{X} ≈ bb′ + diag
(
δ2
)
. (121)

FA is at times confused with a systematic-idiosyncratic statistical LFM for three reasons.
The first reason is that the FA covariance approximation (121) follows if one assumes a

systematic-idiosyncratic LFM X = a + bZ + U, where the factors Z are uncorrelated and
have unit variance, i.e. Cv{Z} = iK ; the residuals U are uncorrelated with each other, i.e.
Cv{U} = diag

(
δ2
)
, and thus they are idiosyncratic, as in (44); and the factors are uncorrelated

with the residuals, i.e. Cv{Z,U} = 0K×N , and thus they are systematic as in (45). However,
the existence of a systematic-idiosyncratic LFM is a suffi cient, but by no means necessary,
condition for the FA covariance approximation (121) to hold.

The second reason why FA is confused with a LFM, and in particular a statistical LFM,
is that the FA covariance approximation (121) is purely statistical, i.e. no exogenous infor-
mation enters the specification of the low-rank coeffi cients b or the diagonal coeffi cients δ2.
Furthermore, numerical techniques to obtain the FA covariance approximation often rely on
principal components analysis, which determines statistical LFM’s, see Section 2.1.3.

The third reason why FA is confused with a LFM is the very terminology "factor analysis",
which misleads one to think that FA defines a LFM X = a + bZ + U.

Despite the three above reasons to associate FA with LFM’s, no such thing as a FA-
extracted systematic-idiosyncratic statistical LFM X = a + bZ + U can exist, because FA
cannot extract the hidden factors Z, and therefore it cannot identify the LFM, see the proof
in Appendix A.4.
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4.10 LFM’s do not extract alpha-generating factors(16) [??]

The APT (84) assumes that the projected P&L’s of the securities are described by a systematic-
idiosyncratic LFM

ΠT→T+τ = a + bZ + U. (122)

Let us make a second unrealistic hypothesis, namely that we observe the loadings b in the
systematic-idiosyncratic LFM (122). Finally, let us make a third unrealistic hypothesis of a
very large market, namely that the numbers of securities in the market.

Then, it is possible to recover the K systematic factors Z from the N securities P&L’s
ΠT→T+τ by means of the K factor-replicating portfolios, defined by the rows of the K ×N
holdings matrix b+ ≡ (b′σ2b)−1b′, see (90)

b+ΠT→T+τ
N→∞

= Z + b+a. (123)

In general, the above three assumptions do not hold: the systematic-idiosyncratic hypothesis
is empirically unrealistic, see Section 4.5; we do not observe all the common signals; and the
market considered for alpha generation have finite, and often limited, size.

4.11 LFM’s are not necessary(13-15-17-18) [? ? ?]

This is our epilogue. After much effort defining, studying and applying LFM’s, it turns out
that LFM’s can, and should, be avoided in practice. As it turns out, without LFM’s it is
possible to achieve significantly better risk estimates, non-spurious alpha signals, effi cient
portfolio optimizations, and top-down, parsimonious, on-the-fly risk attribution. We refer the
curious reader to [Meucci, 2011a] for the no-LFM approach to quantitative finance.
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A Appendix

In this appendix we discuss technical results that can be skipped at first reading.

A.1 Results for the unconstrained "time-series" approach

Here we drop the boldface notation for vectors, we define

ΣX,Y ≡ Cov {X,Y } ≡ E
{

(X − E {X}) (Y − E {Y })′
}
, (124)

and we use the convention ΣX ≡ ΣX,X .

A.1.1 The loadings

This proof follows [Meucci, 2005]. From the definition of the unconstrained time-series load-
ings (11) and of the r-square (9) we must minimize the target

m (b) ≡ tr
(
Σφ(X−bZ)

)
= tr

(
φΣ(X−bZ)φ

′) (125)

= tr
(
Σ(X−bZ)Φ

)
= tr

((
ΣX + bΣZb

′ − bΣZ,X − ΣX,Zb
′)Φ

)
,

where Φ ≡ φ′φ.
We will now use some matrix manipulations, see also [Minka, 2003]. The differential reads

dm (b) = tr
(
d
[
bΣZb

′]Φ− [db] ΣZ,XΦ− ΣX,Z

[
db′
]

Φ
)

(126)

We use the identity

tr
(
d
[
bΣZb

′]Φ
)

= tr
(
[db] ΣZb

′Φ + bΣZ [db]′Φ
)

(127)

= tr
(
[db] ΣZb

′Φ + [db] ΣZb
′Φ
)
,

which follows from the equality tr (A′b) = tr (Ab′), which holds for any N ×K matrices A and
b. Then the differential reads

dm (b) = tr
(
[db] ΣZb

′Φ
)

+ tr
(
[db] ΣZb

′Φ
)

(128)

− tr ([db] ΣZ,XΦ)− tr ([db] ΣZ,XΦ)

= 2 tr
(
[db] ΣZb

′Φ
)
− 2 tr ([db] ΣZ,XΦ) .

