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Abstract

Medium frequency trading strategies include all trading activities, that do not require market

microstructure analysis on one side and significantly depend on market impact on the other side.

The most important difference from high frequency trading is the ability to analyze big amount

of data using complex algorithms. Portfolio management in this case is the dynamic process,

combination of signal (alpha) discovery and optimal execution on the level of trading scheduling.

We used close price and trading volume time series for the list of S&P 500 companies that exist in

an index since the beginning of 2008 at least. In this paper we present signal generation approaches

as well as optimization of portfolio transactions. Formally the performances of medium frequency

statistical arbitrage strategies are much better than the performance of their benchmarks, but

they are very sensitive to the quality of trading engine and optimization software.

In this minor revision we added the results of out-of-sample tests and explanations of terms

and methodology.
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1 Signal Generation

We consider N time-series of logarithmic prices St = (St1, St2, . . . , StN ) of the length T and corre-

sponding log-returns R

Rtn = Stn − St−1n, n = 1, 2, . . . N, t = 1, 2, . . . T, R0n = 0

We assume a linear regression model

y = Xβ + ε, (1)

where y can be price or return time-series, c is a constant vector, β is a k×1 vector of coefficients,ε

are orthogonal to factors X residuals.

1.1 Regression on Indices and Largest Principal Components

The very first idea that can be exploited is the comparison of individual stocks and index time-series.

We have a single not trivial factor.

The regression equations for return and price series are

R = [1 Rind]β + ε

S = [1 t Sind]β + ε,
(2)

t = [1, 2, . . . t]′, is the vector of constant trend and 1 = [1, 1, . . . 1]′ is the constant vector of the

same length.

The residuals of regression equations (2) are our first candidates for trading strategy signals α:

α = −ε, ε = My = (I −Hat)y, (3)

where Hat and M are symmetric, idempotent matrices.

Hat = X(X′X)−1X′ (4)

The profit and loss (PnL) data for optimized portfolios presented on figure (1) and figure (2).

The Sharpe ratios (SR) for return and price series based strategies are close, but the return with the

second approach is much higher plus the first strategy has a turnover (the ratio of average absolute

value of trading order to the sum of absolute values of portfolio positions) that is greater then 100%.

Firstly, it means that the daily frequency is too low: we still hold the position when the sign of the

signal is opposite. Secondly, such a high turnover leads to high transaction cost. We will analyze

that subject in details in next section. In the meantime we just remind that with 100% turnover and

transaction cost of 2 basis points (bps) the annualized return would be reduced by 5%.

The next step is to use some specific benchmarks. We can use ETFs or make more quantitative

choice - as a regressor we take the eigenvector that corresponds to the largest eigenvalue or the most
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Figure 1: Regression of return time-series on SPY.

Annual return equals to 3.65 %, Sharpe ratio - 1.97,

turnover - 159%, max drawdown - 1.31%

Figure 2: Regression of price time-series on SPY.

Annual return equals to 5.55 %, Sharpe ratio - 2.16,

turnover - 33%, max drawdown - 2.49%

principal component. S&P500 index we split to 10 Global Industry Classification Standard (GICS)

sectors. The regression equation for principal components can be simplified: each time-series can be

presented as a combination of principal components

y = Xβ, (5)

X is a T ×N matrix of components and β is a N × 1 vector of coefficients. The residual of regression

to the set of principal components is also a regression - to complementary set of orthogonal vectors

y = X1β1 +X2β2, (6)

X1 and X2 are T × k and T × (N − k) matrices. In matrix form

Y = X1B1 +X2B2, (7)

where Y is a portfolio of N stock time-series, matrices B1 and B2 consists of k and N − k vectors of

coefficients. Let us denote matrix of eigenvectors as V and diagonal matrix of eigenvalues as Λ. Also

let the first term in eq.(7) be the main part and the second term - the residual of regression. Then

ε = X2B2 = X2(X′2X2)−1X′2XV
′ = X2Λ−1

2 [Λ20]V ′ = X2[E20]V ′ = Y V2V
′
2 (8)

where E2 is a k × k identity matrix, 0 is k × (N − k) zero matrix. Figure 3 and figure 4 show

the PnL of the strategies on assumption that ”fair price” of the stock follows the move of the largest

principal component of the sector. The difference between correlation and covariance matrices based

calculations are not significant: variance/covariance coefficients are comparatively uniform inside the

sectors of large cap stocks.
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Figure 3: Regression of price time-series on the

largest principal component. Covariance matrix. An-

nual return - 6.25 %, Sharpe ratio - 2.0, turnover -

34%, max drawdown - 2.3%

Figure 4: Regression of price time-series on the

largest principal component. Correlation matrix. An-

nual return - 6.13 %, Sharpe ratio - 1.89, turnover -

33%, max drawdown - 2.7%

Besides correlation and covariance matrices it is possible to consider more general matrix

