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Abstract

FX pricing processes are nonstationary and their frequency characteristics are time-dependent. Most
do not conform to geometric Brownian motion, since they exhibit a scaling law with a Hurst exponent
between zero and 0.5 and fractal dimensions between 1.5 and 2. This paper uses wavelet multiresolution
analysis, with Haar wavelets, to analyze the nonstationarity (time-dependence) and self-similarity (scale-
dependence) of intra-day Asian currency spot exchange rates. These are the ask and bid quotes of
the currencies of eight Asian countries (Japan, Hong Kong, Indonesia, Malaysia, Philippines, Singapore,
Taiwan, Thailand), and of Germany for comparison, for the crisis period May 1, 1998 - August 31,
1997, provided by Telerate (U.S. dollar is the numéraire). Their time-scale dependent spectra, which are
localized in time, are observed in wavelet based scalograms. The FX increments can be characterized by
the irregularity of their singularities. This degrees of irregularity are measured by homogeneous Hurst
exponents. These critical exponents are used to identify the fractal dimension, relative stability and long
term dependence of each Asian FX series. The invariance of each identi…ed Hurst exponent is tested by
comparing it at varying time and scale (frequency) resolutions. It appears that almost all FX markets
show anti-persistent pricing behavior. The anchor currencies of the D-mark and Japanese Yen are ultra-
e¢cient in the sense of being most anti-persistent. The Taiwanese dollar is the most persistent, and
thus unpredictable, most likely due to administrative control. FX markets exhibit these non-linear, non-
Gaussian dynamic structures, long term dependence, high kurtosis, and high degrees of non-informational
(noise) trading, possibly because of frequent capital ‡ows induced by non-synchronized regional business
cycles, rapidly changing political risks, unexpected informational shocks to investment opportunities,
and, in particular, investment strategies synthesizing interregional claims using cash swaps with di¤erent
duration horizons.
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1 INTRODUCTION

There is insu¢cient scienti…c analysis of the crucial …nancial market phenomena that characterized

the Asian Financial Crisis, from a risk management perspective. In particular, the phenomena of

…nancial crises, turbulence, friction and persistence are inadequately described by the conventional

ARIMA or geometric Brownian motion models. The main objective of this paper is to present

more representative models and analytic procedures, adapted from hydrology, biometrics, and

signal processing, to empirically model FX rates.

The measurement of the empirical e¢ciency of the foreign exchange (FX) markets for risk

management purposes dates back to the early 1970s, when the 1944 Breton Woods Agreement

of …xed exchange rates was discarded in 1971 and replaced by the current system of ‡exible

exchange rates in 1973 (Cornell and Dietrich, 1978; Friedman and Vandersteel, 1982; McFarland

et al., 1982).
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In an e¢cient market, the arrival of new information produces instantaneous price correction,

leaving no prospect for price prediction and therefore minimal opportunity for reaping abnormal

pro…ts. A market where the best prediction of a price ¿ periods into the future, based on cur-

rent and past information, E¡¿ fx(t + ¿)g, is its current, exact and known, price bx(t) = x(t), is

martingale - e¢cient (Fama, 1970, 1991):1

E¡¿ fx(t + ¿)g = bx(t) for any ¿ > 0 (1)

This implies that the martingale increments

ex¡¿ (t) = x(t + ¿) ¡ bx(t) (2)

have zero mean (per de…nition):

E¡¿ fex¡¿ (t)g = 0 for any ¿ > 0 (3)

and that these increments are independent from each other. They may also, possibly, be identically

distributed, or stationary, up to a scale parameter.

Earlier, we investigated the martingale - e¢ciency of seven Asian FX markets by using non-

parametric tests on the historical increments of high frequency, minute-by-minute data (Los, 1999,

2000b) :2

ex¿ (t) = x(t) ¡ bx(t ¡ ¿) = x(t) ¡ bx¿ (t) (4)

We concluded that:3

1. All nine investigated currencies (Hong Kong dollar, Indonesian rupiah, Japanese Yen,

Malaysian ringgit, Philippines peso, Singapore dollar, Thai baht, Taiwan dollar, Japanese Yen, and

1 We’ll introduce some simple notation to connect the various sections of this paper to the literature. It’s
interesting that some authoritative economists have always doubted the martingale e¢ciency of …nancial markets
(Grossman and Stiglitz, 1980), on fundamental grounds.

2 Often analysts investigate only the …rst-order historical increments ex1(t) = x(t)¡ bx(t¡ 1) = x(t)¡ bx1(t), but
that is insu¢cient and leads to rather erroneous conclusions. Investment horizons of di¤erent length ¿ are a normal
phenomenon in the …nancial markets.

3 Los (2000a) did a similar non-parametric analysis of the Asian stock markets.
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the benchmark currency of the Deutschemark) exhibit wide sense stationarity in their increments,

before the currency turmoil started on the 2nd of July, 1997. When all 1997 FX increments

are tested together, only …ve (Hong Kong dollar, Japanese Yen, Philippines peso, Taiwan dollar

and Deutschemark) show wide sense stationarity. The data show a signi…cant discontinuity in

the behavior of the increments of four of the currencies (Indonesian rupiah, Malaysian ringgit,

Singapore dollar and Thai baht) in the middle of 1997, when Hong Kong was handed over to the

People’s Republic of China. This suggests that FX models must allow for both stationarity and

non-stationarity, in particular for sharp discontinuities.

2. All nine currencies exhibit signi…cant serial dependencies of various lengths ¿ in their

increments, in both the whole 1997 data set and in each of the half year data sets, from before

and after the mid-year currency break. This suggests that FX models must allow for both serial

and long-term (global) dependence.

3. Signi…cant trading windows of up to 20 minutes are identi…able in the FX increments

throughout 1997, and more complex persistence behavior than serially dependent Markov processes

were identi…ed. This suggests that FX models must allow for more complexity than that of Markov

- ARIMA models.4

In such FX markets abnormal pro…ts and losses are not only possible. They are, indeed,

realized.

This paper examines the long term dependence observed in FX markets, that is not observable

by serial, linear dependent (correlation) models of the Markov - ARIMA type. Analysts, who use

serial correlation models, often observe that serial FX price residuals are uncorrelated and then,

erroneously, conclude that these markets are e¢cient, because they ignore the more di¢cult to

detect longer - term dependence.

Already in the 1960s, both Mandelbrot and Fama observed that market pricing process are

nonstationary. In the early 1970s Brownian motion models became popular, because of the use-

4 Any ARIMA model can be translated into a Markov model and vice versa.
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fulness of the Nobel Memorial Prize winning Black - Scholes derivative valuation equation. But

recently, considerable evidence has been collected that empirical market pricing processes do not

conform to arithmetic or geometric Brownian motion, since they exhibit scaling laws with scale

exponents that do not conform to Brownian motion, e.g., with Hurst exponents di¤erent from 0:5.

First, several authors have found that stock market price increments, or rates of return, exhibit

empirical Hurst exponents in the range of 0:6 ¡ 0:7. Thus stock market rates of return on such

risky assets are persistent.

In contrast, this paper …nds that most FX rates exhibit empirical Hurst exponents in the range

of 0:3 ¡ 0:5. In particular the anchor currencies of the Deutschemark (now replaced by the Euro)

and the Japanese Yen exhibit Hurst exponents of about 0:2 ¡ 0:3. In other words, FX rates are

anti-persistent.

From what we have been able to determine from the literature, these are the …rst empirical

measurements of Hurst exponents of FX rates, and the …rst time for speculative …nancial markets,

of lower than 0:5 are found. These measurements of anti-persistence in the FX markets provide

some empirical justi…cation for the use of mean-reverting processes, popular in current dynamic

asset pricing theory, to model FX pricing, even though these processes do not capture all global

features of long term dependence.

1.1 Research Methodology

We use Mallat’s (1989) time-scale multiresolution analysis with Haar wavelets (1900) orthonormal

…lters to analyze such time-scale dependence and self-similarity of the same minute-by-minute

indicative quotes of Asian spot currency rates as analyzed in Los (1999, 2000a). Serendipitously,

these quotes were systematically collected in Singapore during the whole year 1997 by our students.

In this paper, we’ll analyze a subset of these high-frequency data in the crucial Asian currency

crisis period May 1997- July 1997.

The fractal dimension of each FX market for each of the four months is identi…ed by its
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homogeneous Hurst exponent, i.e., its uniform Lipschitz exponent. These critical Hölder expo-

nents measure the persistence and the stability of the fractal nature of the various FX market

pricing processes. The uniform Hurst exponents are computed from the multiresolution wavelet

coe¢cients, following the procedure of Kaplan and Kuo (1993).

Since we …nd signi…cant divergences from independence, FX rate increments do clearly not

behave as probabilistic random events. Probabilistic random events are those whose outcomes

are determined purely by independent chance. For example, by ‡ipping a fair coin, or, like the

statisticians’ favorite abstraction: by blindfoldedly taking colored balls from a small urn. If we

assume that all balls are exactly the same except for color, then each ball is equally likely to be

chosen, so the selection process is probabilistically random.5

However, we …nd that current FX increments have already been impacted by a number of

previous increments, although not with precise periodicity. The precise number of these impacts

depends on the size of the temporal windows used, when we identify this divergence from in-

dependence. Similarly, the current FX increments will also impact future FX increments in a

non-periodic, but cyclic fashion.

Thus, the conventional statistical abstraction of probabilistic randomness cannot function as

a null hypothesis. The observation of particular dependent FX rates increments conditions and

limits the observable distribution, which may be ”random” only within the …nite constraints of

a new frequency histogram. The observable distribution can thus only be conditionally and not

unconditionally ”random.”6 Therefore, we opt in this paper for an approach to the measurement

of the randomness of FX data borrowed from scienti…c signal processing, which relies on the

concept of, precisely de…ned, measured irregularity. This scienti…c approach does not rely on

”signi…cance” testing based on assumed probability or on the introduction of extraneous ”degrees

5 This deplorable connection between probability and randomness - two very di¤erent concepts - was introduced
by the 16th century physician Girolamo Cardano (1500 - 1571) in his Liber de Ludo Aleae (Book on the Games of
Chance), posthumously published in 1663 (Cf. Bernstein, 1996, p. 47 - 50 and 53 - 55).

6 As GARCH models recognize to a certain degree. But the processes produced by GARCH models do not have
measurement characteristics that match that of empirically observed FX increments (Peters, 1994).
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of con…dence.”

1.2 Empirical Characteristics of FX Rates

Four empirical characteristics of the FX rates justify this scienti…c irregularity measurement ap-

proach, as this paper will demonstrate:

1. FX rates are conspicuously discontinuous, i.e., singular at almost every point, because the

supply and demand curves of currencies move in often small, but sometimes large, discrete steps (

”ticks ”), in instantaneous response to news events. Therefore, continuous time dynamic Itô (e.g.,

arithmetic or geometric Brownian motion) pricing models appear to be scienti…cally inappropriate.

