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Abstract—High Frequency Trading is pervasive
across all electronic financial markets. As algorithms
replace an increasing number of tasks previously
performed by humans, cascading effects similar to the
Flash Crash of May 6th 2010 become more likely. In
this work, we demonstrate how signal-processing tools
could reveal interesting patterns from high frequency
trading using natural gas futures as an example. We
focus on Fourier analysis and correlation between
weather forecasts and natural gas prices. From the
Fourier analysis of Natural Gas futures market, we
see strong evidences of High Frequency Trading in
the market. The Fourier components corresponding
to high frequencies (1) are becoming more prominent
in the recent years and (2) are much stronger than
could be expected from the structure of the market.
Additionally, significant amount of trading activities
occur in the first second of every minute, which is
a tell-tale sign of algorithmic tradings triggered by
clock. To illustrate the potential of cascading events,
we study how weather forecasts drive natural gas
prices. We show that after separating data accord-
ing to seasons, the temperature forecast is strongly
cointegrated with natural gas price. This splitting of
data is necessary because in different seasons the
natural gas demand depends on temperature through
different mechanisms. We also show that the variations
in temperature forecasts contribute to a significant
percentage of the average daily price fluctuations,
which confirms the expectation that the variations in
temperature dominates the volatility of natural gas.

Index Terms—Time series analysis, non-uniform
FFT, co-integration

1. INTRODUCTION

Advances in computing power, paired with leg-
islative changes in both the United States and Eu-
rope, made high frequency trading (HFT) econom-
ically viable (de Prado, 2011; Hasbrouck and Saar,
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2013). It has been estimated that HFT firms account
for over 60% of the volume in the US equity
markets, quickly approaching 50% of the volume in
futures markets (Boehmer et al., 2014; Iati, 2009;
Commodities Future Trading Commission (CFTC),
2010). However, what followed this surging interest
was a growing concern about HFT: rapid algorithmic
trading may amplify the volatility inherent in the
market, leading to cascading events such as the May
6, 2010 flash crash (Easley et al., 2011; Menkveld,
2013; Smith, 2010; Vuorenmaa, 2013). In this paper,
we explore a number of signal processing tools
to understand the trading of natural gas (NG) fu-
tures and the impact of temperature forecast on the
volatility of trading.

NG futures have remained one of the most heavily
traded energy contracts for many years. In 2012, the
number of futures contracts traded totaled more than
50 million, surpassed only by Light Crude NYMEX
and Brent Crude ICG (Wu et al.,, 2013). Though
many factors affect the NG futures price, one of the
most important is the expected temperature. In cold
weather, natural gas is used to heat up buildings, and
in hot weather, generating electricity to power air
conditioners. Since the weather forecast is inherently
noisy, studying the relationship between temperature
forecast and NG futures price could be instructive
in understanding the potential of cascading events.

In the US, the most widely available temperature
forecast is provided by the National Oceanic and
Atmospheric Administration (NOAA), a scientific
agency within the United States Department of
Commerce. It provides two sets of global weather
forecasts, one from its own forecast model and
the other as an ensemble average of proprietary
and third-party models. Its own weather prediction
model is named the Global Forecast System (GFS)
(Kanamitsu et al., 1991). GFS produces forecasts of
the entire planet 4 times a day with a forecasting



horizon of 16 days. The ensemble, on the other
hand, is a collection of forecasts from 20 other mod-
els that run concurrently with the GFS on the same
time scales (Hamill et al., 2013). This ensemble
is known as the Global Ensemble Forecast System
(GEFS), and was initiated by the National Centers
for Environmental Prediction (NCEP) to address the
uncertain nature of Numerical Weather Prediction
(NWP). An extreme example that necessitates the
use of the GEFS is the following: a butterfly flapping
her wings can have a cascading effect leading to
wind gusts thousands of miles away. Such sensitivity
illustrates that a small perturbation can overtime
lead to a noticeable disparity between the observed
and the predicted data. The GEFS employs Bred
Vector and Ensemble Tranform to generate initial
perturbations and stochastic total tendency pertur-
bation scheme to account for increase uncertainty
from growing instabilities (Wei et al., 2006).

In this paper, we study the GEFS model to present
evidence that the forecast temperature and the NG
futures price are cointegrated. Because temperatures
and natural gas demands are intrinsically related in
multiple ways, this cointegration relationship can
only be detected after we have split the data ac-
cording to seasons. Within each season, the relation-
ship between natural gas demands and temperature
is well-defined by the expected consumption and
easier to detect.

The rest of the paper is organized as follows.
Section II discusses related work in cointegration
and frequency analysis. Section III contains a more
detailed description of the data used in this study.
Section IV analyzes NG futures prices through
Fourier analysis, and shows the first set of evidences
of automated trading in the market. This section also
contains an alternative frequency analysis method
known as Lomb-Scargle Periodogram. Section V
extends the observations seen in the previous section
and studies the signals in the volumes of trading
activities. Section VI presents results that support
GEFS is an error correcting model with respect to
NG futures price, and shows the impact of error in
temperature forecast. We provide a brief summary
in Section VIL

II. RELATED WORK

In the research literature, the volatility of tem-
perature is widely acknowledged as a dominant
factor that impact the natural gas price (Bower and
Bower, 1985; Elkhafif, 1996; Considine, 2000; Mu,

2007). The standard tools used to analyze volatil-
ity are autoregressive conditional heteroskedasticity
(ARCH) and generalized autoregressive conditional
heteroskedasticity (GARCH) (Engle, 2001). With
these tools, researchers have identified a number of
interesting features about the volatility of natural gas
prices. For example, Pindyck (2004b) and Pindyck
(2004a) found a positive time trend in volatility for
natural gas, although not of great economic impor-
tance, and that shock induced volatility are short-
lived. Linn and Zhu (2004) showed higher natural
gas price volatility after the release of natural gas
storage report. Mu (2007) incorporated these results
with temperature shocks to assess their impact on
natural gas price dynamics. Furthermore, Mu (2007)
demonstrated temperature as the “more direct and
purely exogenous measure of demand shocks,” and
provided the first documented evidence to support
the Samuelson hypothesis, i.e., commodity futures
volatility declines with contract horizon (Samuelson,
1965).

Despite the importance of temperature forecast on
the natural gas futures price, we have yet to come
across studies that analyze the possible interplay
between forecast models, and their respective roles
in natural gas futures price. Another motivation for
this work is that the financial market has signifi-
cantly changed since the publication of the afore-
mentioned studies. Legislative actions that promote
high frequency trading strategies have transformed
the market in such a way that it is imperative
to reevaluate the market behavior by taking into
account of the presence of HFT algorithms. As of
this writing, a significant amount of work has been
done to evaluate the behavior of high-frequency
trading on stocks (Brogaard, 2010; Easley et al.,
2011; de Prado, 2011; Hasbrouck and Saar, 2013;
Vuorenmaa, 2013), but not much has been done on
futures trading activities. Therefore, we focus our
study on futures trading in this work.