C = diag(σ)
γ ·Cov· diag(σ)

γ
(9)

or

Ci,j = (σiσj)
γ+1ρi,j (10)

where Cov is a covariance matrix. σ is a vector of standard deviations, ρi,j is a correlation

coefficient between stocks i and j. With γ = 0,−1 matrix C becomes covariance and correlation, but

those numbers are not sacred. For example the infra-correlation γ < −1 (figure 5) and ultra-covariance

γ > 0 (figure 6) matrices generate strong signals.

We can add the next largest principal component or combine two previous cases. Two components

give the similar result, and eigenvector combination with index or three largest principal components

make PnL lower. Figures 7 - 11 show the output of the strategy with regression on 2 principal

components.

1.2 ”Noise” Strategies

Bouchaud and Potters [8] showed that the density of the eigenvalues of empirical S&P500 stocks daily

returns correlation matrix could be perfectly fit by theoretical curve for purely random time-series

correlation matrix except for the very few highest eigenvalues. They concluded that a large part of

the empirical matrices must be considered as noise. We try to use this noise for the next step in our

strategy building, considering the regression on few smallest principal components as a signal. Instead

of fixing the number of eigenvalues we fix the percentage of variance they cover. We sort eigenvalues
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Figure 5: Regression of prices on the largest princi-

pal component. Infra-correlation matrix (γ = −2).

Annual return - to 6.27 %, Sharpe ratio - 1.80,

turnover - 33%, max drawdown - 3.43%

Figure 6: Regression of prices on the largest princi-

pal component. Ultra-covariance matrix (γ = 2). An-

nual return - to 7.37 %, Sharpe ratio - 2.15, turnover

- 36%, max drawdown - 2.06%

Figure 7: (γ = −3).

Sharpe ratio - 1.95.

Figure 8: (γ = −1).

Sharpe ratio - 2.01.

Figure 9: (γ = 0).

Sharpe ratio - 2.04.

Figure 10: (γ = 1).

Sharpe ratio - 2.01.

Figure 11: (γ = 3).

Sharpe ratio - 2.19.

and then draw the line between ”fair” price and residual when the sum of small eigenvalues exceed the

given fraction of the total sum. Figures 12 - 13 show how 1% of variance works as a signal. Tables

1 - 2 give more detailed information for the results of modelling with different residual variances

RV . Other parameters: PnL stands for profit and loss, TO ia a turnover and DD is a maximum

drawdown. On all PnL plots maximum drawdowns indicated by red color. We used different values of

additional parameters, such as aggressiveness of mean-variance optimization coefficient λ and exposure

to variance γ to illustrate sensitivity to them. Analysis of volatility of output parameters in tables is

the best way to estimate strategies more conservatively, avoiding overfitting.

1.3 Fractional Integration

Fractional Brownian motion (fBm) and Fractional Gaussian noise (fGm) Before we worked

only with conventional price and return time-series. Now we consider the cases between, i.e. con-

sider fraction-integrated time-series. Fractional integration is based on Couchy formula for repeated

6



Figure 12: Regression of price time-series on the 1%

of smallest principal components. Covariance matrix

Figure 13: Regression of price time-series on the 1%

of smallest principal components. Correlation matrix

RV% 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

PnL% 5.19 6.79 7.42 7.10 7.78 7.47 7.41 7.06 7.69 6.75

SR 3.0 3.26 3.28 2.85 2.98 2.77 2.66 2.52 2.65 2.23

TO 1.15 1.12 1.08 1.04 1.02 0.99 0.96 0.94 0.91 0.89

DD% 1.53 1.10 1.26 1.46 1.24 1.44 1.69 2.23 1.73 2.1

Table 1: Regression on smallest principal components γ = −1; λ = 0.5·10−4, RV is a residual variance,

PnL stands for profit and loss, TO ia a turnover and DD is a maximum drawdown

integration

Inf(x) =
1

(n− 1)!

x∫
0

(x− t)n−1f(t)dt (11)