In addition, the Poisson-type jump processes proposed by Jorion (1988) are too restrictive, since

it’s impossible to determine with any degree of certainty the Poisson rates from …nite empirical

data sets.

2. The distributions of FX rates are strictly nonstationary. However, they clearly adhere to

stable scaling, or (Pareto-Lévi type) power laws and are thus stationary at several scales.

3. FX rates show non-periodic cyclicity, i.e., intermittent periods of condensation, succeeded

by periods of rarefaction.7

4. FX rates are …nite, in two senses: even high-frequency data sets have a …nite number of

observations and exhibit …nite amplitudes.

Such high-frequency, singular price data are similar to physiological measurement data, such

as heart records, electromagnetic ‡uctuations in galactic radiation noise, textures in images of

natural terrain, variations of electric grid or tra¢c ‡ows, etc. (Mandelbrot, 1999). But not all

such series of singularities are alike. Knowing the degree of irregularity of such singularities is

important in analyzing their risk properties. For the purpose of risk management, knowing the

distribution of the degrees of irregularity of …nancial time series is crucial for a correct analysis of

the non-periodic, but cyclic …nancial risk.

7 This is a major area for our current research, and clearly inspired by the early work by Mandelbrot in the
1960s.
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Therefore, we introduce a proper formal de…nition of measured irregularity, or randomness, as

measured by the Lipschitz regularity exponent ®L. Unfortunately, direct pointwise measurements

of Lipschitz irregularity exponents, which measure the degree of irregularity of singularities, are not

possible, because of the …nite numerical resolution. After discretization, each data set corresponds

to a time interval where the time series has a very large (”in…nite ”) number of singularities, which

may all be di¤erent. Thus, in general, a singularity distribution, or singularity spectrum, should

be computed from global measurements, which take advantage of multifractal self-similarities.

However that’s the subject of another paper. The objective of this paper is much more limited

and pragmatic.

Mandelbrot and Van Ness (1968) …nd that fractional Brownian motion (FBM) provides a

convenient model for such self-similar time series. Hosking (181) incorporates the FBM into

his ARFIMA model. FBMs are statistically self-similar i.i.d. processes, which exhibit long-term

dependence. Despite their nonstationarity, their power spectrum is de…ned. It shows power decay:

FBMs exhibit 1
! -type spectral behavior over wide ranges of radian frequencies !. Realizations of

FBMs are almost everywhere singular, with the same uniform ®L-Lipschitz regularity at all points.

Because of the singularity structure and …niteness of the FX data, Fourier analysis, even of the

Gabor-windowed kind, cannot be used to detect the precise timing of the non-stationarities and

self-similarities. Instead, wavelet multiresolution analysis appears to be the relevant analysis tool.

Wavelet multiresolution analysis can be applied to data sets of any …nite length of discontinuous

and singular observations.

1.3 Organization of the Paper

This paper is organized as follows. In Section 2 we review the relevant literature not yet reviewed

in Los (1999, 2000a and b), which we organize around three relevant questions for FX market

research:

(1) What distributions of high frequency FX rate increments are produced by the FX markets?
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Are they linear or nonlinear, Gaussian or non-Gaussian?

(2) What is the degree of stationarity of these FX increments?

(2) What is the degree of their temporal, long term, dependence?

. This is followed by a tabular and graphical presentation of the data characteristics of the

high frequency FX rate increments in Section 3 , as well as a detailed and rather pedagogical

discussion of the proposed analytic methodology in Section 4. Subsequently, analyzing the data

with the new tools, we obtain three major results in Section 5:

1. The non-Japanese Asian FX markets show evidence of a non-linear, non-Gaussian FX

increments with occasional persistence, because of infrequent trading and prevalent illiquidity.

2. Some FX increments are stationary, others are non-stationary.

3. Virtually all FX increments under investigation are anti-persistent, except that of the

Taiwan dollar. The fast-trading Japanese Yen and Deutschemark anchor currency markets are

ultra-e¢cient, in the sense that they are invariant anti-persistent.

These results are summarized in Table 3 in Section 5 and discussed and interpreted in great

detail FX market . This is followed by conclusions and suggestions for future research.

2 LITERATURE REVIEW

Numerous anomalies reported in the …nance literature contradict the random walk model of Bache-

lier (1900). The geometric Brownian motion, assumes stationarity and independence of the serial

increments of rates, and allows only positive prices. But such Brownian motion is a poor descrip-

tion of the price behavior of …nancial instruments, since empirical FX increment series, display

skewness and high kurtosis, features not explained by the Wiener processes driving Brownian

motion. Goodhart and Figlioli (1991) note that increasing the sample size and the frequency of

observations tends to reduces the two higher moments. But Boothe and Glassman (1987) reject

any single stable distribution. Most researchers now accept that FX rates have mixed distributions

that may vary with time (Giovanni and Jorin, 1989) and that exhibit some form of scaling law
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(Müller, et al.,1990).

Thus FX rate increments are not Wiener processes (Feinstone, 1987), nor are FX rates Markov

processes (Müller et al. 1990). The FX rates substantial heteroskedasticity and are non-stationary

in, at least, the …rst four moments (Hsieh, 1989). Such non-linear processes could be caused by

time-varying variance or by variable memory processes (Attansio, 1991). Therefore, Engle at al.

(1990), Baillie and Bollerslev (1989a & b, 1991) and Diebold and Nerlove (1989) propose that FX

series are conditional expectation (GARCH) processes. However, this paper shows clear evidence

of mixed serial and long term dependent processes and conditional expectation processes do not

foot the empirical observations (Peters, 1994).

Ashley et. al. (1989) and Meese and Rose (1991) point out that …nancial time series reveal

a non-linear structure. Hamilton (1989) attributes this to the non-linear dynamic structures

generating the data, while Antoniou and Holmes (1997) attribute it more speci…cally to thin

trading.8 This paper corroborates the nonlinearity, non-Gaussianity and the thin trading of FX

rate generating processes in Asian emerging markets.

Anderson and Bollerslev (1997), as well as Müller et al. (1990, 1998), clearly demonstrate the

presence of long term dependence and heavy tailed distributions in high frequency …nancial data.

The presence of long term dependence can be quanti…ed by the Hurst exponent for a limited range

of values. Müller et al. (1990) prove that scaling of the variance of the increments by a Hurst

exponent of 0:5 (= square root scaling) leads to mispricing. This seriously questions the validity

of the currently popular dynamic pricing models (e.g., in Du¢e, 1996), which linearly scale the

risk (measured by the variance ¾2
") from other time periods. It is important to note that fractality

in FX rates corresponds primarily to scaling laws de…ned in the time domain, as shown by Müller

et al. (1990). This paper shows that the Hurst exponent is below 0:5 for FX rates.

This latest scienti…c evidence leads to the following speci…c research question, …rst raised

by Mandelbrot (1963, 1966, 1971) and, more recently, by Peters (1994): is the Fractal Market

8 These two arguments may amount to the same!
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Hypothesis (FMH), based on the Fractal Brownian Motion (FBM) a viable alternative to the E¢-

cient Market Hypothesis (EMH), based on Fama’s martingale theory, in particular, the geometric

Brownian motion, which is now clearly rejected by empirical data? Cheung (1993) and Batten et

al. (1999) show additional and very convincing evidence of fractal distributions in FX markets.

This paper uses a more sophisticated methodology and comes to very similar, but more detailed

conclusions for Asian FX markets that are generally considered ine¢cient.

In the past decade, there has emerged a strong interest in computing wavelet multiresolution

of …nancial data. Wavelet transforms can pertinently capture the time-varying spectral decompo-

sition of non-stationary signals. They can also identify the spatial inhomogeneities (the trend and

the structural shifts) which are important common phenomena in …nancial pricing series (Jorion,

1988) and they can deal with singularities and discontinuities. Ramsey and Lampart (1998a & b)

have computed wavelet multiresolutions of various well-known macroeconomic data series. Ram-

sey et al. (1995) and Ramsey and Zhang (1997) use wavelets and scalograms to demonstrate the

robust evidence of self-similarity …nancial time series.

3 DATA CHARACTERISTICS

Indicative minute-by-minute FX quotes Deutschemark (DEM) and of eight Asian currencies,

namely Hong Kong dollar (HKD), Indonesian rupiah (IDR), Japanese Yen (JPY), Malaysian ring-

git (MYR), Philippine peso (PHP), Singapore dollar (SGD), Thai baht (THB), and Taiwanese

dollar (TWD), versus the American dollar (USD) numéraire, were collected during 1997 from

Dow Jones Telerate, in the Simulated Trading Room of Nanyang Technological University, from

January 1 through December 31, 1997, with the exception of …ve days in October, 1997.9 How-

ever, in this paper we use only four focused months of data from this unique data set. There are

30 £ 24 £ 60 = 43; 200 minute-by-minute observations per 30-day month.

Unfortunately, only indicative quotes could be collected. Foster et al. (1993) and Evans (1997)

9 Due to a technical disruption in the NTU on-campus Simulated Trading Room, there was an unfortunate lapse
of data availability from 22 to 31 October 1997, missing 5 days of trading.
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claim that there is little or no evidence of a relationship between volume (= size of the transactions)

and volatility (Demos and Goodhart, 1992), in contrast to Bollerslev and Domowitz (1993) and

Bollerslev and Melvin (1994), while maintaining that the density of the transactions is a better

indicator of their volatility. That claim prefaces our conclusion regarding the importance of trading

frequency. Since we had no volume data, we could not further investigate this relationship between

trading frequency and volume, which may be important for forecasting (Engle and Russell, 1997).

These high frequency FX rates, coming at irregular time intervals, were made regular by

retaining the …rst FX quote within each minute interval and by repeating the same value for the

minutes showing no transaction, thereby creating zero increments for those time intervals. Thus

the FX rates remain unchanged from the last transaction until there is a new nonzero increment.

Such time regularization does not introduce additional volatility, since it does not change the

increments, although it might increase the number of transactions and therefore alter somewhat

the estimates of the third and fourth moments, a problem called aliasing by signal processing

engineers. Aware of these possible small distortions, time regularization of data, by turning them

into a step function, has the advantage that one can examine the data more clearly using wavelets

(Ogden, 1997).10

This paper uses the mid of the bid-ask spread of these FX quotes, considering that these are

vary mostly parallel in the FX markets (Bessembinder, 1994). Initially tick rates were used, but

they were found to be too voluminous to work with within the time constraints of this study and

we settled for a standardized one minute time interval ¢t. There are still very few studies focusing

on Asia-Paci…c currencies. However the recent …nancial turmoil in Asia clearly calls for more and

better analysis of the microstructures and trading patterns in Asian FX rates. The German FX

rates, deemed a priori to be more e¢cient, are examined for comparison.