To find the maximum, we set the differential to zero

0 ≡ tr
(
db
(
ΣZb

′ − ΣZ,X

)
Φ
)
, (129)

The solution reads
b = ΣX,ZΣ−1

Z , (130)

which is the desired result (13).
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A.1.2 The r-square

In general, for any two random vectors Z and X and any conformable matrix a we obtain

R2
φ {aZ,X} ≡ 1−

tr
(
Σφ(aZ−X)

)
tr (ΣφX)

(131)

= 1− tr (φΣaZ−Xφ
′)

tr (φΣXφ′)
= 1− tr (ΣaZ−XΦ)

tr (ΣXΦ)

=
tr (ΣXΦ)− tr ((ΣaZ − ΣaZ,X − ΣX,aZ + ΣX) Φ)

tr (ΣXΦ)

=
tr ((ΣaZ,X + ΣX,aZ − ΣaZ) Φ)

tr (ΣXΦ)

=
tr ((aΣZ,X + ΣX,Za

′ − aΣZa
′) Φ)

tr (ΣXΦ)

For the unconstrained "time-series" case from (13) we have to set Z ≡ Z and a ≡ ΣX,ZΣ−1
Z .

Therefore (131) becomes

R2
φ = R2

φ

{
ΣX,ZΣ−1

Z Z,X
}

(132)

=
tr
((

ΣX,ZΣ−1
Z ΣZ,X + ΣX,ZΣ−1

Z ΣZ,X − ΣX,ZΣ−1
Z ΣZΣ−1

Z ΣZ,X

)
Φ
)

tr (ΣXΦ)

=
tr
(
ΣX,ZΣ−1

Z ΣZ,XΦ
)

tr (ΣXΦ)

=
tr
(
ΣφX,ZΣ−1

Z ΣZ,φX

)
tr (ΣφX)

,

where Φ ≡ φ′φ.

A.1.3 The residuals

Here we prove that factors and residuals are uncorrelated. The residuals read

U ≡ X − a− bZ = X − a− ΣX,ZΣ−1
Z Z (133)

Therefore the covariance of factors and residuals reads

ΣU,Z = ΣX−ΣX,ZΣ−1Z Z,Z = (134)

= ΣX,Z + Σ−ΣX,ZΣ−1Z Z,Z

= ΣX,Z − ΣX,ZΣ−1
Z ΣZ

= 0
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Now we show that the residuals are not idiosyncratic. Indeed, the covariance of the residuals
reads

ΣU = ΣX−ΣX,ZΣ−1Z Z,X−ΣX,ZΣ−1Z Z (135)

= ΣX + ΣX,−ΣX,ZΣ−1Z Z + Σ−ΣX,ZΣ−1Z Z,X + Σ−ΣX,ZΣ−1Z Z,−ΣX,ZΣ−1Z Z

= ΣX − ΣX,ZΣ−1
Z ΣZ,X − ΣX,ZΣ−1

Z ΣZ,X + ΣX,ZΣ−1
Z ΣZΣ−1

Z ΣZ,X

= ΣX − ΣX,ZΣ−1
Z ΣZ,X ,

which is not diagonal.

A.2 Results for the unconstrained "cross-sectional" approach

Here we drop the boldface notation for vectors, we define ΣX,Y ≡ Cov {X,Y } ≡ E
{

(X − E {X}) (Y − E {Y })′
}
,

and we use the convention ΣX ≡ ΣX,X .

A.2.1 The factors

From the definition of the unconstrained cross-section factors (22) and of the r-square (9) we
must minimize the target

m (c) ≡ tr
(
Σφ(X−bcX)

)
= tr

(
φΣ(X−bcX)φ

′) (136)

= tr
(
Σ(X−bcX)Φ

)
= tr

((
ΣX + bcΣXc

′b′ − bcΣX − ΣXc
′b′
)

Φ
)
,

where Φ ≡ φ′φ.
We will now use some matrix manipulations, see also [Minka, 2003]. The differential reads

dm (c) = tr
(
d
[
bcΣXc

′b′
]

Φ
)

(137)

− tr (b [dc] ΣXΦ)− tr
(
ΣX

[
dc′
]
b′Φ
)

We use the identity

tr
(
d
[
bcΣXc

′b′
]

Φ
)

= tr
(
bd [c] ΣXc

′b′Φ
)

(138)

+ tr
(
bcΣX

[
dc′
]
b′Φ
)

= tr
(
d [c] ΣXc

′b′Φb
)

+ tr
([
dc′
]
b′ΦbcΣX

)
= tr

(
d [c] ΣXc

′b′Φb
)