Its generalization for real n is straightforward

Iνf(x) =
1

Γ(ν)

x∫
0

(x− t)ν−1f(t)dt (12)

The corresponding Holmgren - Riemann - Liouville fractional integral [9] defines the stochastic process

XH(t) =
1

Γ(H + 1/2)

t∫
0

(t− s)H−1/2dBs, (13)

dBt is a white noise, H is a Hurst exponent. Equation (13) is different from the stochastic integral

representation of fractional Brownian motion (fBm) in classic Mandelbrot and Van Ness paper [9],

but they are equivalent for our purposes.
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RV% 1 2 3 4 5 6 7 8 9 10

PnL% 5.18 4.43 5.24 5.31 5.79 6.29 5.90 5.75 5.79 5.85

SR 2.99 2.17 2.32 2.13 2.23 2.26 1.98 1.88 1.84 1.83

TO 0.77 0.67 0.61 0.56 0.53 0.51 0.49 0.47 0.45 0.44

DD% 1.34 1.64 1.83 3.23 2.35 3.15 3.27 2.86 2.54 2.57

Table 2: Regression on smallest principal components γ = −0.6; λ = 2·10−4, RV is a residual variance,

PnL stands for profit and loss, TO is a turnover and DD is a maximum drawdown

XH(t) =
1

Γ(H + 1/2)

{ 0∫
−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dBs +

t∫
0

(t− s)H−1/2dBs

}
, (14)

Another way to get fractionally integrated time-series is to apply a recursive algorithm for fractional

differencing to integrated I1 series.

(1−D)ν(I1X) = I1−νX (15)

(1−D)νxt = (1 +
ν

1!
(−1)1D1 +

ν(ν − 1)

2!
(−1)2D2 + . . .)xt =

∞∑
i=0

Cixt−i, (16)

where D is a shift operator: Dxn = xn−1 and coefficients Ci have obvious recursive rule:

C0 = 1;Ci = Ci−1
i− ν − 1

i
(17)

A normalized fractional Brownian motion is uniquely characterized by the following properties:

• XH(t) has stationary increments;

• XH(0) = 0 and E(XH(t)) = 0 for t ≥ 0;

• EX2
H(t) = t2H for t ≥ 0;

• XH(t) has a Gaussian distribution for t > 0.

From the first three properties it follows that the covariance function is given by

ρ(s, t) = EXH(s)XH(t) =
1

2

{
t2H + s2H − (t− s)2H

}
(18)

for 0 < s ≤ t. For Gaussian processes, the mean and covariance structure determine the finite-

dimensional distributions uniquely.Therefore, from homogeneity of Equation (18)we conclude that

fractional Brownian motion with Hurst parameter H is self-similar with Hurst parameter H.
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Figure 14: Fractional Gaussian noise and Fractional Brownian motion

The incremental process RH = XH(k+ 1)−XH(k+ 1), k = 0, 1 . . . of fractional Brownian motion,

which is called fractional Gaussian noise has a standard normal distribution for every k, but there is

no independence. The corresponding autocovariance function

ρR(k) =
1

2

{
|k − 1|2H − 2|k|2H + |k + 1|2H

}
(19)

is equal to zero only for H = 1/2. The fBms corresponding to 0 < H < 1/2, 1/2 < H < 1, and

H = 1/2, differ in many significant ways. If 1/2 < H < 1, then the covariance is positive and series

diverges

ρR(k) > 0; k 6= 0

∞∑
k=0

ρR(k) =∞

On the other hand, if 0 < H < 1/2, the covariances are negative and the sum of their absolute values

converges. We illustrate this behavior on figures (14). A positive covariance (bottom row) means

that positive (negative) returns are followed by returns of the same size more frequently, and we can

expect cluster phenomena. A negative covariance (top row) leads to strong intermittency or,in other

words, to mean-reversion pace. A case H = 1/2 (middle row)is special: this is a classic Gaussian

sequence of independent identically distributed variables or white noise.