As the standard tools of ARCH and GARCH
have been thoroughly explored elsewhere, our work
makes use of a few alternative techniques. These
tools allow us to study the data and understand
the propagation of volatility in different ways than
reported thus far. Next, we briefly review the three
main techniques we plan to use, Fourier Transform,
Lomb-Scargle periodogram, and cointegration be-
tween prices and temperature forecasts.



A. Non-Uniform Fast Fourier Transform

It is well-known that the financial markets ex-
hibits complex dynamics in different time scales
(Miiller et al., 1993; Podobnik et al., 2012; Schoef-
fel, 2011). One possible way of studying such dy-
namics is the Fourier transform, which decomposes
a function in time into a summation of a number of
simple oscillations, each of which can be described
by a frequency and its amplitude. These frequencies
and their amplitudes are collectively known as the
Fourier spectrum of the original function.

Given a function over time f(t), the Fourier
transform is
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Function g(k) is the Fourier transform of f(¢),
which is also known as the Fourier coefficient. This
is the continuous form of the more commonly used
discrete Fourier transform that replaces the integral
with a summation (Bloomfield, 2004).

In many applications, the function f(t) is sampled
uniformly in a time period, in which case, the
summations used to compute the Fourier coefficients
share a significant number of common expressions.
These common expression can be utilized to dras-
tically reduce the amount of computations needed,
leading to a faster way of computing the Fourier
coefficients known as the Fast Fourier Transform
(FFT) (Welch, 1967; Walker, 1996).

The usefulness of FFT is recognized by many re-
searchers (Bloomfield, 2004; Carr and Madan, 1999;
Davidson et al., 1997; Praetz, 1979). However, it has
not been widely used to analyze trading activities
because trading records are not uniform time series.
Trades in real markets happen at unpredictable time
points. The most common way to apply FFT on a
non-uniform time series is to turn the non-uniform
time series into a uniform one. Some common tech-
niques for this transformation include resampling
the time series, and binning the original data. Most
of the futures contracts are only actively traded
during a few hours on each week day. Resampling
such a time series with interval less than a day would
leave daily gaps, and daily time series have weekly
gaps. To study high-frequency features, we would
like to have time series with resolution in minutes
or seconds. However, these time series would be
limited to be with in a trading day. Such a short time
series could not be used to study the interactions
between the human scale activities in days and

weeks with the high-frequency components that are
measured in minutes or seconds.

There are alternative techniques specifically pro-
posed to regularize financial time series, which
can be considered as redefining “time,” for ex-
ample, autoregressive conditional duration (Engle
and Russell, 1998), stochastic conditional duration
model (Bauwens and Veredas, 2004), and volume
time (Easley and O’Hara, 1987). However, these
techniques are not generally accepted by the re-
search community yet, and a significant amount
of additional work may be needed before they are
understood enough to be accepted.

In this work, we apply a much more direct
approach of performing a Fourier transfrom on the
irregular time series with a technique named Non-
uniform Fast Fourier Transform, (NUFFT) (Dutt and
Rokhlin, 1993; Greengard and Lee, 2004).

Given a sample of the function f(¢) at some ir-
regular time points ¢;, NUFFT computes the Fourier
coefficients ¢ at a set of regularly spaced frequen-
cies. For example, if the function f is defined in
a time period of one year, the frequencies used to
compute the Fourier coefficients g could be % times
per year, where k is an integer. The formula for
computing a g(k) involves all N input data points
of f(t), therefore, a straightforward implementation
of this non-uniform Fourier transform for computing
N Fourier coefficients would require O(N?) time.
Dutt and Rokhlin (1993) rearranged the computa-
tions of these Fourier coefficients into a number
of matrix-vector multiplications involving a Toeplitz
matrix. Since each multiplication with the Toeplitz
matrix takes O(NlogN) time, and the number of
such matrix-vector multiplications is independent of
the input data values, the overall computation time
is O(NlogN). In this notation, the computational
complexity of NUFFT is the same as the FFT on
regular time series.

Greengard and Lee (2004) developed a strategy
to implement the NUFFT algorithm in an efficient
software data structure and have made their software
implementation available to the public !. Our study
uses their software implementation of NUFFT.

There have been many different studies of HFT
data on different aspects of the data. However, we
believe that ours is the first comprehensive study
of the Fourier components of HFT data without
resampling, binning or otherwise transforming the

The NUFFT software is available at http://www.cims.nyu.edu/
cmcl/nufft/nufft.html.
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raw trading data. We expect this study to provide
valuable time-domain information to broaden our
understanding of and offer new insights into high-
frequency trading.

B. Lomb-Scargle periodogram

Another common technique for dealing with un-
evenly sampled data is to interpolate data values to
a regular grid. Vanicek (1969), Lomb (1976) and
others have devised a least-squares spectral analysis
method to accommodate such data structures (Babu
and Stoica, 2010). This technique is known as the
Lomb-Scargle periodogram. It evaluates data, and
associated sinusoidal waves at the times, ¢,,, that
the data are obtained (Scargle, 1982). The Lomb-
normalized periodogram for N data is defined as
follows (Thomson and Emery, 2014):
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One major advantage the Lomb-Scargle peri-
odogram is that it can cope with low frequency noise
in records with large time gap. The NG trades occure
very frequently, and therefore will not have large
time gap in the time series. Given that our initial
motivation is to study impact of high-frequency
trading, the low frequency noise might not be of

great interest. However, it might still worthwhile to
compare Lomb-Scargle periodogram with NUFFT?,

2The authors gratefully acknowledge the suggestion from an
anonymous referee for this comparison.

C. Cointegration

After extracting the periodic patterns from a time
series, we often expect the remaining features in
the time series to be explained by some random
processes. Next we review a technique that allows
us to compare two random processes. The intent is
to use this technique for comparing the temperature
forecasts with natural gas prices.

Standard statistical methods, least squares, for ex-
ample, are mostly designed for stationary processes,
but financial time series, such as trading prices of
natural gas futures, cannot usually be modeled as
stationary random processes. When dealing with
non-stationary variables, standard regression anal-
ysis fails, leading to spurious regressions that hint
at the existence of relationships even when there
are none. In many cases, non-stationary processes
could be turned into stationary ones by taking dif-
ferences. Given a time series x; and lag operator
L, a difference time series can be expressed as
y: = (1— L)z, = x; — x;_1. Formally, a time series
is integrated of order d if (1 — L)?X; is integrated
of order 0. In other words, (1 — L)?X; is expected
to be generated by a stationary process. Given two
or more time series, each of which is integrated,
if there exists some linear combination that yields
a lower order of integration, the series are said to
be cointegrated (Granger, 1981; Engle and Granger,
1987).

Intuitively, cointegrated time series could be
regarded as following the same underlying ran-
dom process. Granger (1981) and colleagues have
demonstrated that cointegration is a critical measure
in determining the relationship between two non-
stationary processes. When analyzed with common
statistical methods, integrated time series tend to
have strong spurious correlation that cannot be
removed by detrending the data. The two non-
stationary time series must be cointegrated before
we can trust the codependence is not spurious.