According to the FX surveys of the Bank of International Settlement (BIS) of 1995 and 1998,

10 In the next paper, we’ll analyze tick-by-tick transaction data directly, when we compute singularity spectra
directly.
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the DEM and JPY are heavily traded currency pairs, or anchor currencies. In addition, only

Singapore FX activity and Hong Kong were signi…cant. Even in these markets it was mostly the

three anchor currencies (USD, DEM, JPY) that were traded. In general, the BIS surveys clearly

show that most Asian currencies lack liquidity.

However, there some changes in trading occurred after the Asian Financial Crisis and the intro-

duction of the Euro in January 1999. For most Asian currencies, the trading fell drastically after

the midsummer 1997 currency break, due to capital restrictions, e.g., in Malaysia in September

1997, and drying up of business due to negative market sentiments. It is noteworthy to point

out that the trading for PHP increased after the currency break. The PHP was the most thinly

traded with barely more than 100 transactions per month before the break. Thus any …ndings

pertaining to PHP should be treated with great caution.

Of course, the DEM shows less trading activity from the last quarter of 1998 on, as it is being

replaced by the Euro. A graph on page 81 of The Economist of September 16th, 2000, shows that

since 1985 until the present the uno¢cial, and since January 1, 1999, the o¢cial Euro has traded

virtually parallel with the Deutschemark, with a very gradual narrowing of the value gap between

the two.

3.1 Distributional Statistics

FX rates have two dimensions: a frequency, or distributional, dimension and a time dimension.

These two dimensions are presented consecutively. From Table 1, it is evident that the DEM and

JPY, during the sample period, were generally less volatile than other Asian currencies, regardless

of the onset of the Asian Financial Crisis. Generally the other Asian currencies, especially the

THB and IDR, experienced higher volatility after the ‡oating of the THB on July 2, 1997.

[TABLE 1 about here]

All increments reveal high kurtosis and hence they are not Gaussian processes, even after

detrending. Table 1 shows that DEM, JPY and HKD are closer to Gaussianity than other Asian
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currencies. As expected Gaussianity varied from month to month. Nevertheless a zero mean

Gaussian process may still be a fair approximation for most currencies, when ignoring long term

dependencies, with the exception of IDR in May 1997. The reason for the extraordinary kurtosis

of IDR for the month of May 1997 is that in that month the Indonesian rupiah hardly traded at

all. The IDR increments in May were zero most of the time, interspersed with a few very large

increments.

We performed also higher-order spectral analysis tests for both Gaussianity and linearity using

the higher-order cumulants of the series. If a time series is Gaussian, its third and subsequent

cumulants will be zero. In the Gaussianity tests, the null hypothesis is that the data exhibits

a zero bispectrum. Though the estimates will not be exactly zero, the estimated quantities are

statistically tested for signi…cantly di¤erent from zero. For the linearity test, the inter-quartile

range of the estimated bicoherence (B) is computed. The absolute value of the bicoherence is a

constant if the data is linear, non-Gaussian and one determines whether the observed variation of

B is statistically signi…cant.

[TABLE 2 about here]

From the tests in Table 2, we …nd that most FX increments, with the exception of the DEM,

are non-Gaussian although about half are deemed linear. However, the linearity varies among

the currencies and according to time: July (after the break) shows more non-linearity than June

(before the break). THB exhibits clearly non-Gaussianity and non-linearity. IDR, MYR, PHP,

TWD show an abrupt change in the tests after July 2, 1997: they are non-linear. Gaussianity is

rejected, in most cases, due to the exceptionally high kurtosis.

Fig. 1. shows the histogram of JPY June 1997 and a normal distribution is …tted. It clearly

visualizes that Gaussianity is violated due to high kurtosis. There are more small increments

(noise trading), more large increments (occasional outlying FX rate changes), and less moderately

sized increments than the normal distribution suggests, even in a very e¢cient anchor currency
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market as the Japanese Yen. The histograms of the Deutschemark is almost identical.11

[FIGURE 1 about here]

3.2 Power Spectra and Spectrograms

Spectral representation decomposes a time series into a sum of sinusoidal components with Fourier

coe¢cients. A plot of a power spectrum gives the squared Fourier coe¢cients versus trading

frequency !, where is the contribution to the total power from the term in the Fourier series with

trading frequency cycles per minute.

Initially, we computed the power spectral densities of the original FX series for June and

July 1997. All FX rates very clearly show exponential decay over their frequency ranges. As

the power spectra for the JPY in Fig. 2 show, most power of the original FX rates resides in

the low frequencies (e.g., FX rates have unit roots, in addition to fractional roots) and decays

exponentially. In contrast, the power of the FX increments increases with the frequency: the

highest frequencies have most power.12 But such power spectra don’t tell the whole story, since

they assume stationarity in the FX series and ignore time dependence.

[FIGURE 2 about here]

Because of the combined frequency and time dimensions of FX rates, and the potential for

non-stationarities, we generate spectrograms for June and July 1997, using Gabor’s windowed

Fourier Transforms, with a time-localization Hanning window. By moving this window along the

time dimension of the FX rate increments, smooth variations of the spectrum as a function of

time can be visualized.

We also compute a spectrogram of white noise with mean zero and a constant variance similar

to that of DEM June 1997 (i.e., with the same size of variance of 1:6e¡05) to provide a comparison

11 The histograms of all investigated currencies are available upon request.

12 All power spectral density plots are available upon request. These plots show the frequencies measured along
the horizontal axis from low at the left to high at the right, and standardized from 0 to 1. The magnitude is
measured along the vertical axis.
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standard (Fig. 3).13 From the spectrogram of the FX increments in the left panel of Fig. 3, it

is evident that the FX increments are clearly not white noise. Most power of the FX increments

is present mostly in the higher frequencies at the top of the spectrograms and it is not evenly

distributed over time. For the white noise in the right panel of Fig. 3, power is constant over all

frequencies and all times.

[FIGURE 3 about here]

From the spectrograms, it is evident that the FX increments, and therefore the various FX

pricing processes, are very di¤erent from one other.14 However the spectrograms of DEM and

JPY do not di¤er much from each other in June 1997. In July the JPY displays less power in

the lower frequencies as compared to JPY in June 1997. However, the DEM exhibits more power

in the lower frequencies for July 1997. As for the HKD, there is more power in the later half of

June 1997. Power is concentrated in the higher frequencies for HKD July 1997. The SGD does

not di¤er much in the observed periods. In July 1997, the IDR, MYR, PHP and TWD reveal the

change in frequencies, which indicate the non-stationarity of the increments. The THB reveals a

change in trading frequencies from June 1997 to July 1997.

However, we could only determine that the FX increments are not white noise. Whether they

represent anti-persistent or persistent noise cannot be determined from spectrograms. For an

unambiguous answer to that question we needed to apply wavelet multiresolution analysis, which

is a time-scale analysis. Time-scale analysis translates frequency into scales (scale = 1=!).

4 ANALYTIC METHODOLOGY

Since most …nancial economists are unfamiliar with the mathematical apparatus of Lipschitz

irregularity and Hurst exponents, fractal Brownian motion (FBM), and wavelet multiresolution

analysis (MRA), this section provides a concise pedagogical review of these analytical concepts.

13 The color coding is as follows: low power is coded by blue; high power is coded by red; and intermediate power
is yellow. The frequencies are standardized between 0 and 1, 0 being low frequencies and close to 1 being high
frequencies..

14 The spectrograms of all FX increments are available upon request.
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4.1 Measurement of Lipschitz Irregularity

Our FX increments are locally very irregular: they are continuous time series, but their …rst

derivatives exists almost nowhere, i.e., their increments are singularities almost everywhere. But

are they Wiener increments? We need a precise measurement apparatus to empirically measure

their degree of irregularity or ”randomness.” A time series is called regular if it can be locally

approximated by a polynomial. If not, it is called irregular.

Of course, there are degrees of irregularity, from highly irregular to highly regular. These

degrees of irregularity can be measured by the Lipschitz regularity exponent ®L. If the time

series x(t) has a singularity at time ¿ , i.e., if it is not di¤erentiable at ¿ , the Lipschitz regularity

exponent ®L characterizes this singular behavior at time ¿ . When we measure the Lipschitz ®L

of a singularity, we can still assess how irregular, or random, such a singularity is. In other words,

we no longer have to assume the degree of randomness of a time series, as done by conventional

probability based statistics. We measure its randomness by computing its Lipschitz ®L!

The Lipschitz regularity exponent ®L is based on the approximation error of the familiar Taylor

expansion formula, which relates the di¤erentiability of the continuous time series x(t) to a local

polynomial approximation.

De…nition 2 Suppose that x(t) is d times di¤erentiable in the bounded interval [¿ ¡ ²; ¿ + ²] for
small ² > 0. Then we can expand x(t) as follows:

x(t) =

"
d¡1X

k=0

x(k)(¿)
k!

(t ¡ ¿)k

#
+ ex¿ (t)

= bx¿ (t) + ex¿ (t) (5)

where x(k)(t) is the k-th derivative of the data series x(t). The bx¿ (t) is the exact Taylor polynomial
expansion, or model, of x(t) at time ¿ and ex¿ (t) = x(t) ¡ bx¿ (t) is the approximation error, or
the inexact, irregular, random, unpredictable part of the data.15 The approximation error ex¿ (t)
satis…es the inequality

ex¿ (t) · sup
u2[¿¡²;¿+²]

¯̄
¯x(d)(u)

¯̄
¯ jt ¡ ¿ jd

m!
for all t 2 [¿ ¡ ²; ¿ + ²] (6)

15 Statisticians often call the approximation error ²¿ (t) the residual. It is clear that the character of this residual
depends on the number of di¤erentiation terms included in the linear Taylor expansion. Therefore, one cannot
ascribe inherent characteristics like ”normally distributiveness ” to this residual, since such characteristics are not
sui generis. Still, this is what statisticians conventionally do.
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The dth¡order di¤erentiability of x(t) in the neighborhood of ¿ yields an upper bound on the

approximation error ex¿ (t), when t tends to ¿ , i.e., when the time interval ¢¿ t = t ¡ ¿ becomes

smaller. The Lipschitz regularity re…nes this upper bound with the non-integer di¤erence order d.

De…nition 3 A time series x(t) is pointwise ®L¡Lipschitz regular, with regularity exponent
®L ¸ 0 at point ¿ , if there exists a K > 0, and a polynomial bx¿ of degree d = b®Lc such that for
all t 2 R, the absolute value of the error

jex¿ (t)j = jx(t) ¡ bx¿ (t)j · K jt ¡ ¿ jd = K jt ¡ ¿ j®L (7)

or, equivalently, if

jx(t) ¡ bx¿ (t)j¡®L · K jt ¡ ¿ j (8)

De…nition 4 A time series x(t) is uniformly ®L¡Lipschitz regular over the interval [a; b] if
it is pointwise Lipschitz ®L for all ¿ 2 [a; b], with a constant K that is independent of ¿ .