+ tr
(
[dc] ΣXc

′b′Φb
)
,

which follows from the equality tr (A′b) = tr (Ab′), which holds for any N ×K matrices A and
b. Then the differential reads

dm (c) = tr
(
d [c] ΣXc

′b′Φb
)

+ tr
(
[dc] ΣXc

′b′Φb
)

(139)

− tr ([dc] ΣXΦb)− tr ([dc] ΣXΦb)

= 2 tr
(
d [c] ΣXc

′b′Φb
)
− 2 tr ([dc] ΣXΦb)

To find the maximum, we set the differential to zero

0 ≡ tr
(
d [c] ΣX

(
c′b′Φb− Φb

))
(140)

The solution reads
c =

(
b′Φb

)−1
b′Φ, (141)

which is the desired result (24).
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A.2.2 The r-square

To compute the r-square of the unconstrained "cross-section" factors (24) we must set in the
general expression for the r-square (131) Z ≡ X and

a ≡ b
(
b′Φb

)−1
b′Φ. (142)

Then the r-square (131) becomes

R2
φ =

tr (aΣXΦ) + tr (ΣXa
′Φ)− tr (aΣXa

′Φ)

tr (ΣXΦ)
. (143)

Using

tr (aΣXΦ) = tr (ΣXΦa) = tr
(

ΣXΦb
(
b′Φb

)−1
b′Φ
)

(144)

and
tr
(
ΣXa

′Φ
)

= tr
(

ΣXΦb
(
b′Φb

)−1
b′Φ
)

(145)

and

tr
(
aΣXa

′Φ
)

= tr
(
ΣXa

′Φa
)

(146)

= tr
(

ΣXΦb
(
b′Φb

)−1
b′Φb

(
b′Φb

)−1
b′Φ
)

= tr
(

ΣXΦb
(
b′Φb

)−1
b′Φ
)
,

then (143) simplifies to

R2
φ =

tr
(

ΣXΦb (b′Φb)−1 b′Φ
)

tr (ΣXΦ)
(147)

=
tr (ΣφbZ)

tr (ΣXΦ)
=

tr (ΣφbZ)

tr (ΣφX)
,

where we used where Φ ≡ φ′φ and

tr (ΣφbZ) = tr
(

Σφb(b′Φb)−1b′ΦX

)
(148)

= tr
(
φb
(
b′Φb

)−1
b′ΦΣXΦb

(
b′Φb

)−1
b′φ′
)

= tr
(
b
(
b′Φb

)−1
b′ΦΣXΦb

(
b′Φb

)−1
b′Φ
)

= tr
(

ΣXΦb
(
b′Φb

)−1
b′Φb

(
b′Φb

)−1
b′Φ
)

= tr
(

ΣXΦb
(
b′Φb

)−1
b′Φ
)
.

A.3 Results for the generalized PCA approach

Here we drop the boldface notation for vectors, we define ΣX,Y ≡ Cov {X,Y } ≡ E
{

(X − E {X}) (Y − E {Y })′
}
,

and we use the convention ΣX ≡ ΣX,X .
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A.3.1 The loadings and the factors

From the definition of the unconstrained statistical factors (31) and of the r-square (9) we
must minimize the target

m (b, c) ≡ tr
(
Σφ(X−bcX)

)
= tr

(
φΣ(X−bcX)φ

′) (149)

= tr
(
Σ(X−bcX)Φ

)
= tr

((
ΣX + bcΣXc

′b′ − bcΣX − ΣXc
′b′
)

Φ
)
,

where Φ ≡ φ′φ.
We will now use some matrix manipulations, see also [Minka, 2003]. Using the equality

tr (A′b) = tr (Ab′), which holds for any N ×K matrices A and b, the differential reads

dm (b, c) = d
[
tr
(
bcΣXc

′b′Φ
)]
− tr (d [b] cΣXΦ) (150)

− tr (bd [c] ΣXΦ)− tr
(
ΣXd

[
c′
]
b′Φ
)
− tr

(
ΣXc

′d
[
b′
]

Φ
)

= d
[
tr
(
bcΣXc

′b′Φ
)]
− tr (d [b] cΣXΦ)

− tr (d [c] ΣXΦb)− tr (d [c] ΣXΦb)− tr (d [b] cΣXΦ) .

Using

d
[
tr
(
bcΣXc

′b′Φ
)]

= tr
(
d [bc] ΣXc

′b′Φ
)

+ tr
(
bcΣXd

[
c′b′
]

Φ
)

(151)

= tr
(
d [bc] ΣXc

′b′Φ
)

+ tr
(
d
[
c′b′
]

ΦbcΣX

)
= tr

(
d [bc] ΣXc

′b′Φ
)

+ tr
(
d [bc] ΣXc

′b′Φ
)

= 2 tr
(
d [bc] ΣXc

′b′Φ
)

= 2 tr
(
d [b] cΣXc

′b′Φ
)

+ 2 tr
(
bd [c] ΣXc

′b′Φ
)

= 2 tr
(
d [b] cΣXc

′b′Φ
)

+ 2 tr
(
d [c] ΣXc

′b′Φb
)

The differential reads

dm (b, c) ∝ tr
(
d [b]

(
cΣXc

′b′Φ− cΣXΦ
))

(152)

+ tr
(
d [c]

(
ΣXc

′b′Φb− ΣXΦb
))
.