There are many different approaches available
which analyze the relationship between time se-
ries, most notable of which include Support Vec-
tor Machine (SVM), ARIMA, ARMA, ARCH and
GARCH. However, all of these methods come with
their own presumed models of how the variables are
related. Before we commit to any of of these models,
we believe it to be prudent to determine how the
temperature forecast models are cointegrated with
the natural gas futures.



According to the definition of cointegration, we
can test for this property by first computing a linear
combination of the two input time series and then
test if the resulting time series is stationary. The
linear combination is typically generated through
ordinary least squares and the test for stationarity
is performed with one of the unit root tests (DeJong
et al., 1992; Hassler and Wolters, 1994). These
are based on the observation that the characteristic
equations of autoregressive time series have the
value 1 as their roots (i.e., unit roots) when the
time series are non-stationary, whereas the same
cannot be said for stationary time series. There are
a number of different tests for unit roots (Dickey
and Fuller, 1979; Phillips and Perron, 1988). In
this work, we choose to use the augmented Dickey-
Fuller test, which has been widely analyzed in the
research literature (Cheung and Lai, 1995; DeJong
et al., 1992).

Earlier we mentioned that there are two distinct
mechanisms that the temperature can affect the
demand of natural gas. When it is cold, natural
gas is used to heat up buildings; therefore, lower
temperatures lead to higher demand on natural gas.
When it is warm, natural gas is used to generate
electricity; consequently, higher temperatures lead
to greater demand for natural gas. We anticipate a
need to divide time series into a low temperature
period and a high temperature period in order to
see the interactions between temperature and nature
gas futures prices clearly. This is a special feature
in our application of cointegration.

III. DATA USED FOR ANALYSES

The weather forecast data used in our study are
retrieved from the NOAA website’. A database is
formed for every release, and contains as many
tables as forecasts, storing them in a grid structure,
with latitude as rows and longitude as columns,
following the GRIB protocol . Data files are assem-
bled in a way that the planet has been discretized
by integer-valued latitudes and longitudes. Each
database contains 65 tables, recording temperature
values of every 6 hours, up to 384 hours into
the future (or 16 days). Each table has columns
describing longitude values, from 0 to 359, and
rows for latitude, from O to 179. Additionally, each

3http://ready.arl.noaa.gov/READY cmet.php
4More information can be found at http://www.cpc.ncep.noaa.
gov/products/wesley/wgrib.html

database contains an IndexTable from which some
metadata associated with the tables, such as the
URL it was extracted from, period during which the
forecast is effective, time of data release, and of the
download. The size of each database is roughly 40
MB, and the cumulative size of the files used in the
analysis amounts to 52 GB.

The NOAA forecast models measure temperature
at different levels in the air. The two levels that are
most relevant to our use are one at 850 millibars
(mb) of atmosphere pressure, and the other at 2
meter above the ground. The isosurface with the
atmospheric pressure of 850 mb coincides with low-
level jet streams, and is frequently studied because
the majority of severe weather can be observed
at this level. The forecast temperature at 2 meter-
above-ground is the temperature reported by the
mass media, and is generally considered as the tem-
perature experienced by a human body. However,
it fluctuates significantly throughout the day and is
very sensitive to local topography, whereas the tem-
perature at 850 mb is much less affected by details
on the ground and is more stable throughout the
day. Following the common practice in atmospheric
science (Wallace and Hobbs, 2006), we consider the
temperature at 850 mb as a better representation of
the atmospheric condition and use it exclusively in
this work.

In order to represent temperature at the national
level, we select six out the nine geographic divisions
within the United States recognized by the U.S. Cen-
sus Bureau. For each of these geographic divisions,
we pick a reference city for the computation of a
national average of temperature, weighted by pop-
ulation. These six regions, and their corresponding
reference cities, are Chicago from the East North
Central, Minneapolis from the West North Central,
New York City from the North East, Atlanta from
the South Atlantic, Dallas from the West South
Central, and Los Angeles from the Pacific. These
cities are major financial centers in the U.S., and
representative of each geographic region. This gives
us a population-weighted national temperature av-
erage, which should therefore be associated with
energy consumption.

The natural gas futures trading data used in this
study contains all trading records from the beginning
of 2007 (2007-01-01 00:00) to middle of 2014
(2014-06-11 18:00). In this study, we will only
examine the price, volume and the time of the
trading records. The time values are recorded with
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one-millisecond resolution.

The trading of futures contracts involves contracts
of different maturity dates. As a contract reaches
its maturity date, trading on it ceases while the
trading operations continues with a new contract
that matures in the future. This periodic change of
contracts creates systematic changes in prices that
needs to be removed from the cointegration test.
We use the rolled prices (after removing the price
gap caused by the roll) instead of the actual trading
prices. The details of this is given in Section VI
Note that the Fourier analysis is applied directly on
the actual trading prices, not on the rolling prices.

IV. ANALYSIS OF PRICES OF TRADES

In this section, we seek to provide evidences of
high-frequency trading in natural gas futures market.
The tools we use for this purpose are two frequency
domain analysis techniques known as Non-Uniform
Fast Fourier Transform (NUFFT) and Lomb-Scargle
Periodogram. The output from the Fourier Trans-
form is known as the Fourier spectrum. To apprise
the presence of high-frequency trading, we plan to
show that the amplitudes of high-frequency com-
ponents of the Fourier spectrum are significantly
higher than could be expected from the structure
of the market, which is discussed next.

A. Structure of Trading Operations

Natural gas futures contracts are traded at
Chicago Mercantile Exchange (CME) under the
code NG °. The electronic markets Globex and
ClearPort operate six days a week Sunday — Friday,
6:00PM - 5:15PM (Eastern US Time) with a 45-
minute break each day beginning at 5:15PM. Open
Cry trading operates Monday — Friday 9:00AM —
2:30PM (Eastern US Time). The trading records
do not distinguish which venue has conducted the
trades, but the volume of trades is noticeably high
when Open Cry trading is in operation.

To see how this weekly operating schedule trans-
lates to a Fourier spectrum, we define a function
that is 1 when the market is open and 0 when the
market is closed. Figure 1 shows the spectrum of
this function. The horizontal axis in this figure is
the frequency and the vertical axis is the amplitude.
Both axes are in log scale.

Shttp://www.cmegroup.com/trading/energy/natural- gas/
natural-gas_contract_specifications.html

Figure 1: Fourier spectrum of the structure of NG
trading activities

The frequency in this and the subsequent spectra
is measured in the time unit of year. An oscillation
of once per year has the frequency of 1. An os-
cillation of once per week will have a frequency
of 52 because there are 52 weeks in a year. A
periodic pattern that occurs once per day has the
frequency of 365 in a normal year and 366 in a
leap year. Similarly, the frequency of once per hour
is 8760 (=365%24) and once per minute is 525600
(=365*%24*60). In this work, we only compute the
amplitudes of integer frequencies.