De…nition 5 The Lipschitz regularity exponent of x(t) at point ¿ or over the interval [a; b]
is the supremum of ®L such that x(t) is ®L¡Lipschitz (pointwise or uniformly).

This is a technical de…nition of (ir-)regularity, which requires additional explication. At each

time point ¿ , the polynomial bx¿ (t) is uniquely de…ned. If x(t) is d = b®Lc times continuously

di¤erentiable in the neighborhood of ¿ , then bx¿ (t) is the linear Taylor expansion of x(t) at ¿ . Thus

when ®L is an integer, the regularity at point ¿ is de…ned as usual, with ®L indicating the order of

di¤erentiability of x(t). When ®L is a fraction, let d be an integer such that d < ®L < d+1, then

x(t) has an ®L¡Lipschitz regularity at ¿ , if its derivative x(t)(d) of order d resembles jt ¡ ¿ j®L¡d

locally around point ¿ .

The degree of regularity of x(t) in a domain is that of its least regular point. The greater ®L,

the more regular the time series x(t). The smaller ®L, the more irregular the time series x(t).

There exist multifractal time series x(t) with non-isolated singularities, where x(t) has a di¤erent

Lipschitz ®L at each point ¿ . In contrast, uniform Lipschitz ®L exponents provide a more global

measurement of irregularity, which applies to a whole interval.16 If x(t) is uniformly Lipschitz

®L > d, where d is an integer, then one can verify that x(t) is d times continuously di¤erentiable

in this neighborhood.

16 At this moment it is an open empirical research question if FX markets are pointwise singular or uniformly
singular. In this paper we maintain that FX series are uniform singular, although our empirical evidence appears
to suggests that they are pointwise singular.
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What values of the Lipschitz exponent ®L should one expect for the singularities in the series

of FX increments? If the Lipschitz exponent is a fraction, 0 · ®L < 1, then bx¿ (t) = x(¿) and the

Lipschitz condition simpli…es to:

jx(t) ¡ x(¿)j · K jt ¡ ¿ j®L for all t 2 R (9)

A time series x(t) that is bounded, but discontinuous at time ¿ , has Lipschitz exponent ®L = 0

at ¿ . If the Lipschitz irregularity is 0 < ®L < 1 at ¿ , then x(t) is continuous, but not di¤erentiable

at ¿ and ®L characterizes this particular singularity type. Since for this paper we have regularized

the FX series under examination, i.e., we have made the FX series continuous, we want to compute

the degree of their irregularity by computing the uniform Lipschitz exponent ®L, which we expect

to be a fraction.

4.2 Fractional Brownian Motion

But what degree of polynomial should we use as approximation model for the FX rates? The

self-similarity, or scaling property of fractional Brownian motion (FBM) model appears to …t the

data characteristics described in Sections 1 and 3, although more general models are possible.

Many researchers have found unit root phenomena in FX rates, thus a …rst-order di¤erentiation

is corroborated and we can focus on the fractional irregular FX increments.

As Peters (1994) suggests, optimal consumption, savings and portfolio investment decisions

may be extremely sensitive to investment horizons ¿ , when the investment returns are long-term

dependent. Problems may arise with the risk-neutral valuation of primary and derivative securities

(such as options and futures) based on Fama’s (1970, 1991) martingale probabilities. As we noted

in Section 1. the continuous-time stochastic processes most commonly employed in such valuation

models, e.g., geometric Brownian motions, are inconsistent with long-term dependencies. But

why?

With the empirical characteristics of FX rates described in Section 2, traditional tests are no

longer valid, since the usual forms of statistical inference do not apply to time series exhibiting
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long term persistence (Lo & MacKinlay, 1999). Mandelbrot (1971) was the …rst to consider

the implications of such long term dependence in asset returns for the martingale de…nition of

…nancial market e¢ciency. His seminal research has recently acquired greater attention, because

of the apparent non-periodic cyclicity of …nancial crises, which occur with much greater frequency

and impact than normally expected. The question arises: when such periods of …nancial crises and

…nancial turbulence, which intersperse periods of relative trading tranquility, are unpredictable,

can at least their volatility (risk) be modeled and thus valued? In other words, can the long term

dependence of the …nancial market risk be modeled for valuation purposes?

The FBM is a non-stationary process with an in…nite time span of temporal dependence. The

FBM was originally proposed by Mandelbrot and Van Ness (1968). Hosking (1981) encompassed

the FBM by his Autoregressive Fractionally Integrated Moving Average, or ARFIMA(p; d; q)

model, with d = a real fraction, where long-term, low-frequency, long memory processes are

superimposed on short-term or high frequency e¤ects. These fractionally di¤erenced, stochastic

processes are not strong-mixing. They are non-stationary, but have a power spectrum with a

power decay. Their autocorrelation functions (ACFs) decay at much slower rates than those of

the serial, weakly dependent processes.

De…nition 6 A Fractionally Di¤erenced Time Series is de…ned by

(1 ¡ L)dX(t) = "(t) (10)

where L is the lag operator and d > 0 is a real fraction 2 R.

As Lo & MacKinlay (1999) show, we can view this process as an in…nite-order moving-average

(MA) process, since

X(t) = (1 ¡ L)¡d"(t) (11)

=
1X

¿=0

b(¿)L¿"(t); with "(t) » i:i:d:(0; ¾2
") (12)

i.e., a weighted summation of white noise "(t), where the MA coe¢cients b(¿) can be expressed
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in terms of the gamma function17

b(¿) = (¡1)¿

0
BB@

¡d

¿

1
CCA

=
¡(¿ + d)

¡(d)¡(¿ + 1)
(13)

Thus, we have arrived at a useful de…nition of a long-term dependent random or irregular

process.

De…nition 7 A long-term dependent random or irregular process is a process with an
autocovariance function (ACF) °(¿), such that

° (¿) = E fx(t)x(t ¡ ¿)g

=
Z 1

¡1
x(t)x(t ¡ ¿)

=
½

¿¸L(¿) for ¸ 2 [¡1; 0)
¡¿¸L(¿) for ¸ 2 (¡2;¡1]

¾
(14)

as the time interval lengthens, ¿ ! 1, where L(¿) is any slowly varying function at in…nity, e.g.,
a constant.

The ACF of Hosking’s (1981) fractionally-di¤erenced time series, when "(t) » i:i:d:(0; ¾2
"), is

given by:

° (¿) =
¾2

"(¡1)¿ (¡2d)!
(¿ ¡ d)!(¡¿ ¡ d)!

=
¾2

"¡(1 ¡ 2d)¡(¿ + d)
¡(d)¡(1 ¡ d)¡(¿ + 1 ¡ d)

» ¾2
"¿2d¡1 as ¿ ! 1 (15)

where d 2 (¡1
2 ; 1

2). Thus, the dependence exponent ¸ = 2d¡1 and the slowly varying function

is the constant white noise variance ¾2
" .

This ACF is slowly decaying. When d # ¡1
2 , the white noise "(t) is fractionally di¤erentiated,

and the ACF decays faster than hyperbolically, °(¿) ! ¾2
"¿¡2, and the series of increments

17 The gamma function has the property

¡(u+ 1) = u¡u = u! for u a positive integer

since ¡(1) = 1. Because of invertibility, these processes can be equivalently represented by fractional AR processes.
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is anti-persistent. When d = 0, we have white noise "(t) and the ACF decays hyperbolically,

° (¿) ! ¾2
"¿¡1. When d " 1

2 , the white noise "(t) is fractionally integrated, the ACF decays slower

than hyperbolically, °(¿) ! ¾2
" , a constant, and the series of increments is persistent.

De…nition 8 Fractional Brownian motion (FBM) is the fractionally di¤erenced series of
logarithmic increments x(t) = ln X(t)

X(t¡1) :

(1 ¡ L)dx(t) = "(t); d 2 (¡0:5; 0:5), with "(t) » i:i:d:(0; ¾2
") (16)

where x(t) = lnX(t) ¡ lnX(t ¡ 1) = (1 ¡ L) lnX(t). Or, equivalently the FBM is the fractionally
integrated white noise, since

x(t) = (1 ¡ L)¡d"(t); d 2 (¡0:5; 0:5), with "(t) » i:i:d:(0; ¾2
") (17)

Example 9 The standard geometric Brownian motion (GBM) is the special case of fractional
Brownian Motion, when d = 1, so that

¢x(t) = (1 ¡ L)x(t) = "(t) (18)

or x(t) = (1 ¡ L)¡1"(t), with "(t) » i:i:d:(0; ¾2
") (19)

Its ACF is

° (¿) » ¾2
"¿¡1 (20)

which is proportional to the variance of the i:i:d: innovations "(t): ¾2
" . Thus the GBM is once

integrated white noise. The GBM is self-similarly scaling. Its increments are white noise, i.e.,
they exhibit a ‡at, constant spectral density: P"(!) = ¾2

" :

4.3 Time-Scale Analysis

The potential occurrence of long-term dependence in FX increments requires an analysis not

only of their behavior over time, but also of their frequencies and amplitudes, or analysis at

various resolution scales. Time-scale analysis is thus required. Fourier analysis, which assumes

stationarity, can’t be applied, due to the potential nonstationarity of the FX rates. Windowed

Fourier analysis, as computed in Section 2, is imprecise since that ”blurs ”or :smears ” information

between windows. Therefore, it can’t properly detect discontinuities. and singularities.

To measure long-term dependence and to allow for discontinuities. and singularities in the FX

series, Mandelbrot (1972) suggests to use Hurst’s rescaled range, or R/S statistic, which Hurst
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(1951) developed for his study of the Nile river ‡ows. Hurst quanti…ed and modeled the non-

periodic cyclicities in the (sometimes drastic) changes in the Nile’s ‡ood behavior to compute

the required height for the Aswan dam, a substantial hydrological risk management problem.

As we will see, the Hurst statistic leads to the critical Hurst exponent, which can be used to

quantitatively characterize long-term dependence behavior.

4.3.1 Hurst Range-Scale Statistic

De…nition 10 Consider a sequence of investment returns fx(t)g and its empirical mean (= …rst
cumulant = …rst moment)

c1 = m1 =
1
T

TX

t=1

x(t) (21)

and its empirical variance (= second cumulant)

c2 = m2 ¡ m2
1 =

1
T

TX

t=1

(x(t) ¡ m1)2 (22)

where m2 is the second moment, then the Hurst Range-Scale statistic is

RSH(T ) ´ 1
c0:5
2

"
Max1·¿·T

¿X

t=1

(x(t) ¡ m1) ¡ Min1·¿·T

¿X

t=1

(x(t) ¡ m1)

#
¸ 0 (23)

The …rst term in brackets is the maximum (over interval ¿) of the partial sums of the …rst ¿

deviations of x(t) from the mean. Since the sum of all ¿ deviations of x(t) from their mean is zero,

this maximum is always nonnegative. The second term is the minimum (over interval ¿) of this

same sequence of partial sums; hence it is always non-positive. The di¤erence between these two

quantities, called the ”range,” is thus always nonnegative. This range is scaled by the empirical

standard deviation for the whole data set
p

c2.