To find the maximum, we set the differential to zero, obtaining the two sets of equations

c′b′Φb = Φb, cΣXc
′b′ = cΣX . (153)

Defining
b̃ ≡ φb, c̃ ≡ cφ−1, Σ̃ ≡ φΣXφ

′ (154)

we can write (153) as
c̃′b̃′b̃ = b̃, c̃Σ̃c̃′b̃′ = c̃Σ̃. (155)

Suppose that
c′b′b = b, cΣc′b′ = cΣ. (156)

Define
b̂ ≡ bA, ĉ ≡ A−1c
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then b̂ĉ = bc. Then

ĉ′b̂′b̂ = c′A′−1A′b′bA (157)

= c′b′bA = bA (158)

= b̂ (159)

and

ĉΣĉ′b̂′ = A−1cΣc′A′−1A′b′

= A−1cΣc′b′

= A−1cΣ

= ĉΣ

The first equation implies

c̃ =
(
b̃′b̃
)−1

b̃′. (160)

Substituting this result in the second one we obtain(
b̃′b̃
)−1

b̃′Σ̃b̃
(
b̃′b̃
)−1

b̃′ =
(
b̃′b̃
)−1

b̃′Σ̃. (161)

Equation (161) is solved by
b̃ ≡ ẽK (162)

where ẽK is the N ×K matrix obtained by juxtaposing any K eigenvectors, normalized to
have length one (in particular, but not necessarily, the eigenvectors relative to the K largest
eigenvalues). Indeed, in this case b̃′b̃ = I and (161) becomes

ẽ′KΣ̃ẽK ẽ
′
K = ẽ′KΣ̃, (163)

which is true, as can be verified by direct computation. Then (160) yields

c̃ = ẽ′K . (164)

The desired result (37) follows by substituting (162) and (164) back into (154).

A.3.2 The r-square

To compute the r-square of the PCA factors (38) we must set in the general expression for
the r-square (131) Z ≡ X and using the notation in Section A.3.1

A ≡ φ−1ẽK ẽ
′
Kφ. (165)
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Then the r-square (131) becomes

R2
φ =

tr (AΣXΦ) + tr (ΣXA
′Φ)− tr (AΣXA

′Φ)

tr (ΣXΦ)
. (166)

Using

tr (AΣXΦ) = tr (ΣXΦA) = tr
(
ΣXΦφ−1ẽK ẽ

′
Kφ
)

(167)

= tr
(
ΣXφ

′ẽK ẽ
′
Kφ
)

= tr
(

Σ̃ẽK ẽ
′
K

)
and

tr
(
ΣXA

′Φ
)

= tr
(
ΣXφ

′ẽK ẽ
′
Kφ
′−1Φ

)
(168)

= tr
(
ΣXφ

′ẽK ẽ
′
Kφ
)

= tr
(

Σ̃ẽK ẽ
′
K

)
and

tr
(
AΣXA

′Φ
)

= tr
(
ΣXA

′ΦA
)

(169)

= tr
(
ΣXφ

′ẽK ẽ
′
Kφ
′−1Φφ−1ẽK ẽ

′
Kφ
)

= tr
(
ΣXφ

′ẽK ẽ
′
Kφ
)

= tr
(

Σ̃ẽK ẽ
′
K

)
then (166) simplifies to

R2
φ =

tr
(
ẽ′KΣ̃ẽK

)
tr
(

Σ̃
) . (170)

The numerator in (170) is the sum of the K eigenvalues relative to the K eigenvectors in ẽK
and the denominator is the sum of all the eigenvalues. Since in the original problem (31) we
are maximizing the r-square, we must select as K eigenvectors those relative to the K largest
eigenvalues. This is the desired result (40).

A.4 Results for factor analysis

The approximation (55) is consistent with a joint covariance of factors and residual that reads

Cv

{(
Z
U

)}
=

(
IK×K 0K×N
0N×K ∆2

)
, (171)

which has rank K (the number of factors Z) +N (the dimension of the market X). However,
assume we could find the extraction matrix G such that

Z ≡ gX. (172)
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Then from (107) we obtain (
Z
U

)
= qX, (173)

where

q ≡
(

g
I − bg

)
. (174)

This implies that

Cv

{(
Z
U

)}
= qCv {X} q′, (175)

which has rank N and thus contradicts (171).
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