As in most Fourier analysis, we are interested in
the peaks in the spectrum. A frequency k is a peak
as long as its amplitude g(k) is larger than those of
the two neighboring frequencies, g(k) > g(k — 1)
and g(k) > g(k + 1). However, we are generally
more interested in prominent peaks. In this work,
we consider a peak as prominent if its amplitude
is larger than the amplitudes of a sizable neigh-
borhood around it. For a frequency k, the size of
this neighborhood is taken to be k/10. On a log-
scale plot of a spectrum, a neighborhood of this size
should be clearly visible. The corresponding peak
will be visually prominent. Mathematically, g(k) is
a prominent peak, if the following is true

g(k) > g(5),  Vj € [k=[k/10],k+[k/101], 5 # k.

In some analyses, it is more convenient to refer to
the power of an oscillation instead of its amplitude.
In which case, the spectrum is called a power spec-
trum. Since the power of an oscillation is effectively
the square of the amplitude, the strongest peaks in
a Fourier spectrum are also the strongest peaks in
a power spectrum. We will not distinguish the two
different types of peaks in the future discussions.
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We refer to patterns in the spectrum in Figure 1
as the structural patterns of the market in later
discussions. We use this spectrum to determine the
relative strengths of natural frequencies such as once
per day (with frequency of 365) and once per week
(with frequency of 52). Here are a few observations
about the structural patterns.

1) The frequency with the most prominent am-
plitude, i.e., the strongest peak, is 52, which
is once per week. This incidentally coincides
with the cycle of weekly report about stock-
piles by the Department of Energy (DOE)
(normally on Thursdays), but the simply trad-
ing operation’s model defined above does not
include such weekly activities.

2) The five frequencies with the strongest ampli-
tudes are the following multiples of 52: 52,
104, 260, 312, and 156, which corresponds to
cycles of once per week, twice per week, five
times per week, six times per week, and three
times per week.

3) There is a peak at the frequency of 365 (once
per day). However, this peak is lower than the
nearby peaks corresponding to events occur-
ring 6 and 8 times a week. This is somewhat
surprising since we would have expected the
cycle of daily opening and closing of trading
operations to appear more prominently in the
spectrum.

4) At higher frequencies, there is a series of
peaks that are harmonics of the weekly cycle
and the daily cycle, i.e., at the frequency that
are multiples of 18980 (=365*52).

5) The peaks at multiples of 18980 form a
straight line in the log-log plot. This indi-
cates a power law relationship between the
amplitude and the frequency, g o< k“, where
g denotes the amplitudes of the peaks and
k denotes the frequencies of the peaks. The
exponent « is -1, which means g o 1/k.
This power law relationship is characteristic
of the step function that describes the market
opening and closing. Thus, this power law
relationship in the Fourier spectrum is exactly
what is expected.

B. FFT of Prices

Next, we apply NUFFT on the prices of the
NG trades between 2007 and 2013. The NUFFT
algorithm is applied to the trading records from

Top 5 Frequency nodes
Year Ist  2nd 3rd 4th  5th
2007 365 730 52 312 416
2008 366 732 52 313 418
2009 365 730 52 312 416
2010 365 730 52 312 416
2011 365 730 52 312 416
2012 366 732 52 313 418
2013 365 730 52 312 416

Table I: 5 Strongest frequency nodes in the NUFFT
spectra, they correspond to cycles of once per day,
twice per day, once per week, six times per week,
and eight times per week.

each of the seven years separately. For each year,
we compute 1,000,000 frequenciesé. The Fourier
coefficients are plotted in Fig 2. As in the pre-
vious figure, the graphs are in the log-log scale
and frequencies are measured by the number of
cycles per year. Since the amplitudes of neighboring
frequencies show little continuity, we have opted
to plot the amplitude-frequency pairs as scattered
points. Furthermore, to limit the number of points
shown, we have elected to ignore those frequencies
with small amplitudes.

The plots in Fig 2 clearly differ from Figure 1.
For example, the most prominent peak in each of
the seven years shown in Fig 2 has the frequency
of once per day, whereas, in Figure 1, the once
per week frequency is the most prominent peak.
Though this observation can be easily explained by
the daily cycle in the actual trading activities, there
is no theoretical guidance to explain whether the
daily cycle or the weekly cycle would be the most
prominent in the Fourier spectrum.

Table I shows the five most prominent peaks in
the spectrum for each year. Notice that these five
frequencies are remarkably stable through out the
years, indicating that the underlying mechanism that
generated these peaks are persistent. Since these
frequencies are different from those of Figure 1, we
conclude that the factors not captured in our simple
model of the market operation must have created
the strong daily peaks. In particular, we speculate
that the daily rushes to trade immediately after the
market open and right before the market close are
the root cause of these once per day and twice per
day cycles observed through Fourier analysis.

6The parameter to NUFFT actually requests 2,000,000 fre-
quencies. Because the prices are real values, the Fourier coeffi-
cients are symmetric. The reported Fourier coefficients are those
associated with positive frequencies.
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Figure 2: Log-log of the magnitude of the Fourier coefficients, 2007 - 2013

We regard the activities at frequencies of once per
day and once per week as low frequencies for this
discussion. Above discussion indicates that NUFFT
has captured the expected features of the trading
activities at low frequencies. Next, we examine the
Fourier components with higher frequencies, such
as once per hour (8760 cycles per year) and once
per minute (525,600 cycles per year).

In Figure 1 we see a prominent power law re-
lationship that indicates the amplitudes of peaks
are inverse proportional to the higher frequencies.
We observe a similar power law relationship be-
tween the amplitudes of the peaks and the higher
frequencies in Fig. 2. To quantify this power law
relationship, we have extracted the prominent peaks
that dominate relatively large neighborhoods’. The
resulting prominent peaks are marked with the
symbol plus ’+’ in Fig 2. We then compute the
exponent of the power law through a regression
on those peaks with frequencies between once per
day and once per minute. The resulting exponents
are shown in Figure 3. Overall, we see that all
seven exponents are significantly larger than -1 in
the structural pattern. This demonstrates that the
amplitudes of the high-frequency components are

"More details on this is given in Song et al. (2014).

Figure 3: The exponents of the power law relation-
ship detected at different years

significantly stronger than can be expected from the
structure of trading operations.

Additionally, we see that the seven data points in
Figure 3 are quite close to the linear regression line
shown, indicating that the exponent of the power
law is increasing from year to year. The implication
is that the relative strength of the high frequency
components in the market have been increasing over
the years.

This type of power law distribution has been



Year Frequency Rel. Strength
2007 525600 6.7
2008 527040 5.1
2009 525600 13.7
2010 525600 20.3
2011 525600 15.6
2012 527040 15.7
2013 525600 15.4

Table II: The frequencies and relative strengths of
the local peaks around once per minute in the
Fourier spectrum of trading prices.

observed by a number of researchers applying dif-
ferent techniques (Miiller et al., 1993; Bouchaud
et al., 2000; Gabaix et al., 2003; Gabaix, 2008; Fil-
imonov and Sornette, 2014). Different explanations
have been proposed in the literature (Miiller et al.,
1997, Hirshleifer and Teoh, 2003; Hommes, 2006;
Lillo and Farmer, 2004). For example, Hardiman
et al. (2013) modeled HFT activities as a Hawkes
process. In the case of the structural pattern shown in
Figure 1, we believe that the power law is caused by
the opening and closing of the market. In the actual
trading data, we believe that the relative strength
at higher frequencies is contributed by increased
amount of automated high-frequency trading activi-
ties (Hasbrouck and Saar, 2013; Smith, 2010)8.