4.3.2 Hurst Exponent

The Hurst statistic delivers the Hurst exponent as a fractal dimension coe¢cient, as follows.

De…nition 11 The Hurst exponent H is de…ned as

0 < H = lim
¿!1

lnRSH(¿)
ln ¿

< 1 (24)
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For serially, or short term, dependent time series, such as strong-mixing processes, H ! 0:5

when ¿ ! 1, but for globally, or long-term dependent time series H ! 0:5+d. In fact, Mandelbrot

and Van Ness ’ (1968) and Hosking ’s (1981) fractionally - di¤erenced time - series satis…es the

equality H = 0:5 + d. Mandelbrot (1972) suggests to plot RSH(¿) against ln ¿ to compute H

directly from the plot slope.

Example 12 The annual water ‡ow of the river Nile in Egypt shows H = 0:9, a very persistent
‡ow, with occasional large ‡oods. For the rivers Saint Lawrence in Canada, Colorado in the USA,
and the Loire in France, 0:5 < H < 0:9. The river Rhine in Germany is exceptional with H = 0:5,
a ‡ow like a random walk, with almost never a large ‡ood (Mandelbrot and Wallis, 1969).

Example 13 Daily observations of the Dow Jones Industrial Average (DJIA), from January
2, 1888 through December 31, 1991, show that the overall Hurst exponent H = 0:555. In the
1880-1916 period H = 0:585; in the 1917-1953 period H = 0:565; and in the 1954-1990 period
H = 0:574 (Peters, 1994, Chapters 8 and 9). That is more persistent than the H = 0:5 random
walk postulated for stock prices by Granger and Morgenstern (1963) and Granger (1966). By
measuring stock price increments to be close to Gaussian, Granger and Morgenstern inferred that
such increments had thus a typical spectral shape for …nancial market prices. However, their
inference was erroneous, because it was biased by their thinking in term of Gaussian increments
"(t) » N(0; ¾2

"). There is nothing typical about H = 0:5 for …nancial data series.

The ACF of the FBM can now be written in terms of the Hurst exponent, since we can now

substitute d = H ¡ 0:5:

° (¿) » ¾2
"¿2H¡2 as ¿ ! 1 (25)

where H 2 (0; 1), which shows the FBM to be non-stationary, but time-scaling, since its second

moment is a power law of the time lag ¿ . The corresponding average power spectral density of

the FBM is:

P (!) = ¾2
"!¡(2H+1) (26)

for frequency !.

The FBM is statistically self-similar in the sense that for any scaling coe¢cient a > 0, and

with the convention that x(0) = 0,

x(a¿) d= aHx(¿) (27)
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where d= means equality in distribution. This means, in frequency terms, that the average power

spectrum of the FBM is frequency-scaling:

F [°(a¿ ] =
1

jaj2
P

³!
a

´

=
¾2

"

jaj2
³!

a

´¡(2H+1)

= a2H¡1¾2
"!¡(2H+1) (28)

where F is the Fourier Transform of the ACF of the scaled time series.

Thus, any portion of a given FBM can be viewed as a scaled version of a larger part of the

same process, both in terms of time and frequency. Consequently, an individual realization of

an FBM is a fractal time series and has a unique fractal dimension D (Mandelbrot, 1966). This

fractal dimension and the Hurst exponent H are related as follows

D = 2 ¡ H (29)

In summary, the FBM has the features that we seek in an empirical model for FX rates:

(1) it exhibits nonstationarity, and allows for stationarity as a special case;

(2) it exhibits self-similarity or time-scale dependence;

Thus, it encompasses integer, serial (ARIMA), and fractional, long-term dependent process

models. Table 4 in the Appendix summarizes all mathematical relations between the various

Hölder exponents for the increments, e.g., between the di¤erence order d, the Hurst exponent H

and the Lipschitz regularity exponent ®L, and some examples of their usefulness.

4.4 Wavelet Multiresolution Analysis

Flandrin (1992) and Mallat (1999) examine the FBM’s behavior relative to di¤erent observation

time and amplitude scales. A second-order moment analysis of the wavelet coe¢cients of the FBM

reveals a stationary structure at each scale and a power-law behavior of the wavelet coe¢cient’s

variance, from which the average Lipschitz exponent ®L of the FBM can be estimated.
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Decomposition of a time series into various resolutions through an iteration process is termed

a multiresolution. At di¤erent resolutions, the details of the time series generally characterize

di¤erent physical structures of the data. Nonparametric wavelet multiresolution is superior to the

conventional parametric statistical tests that have been applied to time series analysis, because

there is no pre-assumption about the distribution or the processes generating the data, although

it allows an easy incorporation of a de…nite modeling structure, when so required.

Mallat (1989) shows that one can completely decompose any time series x(t) in terms of

approximations, provided by so-called scaling functions, and details, provided by wavelets. The

approximations are the high-scale, low-frequency components of the time series. The details are

the low-scale, high-frequency components. He formulates these concepts of scale and resolution

into mathematical requirements for multiresolution analysis (MRA), by requiring a nesting of

spanned spaces Vj of di¤erent levels of resolution, as follows:

Vj+1 ½ Vj for all j 2 Z (30)

with

V1 = f0g and V¡1 = L2 (31)

Thus the linear space that contains low resolution will also contain the linear spaces of higher

resolutions. This means that at a zero resolution, the only …nite energy time series is 0, while

at the in…nite resolution, all …nite energy time series are completely reproduced in a quadratic

measure sense.18

This decomposition process can be iterated, with successive approximations being decomposed

in turn, so that one time series x(t) is broken down in many lower-resolution components. Since the

analysis process is iterative, in theory it can be continued inde…nitely. In reality, the decomposition

can proceed only until the individual details consist of a single observation. In our case, that is a

one-minute FX increment.

18 That is completely and not approximately. No energy = information is discarded! This is important for
accurate forecasting (Aussem et al., 1998).
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The following discussion of Mallat’s MRA is indebted to Jaweth and Sweldens (1994), Bur-

rus, Gopinath and Guo (1998), Frazier (1999), and Mallat (1999). Mallat (1988) proves that,

using a combination of these scaling functions 'n(t) and wavelets Ãj;n(t), any time series can be

represented by the following decomposition equation.

De…nition 14 A Wavelet Multiresolution Analysis (MRA) of any time series x(t) is pro-
vided by:

x(t) =
+1X

n=¡1
cn'n(t) +

+1X

j=0

+1X

n=¡1
dj;nÃj;n(t) (32)

where the approximation is provided by the one-dimensional linear combination of the scaling
functions

+1X

n=¡1
cn'n(t) =

+1X

n=¡1
cn'(t ¡ n) (33)

and the details by the two-dimensional linear combination of the dyadic wavelets

+1X

j=0

+1X

n=¡1
dj;nÃj;n(t) =

+1X

j=0

+1X

n=¡1
dj;nÃ(2¡jt ¡ n) (34)

The discrete scaling coe¢cients are computed by the correlation

cn = hx(t)Án(t)i =
Z +1

¡1
x(t)Án(t)dt, with n 2 Z (35)

The discrete wavelet coe¢cients are computed by the correlation

dj;n = hx(t)Ãj;n(t)i =
Z +1

¡1
x(t)Ãj;n(t)dt, with with j; n 2 Z (36)

Remark 15 Thus the structure of Mallat’s MRA is isomorph to that of a discrete form of Brown-
ian motion, except that the resolution of the details, or irregularity component, has two dimensions,
time and scale, instead of one, time.

Strang (1989) shows that Mallat’s de…nition of an MRA implies that the scaling function '(t)

can be expressed in terms of an expansion, i.e., a weighted sum of shifted '(2t) as follows.

De…nition 16 The MRA (dilation, or scaling) equation is

'(t) =
+1X

n=¡1
h(n)

p
2'(2t ¡ n), for any n 2 Z (37)

where the coe¢cients h(n) are real or complex numbers, called the scaling function coe¢cients (or
the scaling …lter or the scaling vector), and the scaling factor 1=

p
2 maintains the norm of the

scaling function.
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Remark 17 An equivalent way to present the same MRA equation is

1p
2
'(

t
2
) =

+1X

n=¡1
h(n)'(t ¡ n), for any n 2 Z (38)

It’s Fourier Transform is

©(!) =
1p
2
H(

!
2

)©(
!
2

) (39)

where H(!) is the transfer function, i.e., the Fourier Transform of h(n).

De…nition 18 The MRA equation for wavelets is the weighted sum of shifted scaling func-
tions

Ã(t) =
+1X

n=¡1
h1(n)

p
2Á(2t ¡ n), n 2 Z (40)

for some set of wavelet generation coe¢cients h1(n), since the wavelets reside in the space spanned
by the next narrower scaling function, W0 ½ V1.

Remark 19 This MRA equation for wavelets can equivalently be presented as

1p
2
Ã(

t
2
) =

+1X

n=¡1
h1(n)Á(t ¡ n), n 2 Z (41)

Its Fourier transform is

ª(!) =
1p
2
H1

³!
2

´
©

³!
2

´
(42)

The speci…c MRA equations for scaling functions and wavelets used in this paper are the ones

for the very simple Haar scaling function and wavelet. These Haar functions are appropriate for

the regularized FX rate increments. The Haar MRAs with resolution scale up to j = 8, gave

the best synthesized series and therefore was chosen to plot the Wavelet-based scalograms. This

implies that we use resolutions up to scale level j = 23 = 8, so that we capture as largest features

of the FX increments: 28 = 256 minutes = 4:5 hour = ca. half-a-day trading intervals.

De…nition 20 The Haar scaling function is

'(t) =
½

1 if 0 · t < 1
0 otherwise

¾
(43)

and the Haar MRA equation for the scaling function is

'(t) = '(2t) + '(2t ¡ 1) (44)

with scaling function generation coe¢cients h(0) = h(1) = 1p
2

= 0:707 11 (rounded to …ve digits).
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De…nition 21 The Haar wavelet is de…ned by

Ãj;n(t)

8
<
:

= +1 if 0 · t < 0:5
= ¡1 if 0:5 · t < 1
= 0 otherwise

9
=
; (45)

The Haar MRA equation for wavelets is

Ã(t) = Á(2t) ¡ Á(2t ¡ 1) (46)

with wavelet generation coe¢cients h1(0) = ¡h1(1) = 1p
2

= 0:707 11:

Haar wavelets o¤er symmetry, orthogonality and compact support. This box function, de-

veloped in by Haar (1910), is simple to understand. The Haar basis takes advantage of the

self-similarity of the FBM, such that it reduces the bias of the variance progression. Setting the

wavelet coe¢cients to the …nest scale, they follow a nice variance progression per scale, and they

decay much faster than the discrete fractional Gaussian noise.