Spectral Analysis For stationary stochastic processes, the spectral density is computed as

follows [10], [11],[12]:

f(λ) = 2 sin(πH)Γ(2H + 1)(1− cosλ)
[
λ−2H−1 +

∑{
(2π + λ)−2H−1 + (2π − λ)−2H−1

}]
(20)

In the article [12] the approximation for the sum S(λ,H) at the right side of (20) was suggested

S(λ,H) = (1.0002− 0.000134λ)
{
S3(λ,H)− 2−7.65H−7.4

}
S3(λ,H) = Σ3

j=1

{
(a+
j )−2H−1 + (a−j )−2H−1

}
+

(a+
3 )−2H + (a−3 )−2H + (a+

4 )−2H + (a−4 )−2H

8Hπ
(21)
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Figure 15: S&P500 Hurst parameters. The mean and the mean± 2 ∗ std lines

where a±j = 2πj ± λ
Figure 15 shows the estimation of Hurst parameters for the S&P500 stocks for the last 5 years. The

mean is equal to 0.47 and standard deviation is equal to 0.036. Figure 16 illustrates in log-log scale

different colored Gaussian noises. The color was calculated as the weighted by average amplitude of

the third part of spectrum RGB mixture. Higher amplitude for higher frequency (”blue noise”) means

negative covariance,strong intermittency or fast up and down alternation. This is a characteristic f

hydrodynamic turbulence. At the right upper corner you can see a typical spectrum of stock return

series with the Hurst parameter H = 0.45. With H = 0.5 we would have perfectly white noise.

On the other side of whiteness we can see the ”pink noise” that getting more and more ”pure red”

with the H −→ 1. It is featured by a ”strong aftereffect”, ”persistence” and ”long memory”. The

parameter H between 0.5 and 1 is what H. Hurst himself observed in the fluctuations of yearly run-

offs of Nile and some other rivers. Long memory was discovered in characteristics of high frequency
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Figure 16: Fractional Gaussian noises spectrum: blue H=0.01, almost white (H=0.45), pink(0.80) and Brownian

trading, particularly in a series of signs of trades. The ”Brownian noise” is the spectrum of Gaussian

Brownian motion (a cumulative sum of ”white noise”) and a mixture of mostly red and ”black noise”

(zero frequency). It is different from other cases because it is not a stationary process that should

have 0 < H < 1.

Fractional Brownian motion trading strategies Figures 17 and 18 show Hurst parameters

for principal components sorted by eigenvalues. At left side of the figures the axis X (logarithmic) is the

cumulative relative variance in percents that cover principal components from the least volatile to the

current one. In sample, with 1202 time points and 466 series we see that the least volatile principal

components are stationary. If we could find stationary out of sample price time-series, we would

have a perfect trading strategy. The lower row of figures 17 and 18 prove the complete dissipation

of that property on the next one year interval. Fractional differentiation doesn’t give any visible
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Figure 17: Hurst parameters for prices. Upper row

- in sample, lower row - out of sample

Figure 18: Hurst parameters for fraction - integrated

return. Upper row - in sample, lower row - out of

sample.

improvements. However, the positive ”pre-tax” profit of our strategies confirms that the cointegrated

systems do not disappear instantly. Figures 19 - 22 show the dynamics of trading portfolio with the

Sharpe Ratio up to 4.10.

Figure 19: Regression of fractionally integrated re-

turn on the 4% of smallest principal components. Co-

variance matrix. H = 1/3

Figure 20: Regression of fractionally integrated re-

turn on the 4% of smallest principal components.

γ = −2/3, H = 1/3

We added figures 23 - 24 to show results of out-of-sample tests for the same set of parameters as

at 2 previous plots.
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Figure 21: Regression of fractionally integrated re-

turn on the 4% of smallest principal components.

γ = −0.7, H = 0.3

Figure 22: Regression of fractionally integrated re-

turn on the 0.3% of smallest principal components.

γ = −0.6, H = 0.3

Figure 23: Regression of fractionally integrated re-

turn on the 4% of smallest principal components.

γ = −0.7, H = 0.3. Out-of-sample test.

Figure 24: Regression of fractionally integrated re-

turn on the 0.3% of smallest principal components.

γ = −0.6, H = 0.3. Out-of-sample test.
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2 Execution

R. Grinold and R. Kahn [4] and R.Almgren and N.Chriss [1, 3] independently pioneered application

of calculus of variation to the problem of portfolio liquidation. In the meantime most modern trading

engines use some modifications of that approach. They found the maximum of mean-variance utility

function Mean-variance utility is given by

Φ =

∫ t

0

(E(R)− λV ar(R))dt =

∫ T

0

(αx+ h[x]ẋ− λ(Sxσ)2)dt (22)

where S is a stock price

R is an absolute asset price return in $

V ar is a variance of that return

x(t) is a current position in stock

h[x] is a market impact functional

T is a time horizon

λ is a risk-averse parameter.