In all seven years shown in Fig 2, we see a
noticeable peak at the frequency about once per
minute (525600 in most years and 527040 in leap
years). In these plots, the relative strengths of the
peaks are not obvious because there are too many
data points nearby. To quantify the strength of this
peak, we compare its amplitude against the average
amplitude of 100,000 nearby frequencies. This ratio
is shown as the relative strength of the peak around
once per minute frequency in Table II. In the recent
five years, these peak amplitudes are at least ten
times stronger than the average of 100,000 nearby
frequencies. Given these once-per-minute peaks ap-
pear in all seven years, there must be persistent
activities in the market with the frequency of once
per minute.

In addition to the relative strengths, this table also
shows the actual frequency of the peak in each year.
We observe that frequencies of the peaks are exactly
once per minute. This precision suggests that the
origin of these peaks may be systematic in nature.

8Even though our observation of increasing HFT activities
agrees with many others, we are also aware of contrary indicators
reported by some researchers (Iati, 2009; Baron et al., 2014)

Top 5 Frequency nodes
Year  Ist 2nd 3rd 4th Sth
2007 6 1462 9 2918 12
2008 4 1464 7 2924 213
2009 4 1452 9 21 2908
2010 8 1 1456 4 11
2011 3 1451 6 2899 204
2012 3 1459 2915 205 1251
2013 6 1462 11 2905 215

Table III: 5 Strongest frequency nodes in the Lomb-
Scargle Periodogram.

A likely source of this precise action would be
automated trading triggered by clocks. In the next
section, we examine the trading volumes and find
another tell-tale sign of precise periodic actions in
the market.

It is possible for NUFFT to produce spurious
features in a spectrum. However, all the peaks we
have reported so far are persistent ones that appears
in all years. It is unlikely that some random spurious
feature would appear as consistent patterns for 7
years. Furthermore, these prominent peaks in the
Fourier spectra corespond to weekly and daily cycles
of known market behaviors and therefore not likely
from the spurious spectra.

Another popular technique for studying spectra of
unevenly sampled time series is Lomb-Scargle Peri-
odogram (Thomson and Emery, 2014). This method
improves upon the Fourier analysis in handling low-
frequency noise introduced by long gapes in the
data records. Using the Lomb-Scargle Periodogram
routine found in MATLAB, and proceeding in the
same manner as with NUFFT, we obtain the follow-
ing log-log scale of amplitude against frequency in
Figure 4.

Again, we have elected to ignore frequencies with
very small amplitudes, and plotted the amplitude-
frequency pairs as scattered points. Table III lists 5
strongest frequency nodes in power spectra.

Figure 4 and Figure 2 have some superficial
similarities. For example, both of them have the
tallest peaks on the left side of the plots and the
peaks with higher frequencies fall off following
power law. These agreements indicate that both of
them are capturing common features present in the
trading records. However, there are also significant
disagreements between the results of NUFFT and
those of Lomb-Scargle Periodogram. For example,
the frequencies of the strongest peaks in Lomb-
Scargle Periodograms have a median value of 1462,
see Table III, which is very close to cycles of
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Figure 4: Log-log of the magnitude of the Lomb-Scargle Power Spectral Density, 2007 - 2013

four times per day (4 x 365 = 1460), while the
strongest peaks from NUFFT has a frequency of
365 (cycling once per day). It appears to the authors
that the once per day cycles could be associated
with daily operations of the market and daily trading
volume variations, it is much hard to come up with
mechanisms that have a cycle of four times per day.
This suggests that NUFFT is much more likely to
have captured the essence of the trading operations.

The Lomb-Scargle Periodogram is designed to
cope with data gaps, however, there is no significant
gap in the trading records of natural gas futures,
therefore, there is no chance for it to shine. The
Lomb-Scargle Periodogram is known to capture
the main peaks (Jenkins and Jarvis, 1999), which
explains to some extend why the high-frequency
peak at once per minute observed in NUFFT results
is sometimes not visible in Lomb-Scargle Peri-
odograms. In Table I, we see the frequencies of the
main peaks are consistent over the seven years of
the trading data, however, the frequencies of the
top peaks can vary quite a lot in Table III. Since
NUFFT produces consistent peaks with frequencies
matching known market features, we regard NUFFT
as more effective in capturing signals from the
trading data.

V. ANALYSIS OF VOLUMES TRADED

In the previous section, we identified a persistent
periodic trading pattern at the frequency of once per
minute. Next, we examine the trading activities in
an “average” minute. Our initial attempt to construct
this “average” minute was to build a histogram of
trading activities in every second of a minute for all
trades in a given year. However, this produced no
clear signal. Next, we describe an approach that is
able to show tell-tale signs of automated algorithmic
trading activities.

A. Fractions of Tradings in a Second

In an earlier publication, Easley et al. (2012)
used a sample of E-mini S&P500 futures trades
between 11/07/2010 and 11/07/2011 to show that
a large fraction of trade in a minute occurs in the
first second. This is a clear sign that a significant
number of trading activities are triggered by clock
and programmed to be executed at the beginning of
a minute. Well-known examples of such time-based
trading strategies include Time-Weighted Average
Price (TWAP) and Volume-Weighted Average Price
(VWAP), both of which recompute the average price
and adjust the trading operations on a regular time
interval. To see whether a similar automated trading



Figure 5: Fraction of trading volumes in a minute
occuring at specific second within the minute from
all trades from 2013.

is present in natural gas futures market, we compute
the same fractions of trades in each minute and show
the results in Figure 5.

If the trades happen at the uniform rate, then each
second of a minute would handle %th of the trade
volumes, about 1.67%. However, in Fig. 5, we see
a number of distinct spikes. Clearly, there is some-
thing interesting in this figure, but we would like to
eliminate influence from the structure of the market
operations before we present a full discussion of the
signals that could be identified with the volumes of
trades.

B. Trades at Market Opening

From Fig. 5, we see that the tallest peak is at
the first second of the 18th hour. The same is true
for data from other years that are not shown in
this paper. The time of this peak corresponds to
the daily opening of the electronic market for NG
futures at Chicago Mercantile Exchange (CME). In
the 45 minutes prior to this 6PM market opening,
electronic orders accumulate in a queue and most
of them would be executed during the first few
seconds, right after market opens. If orders arrive at
the same rate during the market recess as during the
normal business hours, then the number of orders
to be processed during the first second after the
market opens will be as much as 43% of all orders

Year | s=0 | s<4 | s<5 | s<6
2007 0 3 5 6
2008 1 2 2 3
2009 7 9 9 10
2010 11 11 11 11
2011 11 11 12 12
2012 9 12 12 12
2013 10 15 17 17

Table IV: Location (second within a minute) of
the largest volume fraction of trading in a minute
of filtered data (segregated by hour of the day and
averaged over the whole year).

processed during the 6PM hour’. We realize that
the number of trades is different from the number
of orders, and consequently, the fraction of trades
happening during the first second of 6PM hour could
be significantly different from 43%. However, we
would still expect the number of trades processed at
the opening of the market to be considerably higher
than the average number of trades processed. Fig. 6
presents the number of trades processed each minute
of a day.