4.4.1 Scalograms

The wavelet analogy of the spectrogram is the scalogram, which is simply the time-scale presen-

tation of the squares of the discrete wavelet transform dj;n.

De…nition 22 A (discrete) scalogram is de…ned by

PW (j; n) = jdj;nj2 for all available j and n (47)

The scalogram basically represents the energy of the integrated series in the wavelet coe¢cients.

Wavelet coe¢cients that are below a given threshold value, jdj;nj < ², are eliminated by denoising.

This paper applies the universal thresholding method, where ² =
p

2 log n. The choice of …lter

size and the number of levels are important in denoising.

The scalograms of the increments are computed for the last week of June (24th to 30th June,

from Tuesday to Monday) and for the …rst week of July (1st to 7th July which is from Tuesday

to Monday = 10; 080 observations), to capture the FX data characteristics before and after the

currency break on July 2, 1997. The striking visual result is that the scalogram in Fig. 4 ex-
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hibits singularity spectra, as the increments of the step functions are singular.19 Fig. 4 shows

original white noise (Wiener increments) in its left panel and denoised white noise in its right

panel. Denoising allows better visualization of coe¢cients, as the remaining coe¢cients are more

pronounced in the denoised scalograms. Noise at the highest frequency (i.e., at the smallest scale)

is removed in the denoised scalograms.

[FIGURE 4 about here]

From the scalogram of the DEM increments in June 1997 in Fig. 5, it is again evident that

the FX increments are quite di¤erent from the white noise in Fig. 4, which has the same variance

as the DEM increments. When there is no trading activity, the scalogram displays that with red.

For example at the right side of the panels the large red region indicates the no trading weekend

(Saturday and Sunday). The left panel of Fig. 5 shows the original DEM increments, while the

right panel shows the denoised DEM increments. Notice how denoising increases the resolution

of the singularities. The DEM singularities show irregular time spacing - they show periods of

condensation and of rarefaction due to rapid trading and (very) slow trading periods. This is

not related to sharply de…ned trading periods, since the DEM is clearly traded 24 hours, …ve

days a week. This striking similarity of the times of trading in the scalograms is observed for all

currencies, a re‡ection of the institutional interconnections of the global FX markets.20

[FIGURE 5 about here]

But self-similarity of the FX increments is evident in the scalogram from the fact that the

energy levels appear to be almost the same at all resolution scales, i.e., at all trading frequencies

for the same singularities.21 Thus a scalogram visualizes simultaneously timing information and

scale (frequency) information, in a similar, but much more precise fashion than a spectrogram.

19 The color coding of the scalograms is exactly opposite that of the spectrograms in Section 3, and so is the
resolution scaling compared with the frequencies. Red in the scalograms indicates no energy and blue indicates
high energy, while yellow and green indicate moderate energy. The small resolution scales = high frequencies are
at the bottom, while the large resolution scales = low frequencies are at the bottom of the scalograms. The smallest
scale at the bottom represents the individual observations of the minute-by-minute FX rates.

20 All scalograms are available upon request.

21 This issue will become clear in Section 5, when we sompute the Hurst exponent values for 8 scale levels.
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This self-similarity is measured by the homogeneous Hurst exponent in Section 5.

The scalograms for the DEM increments for July 1997 in Fig. 6 (original and denoised) di¤er

in intensity from those in June 1997 in Fig. 5, indicating a higher trading intensity immediately

after the break in the Thai baht on July 2, 1997 in Fig. 6, than immediately before the break in

Fig. 5.

[FIGURE 6 about here]

This raises the important question: is the fractality of FX series induced by the trading times

(day and night sequence) or by the valuation process and can they be analytically separated?

The pricing of FX is usually executed in the form of standardized, …xed-sized ticks, say, of 1=8 =

0:125. However, the trading intervals vary and can be a fraction of whatever we choose as unit of

measurement of time (e.g., second, minute, hour, day, week, month or year). Thus the fractality

of the FX time series must reside in the varying time intervals between the trades and not in

the pricing of the trades. Consequently, when the Hurst exponent measures persistence (Cf.

Section 4.3), the fractality is dependent on its time denominator ln ¿ , than in its range numerator

lnRSH(¿), which is dependent on the time horizon ¿ .

The scalograms of most Asian currencies are similar, although with noticeably lower intensity

of activity and with much less trading activity. There are large regions of red = no trading

activity. Whatever trading activity there is in Asia (with the exception of the JPY, and, perhaps,

the SGD, it is less intense and spread much thinner over time and less representable by dense

Wiener increments than the anchor currencies JPY and DEM.

The denoised scalogram of Thai baht displays the sharp break on July 2, 1997 extremely well

very well, as seen in Fig.7, which is a 3-dimensional representation of the absolute value of the

wavelet coe¢cients, i.e., of the scalogram of the …rst FX trading week in July 1997.22 The

discontinuity in the Thai baht’s value is clearly represented by the energy spike of the wavelet

22 Visualization programs are di¢cult to make consistent. In Fig. 7 blue indicates here lower energy and red
high energy, with yellow and green moderate levels of energy.
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coe¢cients.

[FIGURE 7 about here]

4.4.2 Computing Hurst Exponents From Haar MRA

The uniform Lipschitz regularity exponent ®L, in particular, the homogeneous Hurst exponent

for the FBM, can be computed from the FX increments, using the wavelet detail coe¢cients dj;n

from Mallat’s MRA, i.e., from the scalogram (Cf. Wornell, 1993).

These Haar wavelet coe¢cients of the FBM have the following four properties, as proved by

Flandrin (1992):

(1) The wavelet coe¢cients are stationary in distribution:

dj;n
d= dj;0 for all n (48)

(2) The wavelet coe¢cients are Gaussian in the limit:

dj;n » N(0; V ar(dj;n)) (49)

(3) The wavelet coe¢cients are almost uncorrelated:

E fdi;ndj;mg '
¯̄
2¡in ¡ 2¡jm

¯̄2(H¡R) (50)

(4) The wavelet coe¢cients scale:

dj;n
d= 2jHd0;n (51)

Flandrin (1992) and Kaplan and Kuo (1993) proved that the variance of these wavelet coe¢-

cients dj;n, computed as averages over the time shifts n at each resolution level j, of the FBM is

represented by the power law:

V ar fdj;ng = E
n
jdj;nj2

o
=

¾2
"

2
VÃ(H)(2j)2H+1 (52)

where the constant VÃ(H), which depends on both the ACF of the chosen wavelet Ã, and on the

Hurst exponent H, is de…ned by:

VÃ(H) = ¡
Z +1

¡1
°Ã(¿) j¿ j2H d¿ (53)
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with the ACF °Ã(¿) of the wavelets Ã(t):

°Ã(¿) =
Z +1

=1
Ã(t)Ã(t ¡ ¿)dt (54)

Thus, by taking the dyadic logarithm of V ar fdj;ng, we …nd the linear relationship from which

we can compute H:

log2 [V ar fdj;ng] = (2H + 1)j + log2

·
¾2

"

2
VÃ(H)

¸
(55)

Since the second term is a constant, one can plot log2 [V ar fdj;ng] against the scale coe¢cient

j to …nd the slope (2H + 1) and thus the Hurst exponent H.

In the wavelet literature, usually the 2¡5 scale (i.e., j = 1; 2; :::; 5) is deemed as the ideal scale

to compute the Hurst exponent from Haar wavelets. However, this would not allow us to capture

the values, which could indicate multi-fractality. Hence H-values were computed from resolution

scales 2¡2 to 2¡8 (i.e., j = 2; 3; :::; 8). Each level of scaling leads to a decrease in sampling by a

factor of 2. The reason for going up to 2¡8 is to capture the actual sampling of the very thinly

traded FX series in the Asian markets. The …rst scale j = 1 = 2 minutes is considered noise for

this computation.

Figs. 8 and 9 provides examples of the computed Hurst exponents for the Deutschemark and

the Japanese Yen, respectively, for the months May - August 1997, based on resolution scales 2¡2

to 2¡8.

[FIGURE 8 about here]

[FIGURE 9 about here]

Notice that the Hurst exponents of all resolution scales are virtually the same, corroborating

the fractality, or self-similarity, of the FX increments. There are small variations from month

to month. In June and July the FX increments were slightly less persistent than in May or

August, The maximum monthly variation is §(0:05). This was also true for the other Asian FX

increments. The Hurst exponents are non-homogeneous or multifractal in the j = 2 ¡ 5 = 4 ¡ 32

minute resolution, but the mean H is homogeneous in the j = 5 ¡ 8 = 32 minute to 4:3 hour
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resolution. Only computation for all the months of 1997 can show the complete range in variation

of persistence throughout the year 1997.

5 ANTI-PERSISTENT FX RATES

From the dyadic logarithmic plots, we computed the homogeneous Hurst exponents H, fractal

dimensions D = 2 ¡ H, and Zolotarev stability exponent ®Z = 1=H for all nine currencies for the

four months surrounding the onset of the Asian Financial Crisis on July 2 1997. These analytic

results are summarized in Table 3.

[TABLE 3 about here]

Notice the overall anti-persistence of these FX rates. In particular, the DEM and the JPY

were consistently anti-persistent with 0:24 · H · 0:36 for all four months. The FX rates return

continuously to the point where they came from and behave, in a sense, mean-reverting processes,

except that these are long-term dependent series. Such anti-persistent time series can contain

regular …nancial turbulence as a friction-reducing, and thus risk-reducing device.23 .

In contrast, notice that the HKD, the MYR, and the SGD were only mildly anti-persistent

with 0:42 · H · 0:48. The PHP showed more or less geometric Brownian motion with its

0:43 · H · 0:52. Surprisingly, the TWD was mostly persistent with 0:49 · H · 0:67, presumably,

because that currency’s value is administratively controlled and not determined by freely operating

market forces. The THB was more strongly anti-persistent in May and June, i.e., in the pre-

currency-break months, with 0:36 · H · 0:39, than in July and August, i.e., in the post-

currency-break months, with 0:43 · H · 0:47, when it showed a clear (nonlinear) trend when it

was consistently losing value versus the US dollar. The IDR consisted only of a few discontinuities

with H = 0:06 in May (when it did not trade at all!), but exhibited almost Brownian motion in

the following three months with 0:46 · H · 0:48.

23 Quanti…able measurement of …nancial turbulence in speculative markets, in particular in the FX markets is
the direction of our current research. Just recently Stoll (2000) proposed …nancial research of friction in …nancial
markets as a very valuable enterprise, although the analytic methodology he employs in that article is outmoded
and proven unscienti…c.
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These empirical results strongly suggest that the Hurst exponents are not really homogeneous,

as we maintain hypothetically for our analysis. inhomogeneous Hurst exponents or pointwise

Lipschitz exponents point in the direction of the necessity to measure a multifractality spectrum.