α(t) is a signal or expected return (drift) α = E(R)

Traditionally impact is divided by two parts: permanent and temporary. Permanent impact is a

linear function of the amount traded only, because otherwise we could move the value of particular asset

cyclically buying and selling the same number of shares but with different speed. We don’t include

this permanent impact in our analysis for two reasons: first - doesn’t depend on trading trajectories

and second - typically the sizes of proprietary traders transactions don’t exceed few percent of average

daily volume (ADV ) and correspondingly are negligible fractions of capitalization.

2.1 Market impact models

Execution price is path-dependent in general through the affect by previous trading history. The

difference between arrival price and execution price a.k.a implementation shortfall is supposed to be

of opposite sign to direction of trade: we pay more to increase our position and get less to unwind it.

h[x] = −
∫ t

0

f(ẋ(τ))K(t, τ)dt (23)

Market impact kernel K(τ, t) is assumed homogenous in volume time K(τ, t) = K(t − τ). Initial

time is set to 0. Market impact is assumed to be linear functional of trading rate

h(t, ẋ) = −
∫ t

0

(η̃K(t− τ)ẋ(τ))dτ

η̃ = η
σ

ADV S0

(24)
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G.K.A.C. model The simplest form of the convolution integral kernel was proposed by Grinold

and Kahn [4] and analyzed in details by Almgren and Chriss [1, 2] (G.K.A.C.)

K(t− τ) = δ(0), Dirac′s delta function

Utility function (22) is given by

Φ[x] = −
∫ T

0

Ψ(x, ẋ, t) dt→ max

Ψ(x, ẋ, t) = −αx+ ηẋ2 + λ(xSσ)2

(25)

Subject to initial and terminal conditions:

x(0) = X0, x(T ) = XT (26)

Maximization of (25) is a standard calculus of variation problem. Applying The Euler equation

∂Ψ

dx
− d

dt

∂Ψ

∂ẋ
= 0 (27)

we obtain

ẍ− k2x = −α̃ (28)

Our solution is a simple generalization of Almgren & Chriss [2] to the drift with exponential decay

x (t) = (X0 + a(0))
sinh (k(T − t))

sinh (kT )
+ (XT + a(T ))

sinh (kt)

sinh (kT )
− a(t)

ẋ (t) =
dx

dt
= − (X0 + a(0))

k cosh (k(T − t)
sinh (kT )

+ (XT + a(T ))
k cosh (kt)

sinh (kT )
− ȧ(t)

(29)

where

α(t) = α0 exp(−γt)
k2 = λ/η̃

α̃ = α/(2η̃)

a(t) is a particular solution of equation (28)

a(t) = −α̃(t))/γ2 − k2)

Exponential kernel The solution (29) is a decent approximation for optimal trajectories on prac-

tice, but it cannot describe the market impact of a single discrete trade (it is a delta-function). The

instantaneous recovery assumption is unrealistic and inconsistent with calibration procedures. To re-

solve those problems we have to replace delta function with some smooth kernel. The function under

integral in (25) is given by:

Ψ(x, ẋ, t) = −αx+ η

∫ t

0

ẋ(τ)K(t− τ)dτ + λ(xSσ)2 (30)
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Calculating variations 1 we obtain the following equation

2λ̃x = Ḟ =
d

dt

∫ T

0

ẋ(τ)K(|t− τ |)dτ (31)

Assuming that the kernel is twice differentiable gives

2λ̃ẍ =
d

dt
(

∫ T

0

ẋ(τ)K̈(|t− τ |)dτ + 2ẋK̇0(0))

Now we plug the exponential kernel

K(t− τ) = β · exp(−β(t− τ))

into generic equations and get the system:

ẍ− λβ2

λ+ β2
x =

β2α+ α̈

2(λ+ β2)

F̈ − β2F = −2β2ẋ

(32)

We presented a solution of the system in simple and familiar form [6]:

x (t) = (X0 + a)B
sinh ((k(T − t) +A)

sinh (kT + 2A)
+ (XT + a)B

sinh (kt)

sinh (kT + 2A)
− a

where

A = ln

√
β + k

β − k
, B =

k√
λ

(33)

For risk-neutral traders (λ→ 0) and α = 0 the optimal schedule under exponential impact relaxation

is a combination of two jumps and straight line between them.

lim
λ→0

x = (X0 −∆X0)
T − t
T

+ (XT + ∆XT )
t

T

∆X0 = ∆XT =
X0 −XT

βT + 2

(34)

Optimal trading strategy with the exponential kernel was the subject of A.Obizhaeva and J.Wang,

[7]. They probably were the first who pointed out to discontinuity of optimal paths at the ends of

time interval and derived equation (34) for risk-neutral traders. Both discrete and continuous regimes

of trading were considered using dynamic-programming approach. They also obtained a solution in

quadratures for more general case, but it is much more complex then our analytical formula.