Given a sample of trades over a year, we ag-
gregate those that have the same hour and minute,
and plot the trade counts. A red plus sign in each
of Figure 6 denotes trades that happened imme-
diately after the market opening. We observe that
the number of NG futures traded right after market
opening is much higher than the subsequent time.
As a large fraction of these trades will be handled
during the first second after the market opens, we
seek to eliminate this structural feature from the
analysis. To do this, we have chosen to discard these
trades during the first minute after market opening.

C. Presence of Algorithmic Tradings

After removing the trades during the first minute
of 6PM hour, we reproduce the fractions of trades
per second shown earlier in Figure 7.

From Figure 7, we determine the second that has
the highest point for each of the 24 hours. Table IV
shows that the number of times the highest point
occur in the first few seconds of a minute. From this

9Denote the arrival rate of orders to be 60« per hour, the
number of orders during the recess (5:15PM-6:00PM) will be
45a and the number of orders arriving during the first second of
all minutes during the 6:00PM hour is «, and the total number
of orders to be processed during the 6PM hour will be 45« +
60a = 106c. Thus the fraction of orders needs to be processed
during the first second of the 6PM hour is (45 4+ «)/106a =
46/106 ~ 43%.



(a) Number (in log scale) of trades occuring at specific
minute of a day in 2007

(c) Number (in log scale) of trades occuring at specific
minute of a day in 2009

table, we see that a significant number of maximums
occur in the first few seconds. For example, in 2013,
15 out of 24 maximums occurred within the first 5
seconds, whereas it is 3 in 2007. Moreover, of that
15 times, 10 of them occurred in the first second.
This trend suggests that compared to 2007 and 2008,
the automated trading based on clock triggers has
become more active in the recent years.

VI. IMPACT OF TEMPERATURE

In the previous sections, we have established
NG futures markets have undergone major changes
in their trading activities in the past few years.
We presume part of the evolution of the trading
algorithms is to better utilize temperature forecasts
to anticipate the demand of natural gas and other
energy commodities. This will allow the prices of
natural gas futures to respond more quickly to
the new information, which is good in general.
However, this may also increase the likelihood that

(b) Number (in log scale) of trades occuring at
specific minute of a day in 2008

(d) Number (in log scale) of trades occuring at
specific minute of a day in 2010

automated trading algorithms would overract to the
forecast errors and causing unexpected volatility and
liquidity pressure.

In our study, we opt to use the temperature
forecast produced by the ensemble model GEFS for
its stability and accuracy. Since GEFS is released
every 6 hours, we divide the trading data into 6-hour
intervals and set the closing price as the price of
each time interval. Since we have only downloaded
weather forecasts from 2013-09-17 00:00 ~ 2014-
06-11 12:00, we will limit the NG futures trading
information to this time window for this part of the
study.

A. Correlation between Temperature and Price

We start our exploration with the simple scatter
plot of the prices versus temperatures in Figure 8.
In Table V, we report the correlation coefficients
between NG futures prices and the mean temper-
ature values. Recall that a correlation coefficient



(e) Number (in log scale) of trades occuring at specific
minute of a day in 2011

(f) Number (in log scale) of trades occuring at specific
minute of a day in 2012

(g) Number (in log scale) of trades occuring at specific minute of a day in 2013

Figure 6: Concentration of NG trade for every minute. The red cross marks trades at the first minute after

market opens at 18:00.

Correlation coefficient
National Average -0.4374
Chicago -0.3711
Minneapolis -0.3468
New York City -0.3853
Dallas -0.4411
Atlanta -0.4575
Los Angeles -0.4281

Table V: Correlation coefficients between NG fu-
tures prices and mean forecast temperature (2013-
09-17 00:00 ~ 2014-06-11 12:00).

near 1 indicates that two variables satisfy a strong
linear relationship. Given the values in Table V
are between -0.3 and -0.4, the evidence for linear
relationship between price and temperature appears
to be weak.

Note that the temperature reported in Figure 8 is
in Kelvin, where 260K is about -13 degrees Celsius
and 9 degrees Fahrenheit, and 290K is 17 degrees
Celsius and 62 degrees Fahrenheit. Overall, there
is a trend of higher prices when the temperature
is low, because there is higher demand on natural



(a) Fraction of trading volumes of 2007 in a minute
occuring at specific second with the first minute of
18:00 removed

(c) Fraction of trading volumes of 2009 in a minute
occuring at specific second with the first minute of
18:00 removed

gas for heating when the outside temperature is
lower. However, as discussed before, we expect
higher temperature could lead to higher natural gas
prices as well, therefore we believe that a more
sophisticated tool is necessary to better understand
the relationship between the temperature and the
NG futures price. In particular, it is necessary to
divide the time series into different temperature
zones to allow the different influence mechanism
to be studied separately.

B. Cointegration

Because the NG futures periodically roll to a new
contract with a longer maturity date, a time series
of the actual trading prices would have periodic
jumps due to these contract changes. In the Fourier
analysis conducted in the previous sections, since
these periodic jumps in prices were happending

(b) Fraction of trading volumes of 2008 in a minute
occuring at specific second with the first minute of
18:00 removed

(d) Fraction of trading volumes of 2010 in a minute
occuring at specific second with the first minute of
18:00 removed

every month, we did not notice any obvious impact
on the higher frequency operations. However, for
this study, we found it necessary to remove these
price jumps. A common approach of removing the
price gaps caused by these contract changes is to
use the rolling price instead of the actual prices.
The rolling prices are computed as follows.

1. For each trade entry at time ¢ with price p;,
compute the change in price, §; = p; — pi—1.

2. Whenever there is a change in contract, com-
pute &; from the second 6-hour time window
and leave out the value from the first time
window after the contract roll.

3. Take cumulative sum of J; to produce a new
time series for price.

To test for cointegration, we regress the rolling
price on GEFS data, and run an augmented Dickey-
Fuller (ADF) test on the residuals for a unit root



(e) Fraction of trading volumes of 2011 in a minute  (f) Fraction of trading volumes of 2012 in a minute
occuring at specific second with the first minute of occuring at specific second with the first minute of
18:00 removed 18:00 removed

(g) Fraction of trading volumes of 2013 in a minute occuring at specific second
with the first minute of 18:00 removed

Figure 7: Concentration of filtered NG trades for every hour at each second, irrespective of the minute

(Dickey and Fuller, 1979). If the p-value associated Neslt\){'ork g 'SV(;’;;;
with this test is less than 0.05, we can conclude Minneapolis 021331
that the rolling price and the GEFS forecast are Atlanta 0.92450
cointegrated with confidence level of 95%. The ]_“A 0.52416
. Lo . . L Chicago 0.17413
implication here is that some linear combination of Dallas 0.91643
the two data sets is stationary, which describes a Population-weighted national average | 0.61249

particular kind of long-run equilibrium relationship,
or an error correcting model. By the Engle-Granger
representation theorem, we can then say that the
forecasted temperature is an error correction model
(ECM) of the rolling price (Engle and Granger, 1987).