This also suggests that even the FBM may not be the perfect model for FX pricing, since the

FBM is a model with a homogeneous Hurst exponent, or uniform Lipschitz irregularity exponent

®L. However, the FBM is already a considerable improvement over the GBM, since it exhibits

long term dependence and nonlinear time-scaling, while the GBM does not.

The periods of increases in kurtosis, which we may call condensation periods, as measured by

the monthly kurtosis exponent ®Z = 1
®L

= 1
H are followed by periods of decreases in kurtosis,

or rarefaction periods. It appears that most of the condensation occurred in the month of June,

followed by July 1997. In other words there was just more and faster trading of very small

amplitude with occasional large price jumps around the hand-over of Hong Kong. Interestingly,

already in May the IDR experienced very high kurtosis, i.e., a few sharp trading bursts with either

very small or very large increments, already in May, followed by a sharp drop in the kurtosis, i.e.,

with more evenly dispersed trading activity in smaller valuation steps, in the subsequent months.

We conclude that FX increments are potentially non-homogeneous, multifractal random pro-

cesses, of which the density distributions change kurtosis over time, and sometimes rather dras-

tically. This corroborates the earlier …nding that the third moments of these distributions are

nonzero (= non-Gaussian skewness) and the fourth moments non-Gaussian and that both are

time-varying. Therefore, complete time-dependent fractality (or singularity) spectra should be

computed.

In other words, the results of this exploratory paper results suggest that one must determine

the spectrum of pointwise irregularity of the FX increments and then determine when and how

kurtosis changes and under the impact of what factors. But that is the subject of another paper.
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6 CONCLUSIONS

The fractal or self-similar nature of the FX increments, visualized in the scalograms by an even

distribution of the pricing energy over the various scales and frequencies, is measured by the Hurst

exponent. The empirical …ndings of this paper support the Fractal Market Hypothesis (FMH) of

Mandelbrot (1966, 1971) and Peters (1994), which describes the events in the FX markets better

(but still not completely!), than the E¢cient Market Hypothesis (EMH) of Fama (1970, 1991)

based on martingale theory.

This paper uses various time series processing techniques on high frequency, intra-day, minute-

by-minute FX rates of the German Deutschemark and eight Asian currencies to characterize the

FX market pricing. Spectral analysis shows that the spectral power of the FX increments resides

mostly in the smallest frequencies, i.e. in the fast trading with small price steps, which is not the

same as ”noise ” trading.

The spectrograms of the increments o¤er a clear visualization of the persistence di¤erences

between the various markets. Most Asian FX rates - the Malaysian ringgit, the Philippine pesos,

the Thai baht and the Taiwan dollar - display changes in frequency (i.e., non-stationarity) in July

1997, when the Asian Financial Crisis began. The Deutschemark, Japanese Yen and Singapore

dollar are stationary, proving that these currencies were not greatly a¤ected by the turbulence in

the Thai baht, but continued to trade as before. The spectrograms of the FX increments verify

that they are not white noise or Wiener processes, a conclusion that is corroborated by the wavelet

based scalograms. Hence the FX rates of the nine currencies do not follow geometric Brownian

motions.

The scalograms, which provide both scale and time information, reveal self-similarity of the FX

increments at various scales. A closer look at the scalograms of the last week in June and the …rst

week in July suggests that the fractal nature of FX pricing is more induced by the timing of trading

activity, than by the actual valuation processes. This particular aspect of the microstructure of
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FX markets can reveal more about the FX data generating process. Hence further research is

required in that direction, but needs to use unregularized tick-by-tick FX data, instead of our

regularized FX rates to avoid aliasing of the results.

This paper uses wavelet multiresolution to compute homogeneous Hurst exponents. The Ka-

plan Kuo (1993) method, which is a modi…cation of Wornell and Oppenheim’s (1992) method, is

applied to the FX increments. The graphic fractal dimension D of all the FX increments, with the

exception of the new Taiwan dollar, lies between 1.5 and 2, indicating that the FX increments are

anti-persistent. The New Taiwan dollar is exceptionally prone to sharp and completely unexpected

discontinuities, induced by administrative control.

The Hurst exponent values of the Deutschemark and the Japanese Yen reveal strong anti-

persistence in the H = 0:2 ¡ 0:3 range This should warn speculators against taking long positions

in these anchor currencies. Dynamic valuation models, such as the Black-Scholes equation, which

is based on Itô processes, in particular geometric Brownian motion, is likely to result in inaccurate

pricing of …nancial instruments in these anti-persistent markets. However, most Asian FX mar-

kets, except the Japan Yen, are less anti-persistent and their Hurst exponents values are closer

to 0:5, suggesting that the geometric Brownian motion would provide a correct law of motion.

Unfortunately, the FX increments show a much wider dispersion and thus more uncertainty about

actual value of their Hurst exponents and thus about their degrees of persistence. That makes val-

uation in these very unpredictable markets extraordinarily hazardous. A move towards a currency

”snake,” and ultimately to a currency union, would be very desirable for the ASEAN countries,

but is impossible under the current circumstances.

Varying Hurst exponent values across scales and months are an indication of multi-fractality,

that is the occurrence of di¤erent Lipschitz irregularity at di¤erent scales. This added complexity

certainly poses a problem in modeling the FX pricing processes. We suspect that it is necessary

to gain a better understanding of the non-synchronous timing of FX trading activity to improve

the valuation modeling of these markets.
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According to the Fractal Market Hypothesis FMH), the existence of investors with di¤erent

investment horizons ¿ ensures the continuity of the FX markets. Any instability or discontinuity

will be absorbed, once the investors assess the value of the information and its impact on their

investment horizon and act accordingly in feedback fashion - hence the observed anti-persistence

- to bring about stability.

The driving force behind the E¢cient Market Hypothesis (EMH) is that there are many in-

vestors with similar objectives and risks. It assumes that all investors are rational and everyone

acts on the same information set and the same time horizon ¿ . Thus the EMH is neither able

to explain anti-persistence or mean-reverting, nor instabilities or discontinuities. The EMH ig-

nores the importance of trading liquidity, which could actually lead to investors transacting at a

price that is di¤erent from their assessed fair value. The EMH is limited, especially so for the

FX markets, as the movements in the FX rates are not directly tied to economic activity. The

FX markets are not used to raise capital, unlike other security markets. FX markets are trading

market dominated by arbitragers with di¤erent horizons ¿ , actively transacting to take advantage

of price discrepancies. For these peculiar reasons the FMH can o¤er a better explanation of the

laws of motion of FX rates than the EMH.

FX markets exhibit nonlinear dynamic structures, high degrees of small amplitude and fast,

non-informational, trading and nonperiodic cyclicities. This behavior is possibly induced by fre-

quent international capital ‡ows induced by non-synchronized, but cyclically occurring national

business cycles, rapidly changing political regimes and country risk perceptions, unexpected infor-

mational shocks to investment opportunities, and, in particular, investment strategies to synthesize

and diversify risk claims, using cash swaps between the various national asset markets.

Using of high frequency data might lead to complications. Momentary reactions to news may

be too complex to be analyzed by such small FX increments. Most research has used some form

of sub-sampling, which may induce arti…cial dependencies.

Since information trading occurs in lower frequencies, in about the two hour periods according
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to Ramsey and Zhang (1997), this is, in principle, encompassed by our largest 4:3 hour resolution

scale. Still, high frequency data might not reveal much about this kind of information trading.

This shortcoming can easily be overcome by increasing the levels of resolution of the scalograms

(but one needs very high resolution monitors, and subsampling windows, to continue to discern

any details!).

By making the FX data regular, their distribution is slightly altered or aliased and therefore

may not be a good representation of the actual FX processes. Although regular intervals facili-

tate the wavelet multiresolution, irregular intervals can be used by disctionaries of non-uniform

wavelets. Therefore the research should steer in the directional using the actual irregular ask and

bid data to model the actual data generating processes. The use of mid prices may not re‡ect

the di¤erent structure in the demand and supply side of each market. We do notice considerable

di¤erences between the scalograms of the bid and of the ask FX rates.

7 APPENDIX: CRITICAL HÖLDER EXPONENTS

The connection between the various dependence exponents and the currently popular stable dis-

tributions is as follows. The dependence exponent ¸ of the ACF of the long-term dependent time

series in section 4.2 equals

¸ = 2d ¡ 1 = À ¡ 1 = 2H ¡ 2 =
2

®Z
¡ 2 = 2®L ¡ 2 (56)

where d is the di¤erence operator (or order) exponent, À the spectral exponent, H the Hurst

exponent, ®Z the stability exponent of the Zolotarev parametrization of stable distributions, and

®L the Lipschitz irregularity exponent.24 For completeness: ¸
2 is the time-scaling exponent.

The complete spectrum of empirical irregularity in terms of these …ve critical Hölder exponents

is given in Table 4.25 It summarizes all relationships between the exponents of the increments,

24 Somewhat confusingly in the literature, the Zolotarev stability alpha ®Z = 1=®L, where ®L is the Lipschitz
regularity exponent, or alpha.

25 The fractal Lipschitz regularity exponents are also called Hölder exponents. Hölder (1859 - 1937) was a German
mathematician, who devised treatment of divergent series of arithmetic summations, which led to a regularity
exponent now recognised to be similar to Hurst’s.
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or …rst di¤erences, of Fractional Brownian Motion (FBM).

[TABLE 4 about here]

For example, for the geometric Brownian Motion increments "(t), which are white noise or

Wiener processes:

¸ = ¡1; d = 0; À = 0;H = 0:5; ®Z = 2 (57)

thus

x(t) = (1 ¡ L)0"(t) = "(t) (58)

Fractional integration of white noise, when d = 0:5 and H " 1, results in pink noise

x(t) = (1 ¡ L)¡0:5"(t) (59)

One full integration of white noise, when d = 1, results in brown noise (= Brownian motion)

x(t) = (1 ¡ L)¡1"(t) (60)

In the case of 0:5 < H < 1, the vital property of the fractional Brownian motion (FBM) is that

the persistence of its increments extends forever: it never dies out and gives rise to non-periodic

cyclicities. The strength of such persistence is measured by the Hurst exponent.

The case where 0:5 < d < 1:5, or, equivalently, 1 < À < 3 has been called the infrared

catastrophe (Wornell & Oppenheim, 1992). It could occur in the securities markets, but is unlikely

to occur in the FX markets, which are closer to blue or chaotic noise, which is extremely stably

distributed. More fractional integration, for example d = 2, results in heavily persistent, or black

noise

x(t) = (1 ¡ L)¡2"(t) (61)

As Schroeder (1991, p. 122) comments: ”Black-noise phenomena govern natural and unnatural

catastrophes, like ‡oods, droughts, bear markets, and various outrageous outages, such as those
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of electrical power. Because of their black spectra, such disasters often come in clusters.” If

anything, it can be caused by administrative interventions in the markets or by illiquidity.