Table VI: p-value for all cities, from 2013-09-17
00:00 to 2014-06-11 12:00



(a) Chicago

(c) New York City

(e) Los Angeles

(b) Minneapolis

(d) Dallas

(f) Atlanta



(g) Population weighted national average

Figure 8: Scatter plots for cities using mean forecast temperature (2013-09-17 00:00 ~ 2014-06-11 12:00).

Figure 9: Rolling price and average of forecasted
temperature (in Kelvin)

Our two time series are shown in Figure 9.
Table VI shows that the p-values are all much larger
than 0.05, which indicates that the cointegration test
fails if all data points are used. As discussed earlier,
there are two different ways temperature could affect
the demand, and therefore, the price of natural gas.
Next, we explore how to split the time series so
that the interaction between the forecast temperature
and the price might be more easily captured by
cointegration.

Since we do not know for sure if temperature
forecast cointegrates with price, we first explore if
these two variables display such a relationship in
any part of the time window. There are encouraging
signs that the two cointegrate at least in some
time intervals. For example, if we exclude data

Figure 10: p-values of each case, with starting date
as a point on the x-axis to 2014-06-11 12:00

from 2013-09-17 00:00 to 2013-10-31 18:00, the
p-value of the national average drops to 0.06, and
the p-value decreases as more dates are excluded.
Furthermore, if we work with data starting from
2013-11-01 00:00, the resulting p-value is 0.065,
and for starting date of 2013-11-01 06:00 or later,
the p-value becomes less than 0.05. Figure 10 shows
how p-value changes for all 7 cases if the starting
dates are changed.
Three observations appear to be relevant.
1) Except for Los Angeles, p-values of the others
only start to increase after 2013-11-01.
2) Since the average temperature of Los Angeles
is much higher than those of other cities,



Figure 11: p-values after dividing the data into 2
parts (in log scale).

Splitting Date
2013-11-18 06:00

Ist p-value (p1)
0.00683

2nd p-value (p2)
0.00896

Table VII: Optimal splitting date, and associated p-
values for each segment.

natural gas is less likely to be used for heating
in LA. It makes sense that relative to others,
LA’s p-value does not vary too much.

3) The national average’s p-value becomes less
than 0.05 only after October, which roughly
coincides with the start of a new season. This
suggests forecast data should be divided in
order to take into account of seasonality.

Now we know that at least for some period
of time, the price cointegrates with the forecasted
temperature. Next, we explore the data to see if
the time window could be split into two where
the two variables cointegrate in each time window
separately. We plot the p-values of these two time
windows against the splitting point in Figure 11,
where the First partition denotes p-value of data
from 2013-09-17 00:00 to a point on the x-axis, and
the Second partition for the remaining part.

From Figure 11, we could choose a date at which
both p-values are less than 0.05. Since there are
a number of dates satisfying this requirement, we
choose a date that minimizes p; + p2. The result of
this minimization is shown in Table VIL.

Clearly, we could divide the time series into two
time windows and in each time window the temper-
ature forecast cointegrates with the price. However,
the two partitions do not resemble common notions
of seasons. In particular, the range of the second
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Figure 12: 2 p-values for data after 2013-10-11
06:00 (in log scale).

division extends multiple seasons. Next, we explore
whether spliting the time seres into three time win-
dows could better match appropriate seasons. To do
this, we first choose a split point that minimizes
p1. From Figure 11, minp; is found in 2013-10-
11 06:00. We set this to be the first split date,
and proceed to find the second split point in the
remaining portion of the time series. The p-values
for different split dates are shown in Figure 12.

Based on Figure 12, the optimal split dates that
minimize the sum of the p-values of the next two
partitions is November 18 2013 as shown in Table
VIIL

The three divions from Table VIII have similar
problem as the two division from Table VII, i.e.,
the last division covers a long period of time and
spans multiple seasons. Next, we choose the end
point of the first division to be 2013-11-18 06:00,
and then proceed to find the second split point that
minimizes ps + ps3, see Figure 13.

The two split points and the p-values from the
three time windows are listed in Table IX.

In this case, the last time window is very small
and the largest time window still spans multiple
seasons. Next, we move the first split point to be
2013-12-04 06:00 and proceed to find the second
split point that minimizes ps + p3. We record the
p-values in Figure 14 and Table X.

After a number of tries, we finally arrive at two
split points that reasonably match the convential
notion of seasons, and within each time window,
the augmented Dickey-Fuller tests give us p-values
that are much less than 0.05, which indicates that
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Ist Splitting Date | 2nd Splitting date

Ist p-value, p1

2nd p-value , p2 | 3rd p-value, p3

2013-10-11 06:00 | 2013-11-18 06:00

5.668355e-22

3.944314e-5 8.9599¢-3

Table VIII: Optimal splitting dates for three partitions, and associated p-values for each segment.

Ist Splitting Date | 2nd Splitting date

st p-value, p1

2nd p-value , p2 | 3rd p-value, p3

2013-11-18 06:00 | 2014-06-04 18:00

0.00683

0.002590 0.000009

Table IX: Second optimal splitting date, and associated p-values for each segmen

(=3

Ist Splitting Date | 2nd Splitting date

1st p-value, p1

2nd p-value , p2 | 3rd p-value, p3

2013-12-04 06:00 | 2014-04-01 06:00

0.003096

0.002950 0.001817

Table X: Optimal splitting date, and associated p-values for each segment

Figure 13: 2 p-values for data after 2013-11-18
06:00 (in log scale).

Figure 14: 2 p-values for data after 2013-12-04
06:00 (in log scale).

GEEFS forecast temperature cointegrates with the NG
futures price within each time window. This division
of the time series into seasons is necessary because
in different seasons the temperature has different
impact on the demand and therefore price of natural
gas. Since the temperature cointegrates with the
price, by the Engle-Granger representation theorem,
the former is an error correction model of the price.

C. Impact of Forecast Errors

We now discuss the accuracy of GEFS tem-
perature forecasts. For each forecast horizon, we
evaluate the standard deviation of the difference
between the predicted and the observed values. As
the forecasting model has time horizon of 16 days
(or 384 hours), carrying out this process for each
6 hour interval yields 64 sets of standard deviation
values.

We have shown from above that partitioning the
data is necessary in order to take into account sea-
sonal patterns in weather. We do the same here, and
note how the standard deviations vary for different
timeframe and horizon shown in Figure 15.

In the 2nd partition (corresponding to the winter
session), we observe significant rise in standard
deviations, because the winter storms could change
the temperatures quickly. Forecasts for the next
96 hours, and onwards, are shown to carry much
volatility. Predictions made for the summer are
relatively stable, in that the majority of errors lie
within a 1 degree interval. For GEFS during the
autumn, which closely matches with the time frame
of the Ist partition, we observe a moderate increase
in the standard deviations, its contour closely resem-
bling that of the winter season. Nevertheless, the
maximum error of 3 degrees is only attained for
the time horizon of 384 hours. Figure 15 provides
concrete evidence that even the forecasting model



Figure 15: Standard Deviation of GEFS Forecasting
Errors

known to be most reliable could have significant
errors, which might contribute much volatility to the
market.

To further our cointegration analysis and assess
the market’s adaptibility when an error in tempera-
ture is introduced. We carry out the following steps
for each partition.

1) For each 6-hour time interval, we are given 64
sets of forecast temperatures. Together with
rolling prices, construct an error correction
model, using the constant deterministic regres-
sor (Pedroni, 1999).

2) Based on the model created, identify the
equilibrium price and temperature, and denote
them by (Equil. Price, Equil. Temp).

3) Introduce the error in temperature to
Equil. Price. This corresponds to the standard
deviation of forecast temperature at each
horizon, and are plotted in Figure 15.

4) Label the new temperature by New Temp. Us-
ing the ECM model created above, predict the
next 1000 sets of values from (Equili. Price,
New Temp).

5) Impose the tolerance € = 0.01. If the price
difference of two consecutive data is less than
€, declare this to be the new equilibrium price
and temperature.

6) Express the difference between the new and
the old equilibrium price in terms of the
standard deviation of daily returns.

In Tables XI ~ XIII, ‘Equil. Price’ denotes
the original equilibrium price based on the ECM
created, ‘Displacement’ the new equilibrium price
after noise is introduced to the weather forecast, and
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‘Convergence’ the number of steps needed to attain
error less than 0.01. The analysis sheds light on the
role played by the forecasting model. In the spring
(Table XIII), the mean of the percent difference in
terms of standard deviation of daily returns is 17%.
This implies that the forecast variability contributes
to 17% of the standard deviation of daily returns.
The mean in the fall (Table X1) is 1.23%, and 4.97%
in the winter (Table XII). We note that although the
percentages for the fall (Table XI) and the winter
(Table XII) are small in comparison to that of the
spring (Table XIII), differences between the new and
old equilibrium prices are much greater.

We remark that the cointegration and ECM anal-
ysis further highlight the role GEFS actively plays
in formulating errors in standard deviation of daily
returns, and can benefit regulators who need to
assess the risks posed by a greater presence of
automated traders, and microstructural researchers
who can take the discovered patterns into account
when developing their own models.

VII. SUMMARY

In this study, we demonstrate a number of signal
processing tools could be used to extract useful
patterns from the trading records of natural gas
futures. We considered three sets of techniques,
Fourier analysis, Lomb-Scargle Periodogram, and
co-integration. Fourier analysis on trade data re-
vealed the the high-frequency components are in-
creasing over the past few years, which agree with
the general rise of high-frequency trading. Fourier
analysis also detects once per minute signal with
increasing in magnitude in the recent data. The
precision of the frequency suggests that there are au-
tomated trading based on clock. In fact, we find that
many more trades happen during the first second of
a minute, which again is an indication of automated
trading triggered by clock. This was especially true
for 2010, 2011, and 2013, and gives a convincing
proof that TWAP and VWAP are likely responsible.

We use the co-integration technique to study
the relationship between temperature forecast and
natural gas futures price. The results indicate that
the temperature forecast and natural gas futures
price are co-integrated when the trading data are
separated into seasons. This is necessary because
the mechanism relating the temperate and price
are different in different seasons. Furthermore, we
analyze the role GEFS plays in determining natural
gas futures price, and presented evidence that it



Horizon | Equil. Price | Displacement | Conv. steps | SD introduced | % Diff in SD of daily retu.
24 -0.1802 -0.1826 3 0.4265 0.36
48 -0.1697 -0.1866 4 0.5964 2.56
72 -0.1494 -0.1633 4 0.7697 2.10
96 -0.1463 -0.1570 2 1.0353 1.62
120 -0.1573 -0.1741 3 1.2439 2.55
144 -0.1590 -0.1810 2 1.5956 3.34
168 -0.1414 -0.1575 2 1.9551 2.44
192 -0.1231 -0.1243 2 2.1750 0.19
216 -0.1166 -0.1195 2 2.2910 0.43
240 -0.1242 -0.1259 2 2.5972 0.26
264 -0.1361 -0.1449 2 2.7846 1.34
288 -0.1420 -0.1496 2 2.8205 1.15
312 -0.1576 -0.1601 2 2.8060 0.37
336 -0.1624 -0.1661 2 2.8913 0.55
360 -0.1734 -0.1721 2 2.9393 0.19
384 -0.1766 -0.1748 2 3.0227 0.28

Table XI: ECM Analysis for 1st (fall) partition (2013-09-17 00:00 to 2013-12-04 06:00).

Horizon | Equil. Price | Displacement | Conv. steps | SD introduced | % Diff in SD of daily retu.
24 1.5461 1.5366 1 1.1110 3.49
48 1.5424 1.5213 1 1.6516 7.72
72 1.5693 1.5501 1 1.9690 7.02
96 1.6309 1.6195 1 2.2571 4.16
120 1.6273 1.6141 1 2.5415 4.83
144 1.5755 1.5605 1 2.9440 5.47
168 1.5265 1.5106 1 3.3490 5.84
192 1.5018 1.4835 1 3.5896 6.69
216 1.4673 1.4457 2 3.9473 7.88
240 1.4903 1.4744 2 4.2765 5.81
264 1.5697 1.5600 2 4.3357 3.54
288 1.6574 1.6530 2 4.3406 1.60
312 1.6959 1.7027 2 4.5546 2.48
336 1.7184 1.7281 2 4.7198 3.53
360 1.7442 1.7555 2 4.8012 4.12
384 1.7586 1.7731 2 4.8180 5.33

Table XII: ECM Analysis for 2nd (winter) partition (2013-12-04 06:00 to 2014-04-01 06:00)

Horizon | Equil. Price | Displacement | Conv. steps | SD introduced | % Diff in SD of daily retu.
24 1.9312 1.9269 2 1.6056 11.33
48 1.9287 1.9251 2 2.2411 9.56
72 1.9131 1.9109 2 2.2714 5.89
96 1.9070 1.9064 2 2.3053 1.60
120 1.9274 1.9258 2 2.3227 4.02
144 1.9646 1.9590 2 2.3203 14.51
168 1.9844 1.9770 1 2.3889 19.51
192 1.9843 1.9725 1 2.5427 31.01
216 1.9697 1.9615 1 2.5797 21.39
240 1.9515 1.9428 1 2.6741 22.69
264 1.9344 1.9269 2 2.7650 19.68
288 1.9295 1.9328 2 2.7545 14.92
312 1.9284 1.9210 2 2.7426 19.09
336 1.9320 1.9222 1 2.7269 25.74
360 1.9383 1.9269 1 2.7815 29.67
384 1.9322 1.9233 2 2.8564 23.15

Table XIII: ECM Analysis for 3rd (spring) partition (2014-04-01 06:00 to 2014-06-11 12:00)
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is an error correction model. We estimated that a
significant percentage of the daily volatility in NG
prices is caused by weather forecasting errors. Even
for the most accurate model, GEFS, temperature
forecasting errors may be responsible for 20% of
the daily volatility in this market.
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