The FBM increments with 0 < H < 0:5 are antipersistent noise, hence they di¤use faster than

the Brownian increments. Consequently, the FBM returns continuously to the point it came from

and behaves more like a mean-reverting process.

Notably this means that white noise increments "(t) are rather exceptional. They exhibit the

same stability, ®Z = 2, and (in-)dependence, H = 0:5, as Gaussian random variables (but do not

necessarily have to be Gaussian!) Furthermore, their ACF drops of geometrically with ¸ = ¡1:

It is very important to understand that the Hurst exponent is a rather limited measure of

randomness and distributional stability with a very limited domain, and that the ®Z¡stability

exponent, respectively the À¡spectral exponent, have much more extensive domains. There exist

empirical ultra-stable distributions (not yet parametrized!) in the domain 2 · ®Z < 1, since we

…nd in extremo ®Z " 1 when H # 0 (and d " 0:5), which is complete stability. These are the

distributions of singularities, or singularity spectra, which can still be measured by the stability

exponent ®Z .

In addition, there are now theoretically de…ned, parametrized stable distributions where 0 <

®Z < 1, which cannot be directly measured by the Hurst H-exponent, but can be measured

by ®Z , if we can compute ®Z in some other fashion. These are the theoretical ultra-unstable

distributions. However, empirically there appears to be a turbulence barrier at ®Z = 2=5: In other

words, there appear not to exist any empirical 0 < ®Z < 2=5, even though there are theoretical

Zolotarev-parametrized distributions de…ned for such ®Z values.

Of course, one can still use the Hurst exponent for measuring infrared and black catastrophes,

by measuring it after proper integer-di¤erentiation. For example, when we hypothesize that x(t)

is pure black noise and has a spectral exponent À = 4, then di¤erentiation two full times (d = 2)

should theoretically result in white noise with a ‡at spectrum, À = 0, so that H = 0:5. However,

when we then empirically measure, for example, H = 0:2 ! À = ¡0:6, then the original series
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must have a spectral coe¢cient of À = ¡0:6 + 4 = 3:4 and not 4.

8 FIGURES

8.1 Figure 1

Documents/Asian FX Wavelet Multiresolution/HistogramJPY0.wmf

Histogram of Japanese Yen for the Month of June 1997
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8.2 Figure 2

Documents/Asian FX Wavelet Multiresolution/jppower.jpg
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8.3 Figure 3

Documents/Asian FX Wavelet Multiresolution/SpectrogramWhite Noise.wmf

Spectrogram of DEM Increments and White Noise With Same Variance
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8.4 Figure 4

Documents/Asian FX Wavelet Multiresolution/ScalogramWhiteNoise.wmf

Original And Denoised Scalogram Of White Noise
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8.5 Figure 5

Documents/Asian FX Wavelet Multiresolution/ScalogramDEM1.wmf

Original And Denoised Scalogram Of DEM For The Last Week Of June 1997
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8.6 Figure 6

Documents/Asian FX Wavelet Multiresolution/ScalogramDEM2.wmf

Original And Denoised Scalogram Of DEM For The First Week Of July 1997
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8.7 Figure 7

Documents/Asian FX Wavelet Multiresolution/ThJulyDen.jpg

3D View of the scalogram of the Thai baht increments of July 1997
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8.8 Figure 8

Documents/Asian FX Wavelet Multiresolution/DyadicPlotDEM.wmf

Holder-Hurst Exponent By Scale Level For DEM 
May-August 1997
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Dyadic Logarithmic Plot of the DEM Hurst Exponents

8.9 Figure 9

Documents/Asian FX Wavelet Multiresolution/DyadicPlotJPY.wmf

Holder-Hurst Exponent By Scale Level For JPY 
May-August 1997
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9 TABLES

9.1 Table 1

Documents/Asian FX Wavelet Multiresolution/StatisticsIncrements.wmf
TABLE1: DISTRIBUTIONAL STATISTICS FOR THE NINE FX RATE INCREMENTS,
MAY – AUGUST 1997.

DEM May June July August PHP May June July August
mean -1E-06 1.72E-06 4.01E-06 -1.4E-06 mean 0 -3.9E-05 0.030856 0.021264

std 0.000443 0.000397 0.000451 0.000519 std 0.002919 0.004808 0.588818 0.17746
kurt 7.488048 3.587991 5.938828 4.633 kurt 0.381158 2.189639 16.36673 8.58714
skew -0.28438 0.066015 0.073748 -0.14794 skew -0.14157 -0.09223 2.701964 -0.9213

JPY May June July August SGD May June July August
mean -0.00055 -5.6E-05 0.000165 0.000106 mean -4.3E-06 0 8.16E-06 8.97E-06

std 0.052907 0.04544 0.038622 0.044481 std 0.000354 0.000322 0.000472 0.0008
kurt 12.30398 11.66099 5.131492 9.739176 kurt 26.00865 6.769136 10.84123 14.74747
skew -0.44484 -0.01558 -0.03453 -0.08742 skew -0.96307 -0.32234 -0.05337 -0.59471

HKD May June July August THB May June July August
mean 1.99E-06 -2.1E-06 -3.1E-06 3.35E-06 mean -0.00091 -0.00035 0.004674 0.001396

std 0.000365 0.000394 0.000385 0.000512 std 0.034863 0.113586 0.171863 0.141878
kurt 2.693181 2.92056 4.024717 18.42473 kurt 43.33442 89.80316 137.9081 13.66864
skew 0.401515 -0.11205 -0.17704 -0.20931 skew -1.86699 0.700684 6.349645 -0.39254

IDR May June July August TWD May June July August
mean 0.000655 0.00032 0.069487 0.094868 mean 0.000157 -3.8E-05 0.000708 3.78E-05

std 0.910563 0.30992 2.9969 6.835453 std 0.005855 0.003579 0.010136 0.017432
kurt 265.8008 5.483776 8.916913 11.39796 kurt 7.61613 4.466143 42.21601 66.90014
skew -3.39791 -0.18143 0.235687 0.384675 skew 0.578374 0.152799 1.831768 -4.80517

MYR May June July August
mean 5.31E-07 2.96E-06 2.4E-05 6.51E-05

std 0.000634 0.00044 0.001286 0.002338
kurt 16.41839 5.816113 62.33748 29.10995
skew -0.83357 -0.34258 2.513235 1.494065

49



9.2 Table 2

Documents/Asian FX Wavelet Multiresolution/Gaussianity.wmf
TABLE 2: GAUSSIANITY AND LINEARITY TESTS

             Statistic For Gaussianity          Statistics for Linearity

PFA  B-estimated   B-Theoretical
DEM
June 1 Gaussian 0.1867 2.3738 Linear
July 1 Gaussian 0.4619 2.5449 Linear
JPY
June 0 Non-Gaussian 1.8697 4.2577 Linear
July 1 Gaussian 0.0806 2.2431 Linear
HKD
June 0 Non-Gaussian 5.8338 5.8308 Linear
July 0 Non-Gaussian 4.7732 5.5955 Linear
IDR
June 0 Non-Gaussian 7.2458 6.8485 Linear
July 0 Non-Gaussian 14.0718 8.9655 Non-Linear
MYR
June 0 Non-Gaussian 4.0577 5.1577 Linear
July 0 Non-Gaussian 32.2052 14.9589 Non-Linear
PHP*
June 0 Non-Gaussian 4.7352 5.3152 Linear
July 0 Non-Gaussian 70.4668 14.8064 Non-Linear
SGD
June 0 Non-Gaussian 2.9047 5.4764 Linear
July 1 Gaussian 1.0734 3.1847 Linear
THB
June 0 Non-Gaussian 173.9235 34.4184 Non-Linear
July 0 Non-Gaussian 299.7581 40.3008 Non-Linear
TWD
June 0 Non-Gaussian 3.7959 4.4522 Linear
July 0 Non-Gaussian 170.7834 30.1341 Non-Linear
• The length of data is below 128  and therefore the results pertaining to PHP are not

reliable
• PFA = Probability of False Alarm
• R = Bicoherence
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9.3 Table 3

Documents/Asian FX Wavelet Multiresolution/HurstExponents.wmf
TABLE 3: VALUES OF HOMOGENEOUS HURST EXPONENTS

FOR NINE CURRENCIES IN MAY- AUGUST 1997
    MAY JUNE  JULY AUGUST

H D αZ H D αZ H D αZ H D αZ
DEM 0.28 1.72 3.52 0.27 1.73 3.72 0.27 1.73 3.71 0.36 1.64 2.78

JPY 0.34 1.66 2.96 0.25 1.75 4.03 0.24 1.76 4.23 0.30 1.70 3.37

HKD 0.45 1.55 2.21 0.46 1.54 2.19 0.47 1.53 2.11 0.46 1.54 2.16

IDR 0.06 1.94 16.25 0.48 1.52 2.10 0.46 1.54 2.17 0.47 1.53 2.15

MYR 0.45 1.55 2.20 0.42 1.58 2.38 0.46 1.54 2.19 0.48 1.52 2.07

PHP 0.52 1.48 1.93 0.43 1.57 2.32 0.51 1.49 1.97 0.49 1.51 2.03

SGD 0.44 1.56 2.30 0.46 1.54 2.17 0.45 1.55 2.21 0.42 1.58 2.37

THB 0.36 1.64 2.77 0.39 1.61 2.56 0.47 1.53 2.13 0.43 1.57 2.34

TWD 0.55 1.45 1.81 0.55 1.45 1.82 0.67 1.33 1.49 0.49 1.51 2.06

Note: The fractal dimension D = 2 – H; Zolotarev’s stability exponent αZ = 1/αL , the
inverse of the Lipschitz irregularity exponent αL , as measured by the Hurst exponent H.

9.4 Table 4

TABLE 4 HÖLDER EXPONENTS MEASURE IRREGU LARITY

Exponents: Dependence Difference Spectral Hurst Stability

Color: ¸ d À H ®Z

Blue noise ¸ # ¡2 d = ¡0:5 À = ¡1 H # 0 ®Z " 1

Anti-persistent noise ¡2 < ¸ < ¡1 ¡0:5 < d < 0 ¡1 < À < 0 0 < H < 0:5 2 < ®Z < 1

White noise ¸ = ¡1 d = 0 À = 0 H = 0:5 ®Z = 2

Persistent noise 0 < ¸ < ¡1 0 < d < 0:5 0 < À < 1 0:5 < H < 1 1 < ®Z < 2

Pink noise ¸ " 0 d = 0:5 À = 1 H " 1 ®Z = 1

Brown noise NA d = 1 À = 2 NA ®Z = 2=3

Black noise NA 1 · d · 2 2 < À · 4 NA 2=5 · ®Z < 2=3
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