1

δẋΨ =

∫ T

0
[δ(ẋ(t))

∫ t

0
ẋ(τ)K(t− τ)dτ + ẋ(t)

∫ t

0
δ(ẋ(τ))K(t− τ)dτ ]dt

We change the order of integration for the second integral and get

δẋΨ =

∫ T

0

∫ t

0
ẋ(τ)K(|t− τ |)dτδ(ẋ(t))dt

16



2.2 Multi-periods portfolio trading

We assume that the asset can be traded for unknown number of periods with the breaks between them.

During the breaks the trading rate is zero. The length of overnight (lunch) breaks ∆t is calculated

as the ratio of close-to-open (lunch) variance to day (half day) variance. Inside each active trading

interval we have Almgren & Chriss trajectory:

x (t) = (Xn−1 + α∗)
sinh (k(T − t))

sinh (kT )
+ (Xn + α∗)

sinh (kt)

sinh (kT )
− α∗

ẋ (t) =
dx

dt
= − (Xn−1 + α∗)

k cosh (k(T − t)
sinh (kT )

+ (Xn + α∗)
k cosh (kt)

sinh (kT )

(35)

We assume that the sign of position is held inside time intervals. We consider the simple case

when the α is constant and exists only for the first active trading period.

To define N + 1 of unknown initial and terminal values of our position Xn we have two boundary

equations at the very beginning and the very end

x (0) = X0

x (T ) = 0
(36)

and N − 1 transversality conditions

∂Ψ

∂ẋ

∣∣∣∣tn+0

tn−0

+
∂Ψ

∂ẋ

∣∣∣∣tn+∆t+0

tn+∆t−0

+
dG

dxn
= 0 (37)

where G(xn, tn) =
∫ tn+∆t

tn
Ψ(x, q, t) dt

b c

a b c

a b c
...

...
. . .

. . .

a b

 ·


x1

x2

x3

...

xN−1

 =



r1

r2

r3

...

rN−1

 (38)

Assuming equal time intervals tn = t1 we get:

a = c = 1

b = −2(∆t · k · sinh(kt1) + cosh(kt1))

rn = −α · (2 · (1− cosh(kt1))−∆t · sinh(kt1)/k)

r1 = r1 − x0

(39)

We presented the fast and simple method of solution in appendix (A.2). We extend the execution

time iteratively until the position or direction of trade change their signs. In both cases it means that
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the initial position was liquidated on the last time interval. The optimal time of execution t∗ can be

found applying additional boundary condition for the rate of trade.

x (t∗) = 0

ẋ (t∗) = 0
(40)

Substituting solution 35 for the last interval into (40) we get t∗ = 1
kacosh((xn−1 + α)/α)

2.3 Inventory Management

For portfolio trading the approach will be same, but instead of one equation we will have a system of

ODEs (A.1), that after the orthogonalization gives for each eigenvector the solution of the form (29).

z (t) = Zn−1
sinh (k(T − t))

sinh (kT )
+ Zn

sinh (kt)

sinh (kT )
(41)

For simplification we dropped the price drift term.

Constraints Soft constraints (additional quadratic terms to objective functions) is a flexible tool

to modify the optimal trajectory without changing complexity of the problem. We consider cash

and market neutrality constraints on portfolio level and a combination of cash neutrality and relative

variance on sector level.

Cij = Cij + λcash + λmarket · βiβj (42)

Usually it is not a good idea to apply hard equality constraints to the asset positions as functions

of time. Those constraints would require immediate move regardless of cost of trade. At the same

time the goals like to have cash, market or even sector neutral portfolio at the end of the day are not

hard to achieve.

Näıve and not so näıve strategies It is always a temptation to apply well known from adjacent

areas results to a new problem. In our case the source of solutions is obvious - the Portfolio Manage-

ment. However this natural approach has limitations. The classic mean-variance investment portfolio

optimization is similar but not identical to the dynamic problem of trading portfolio management.

Φ(x) = xtCx→ min (43)

Solving the system above we are looking for the cash-neutral minimal variance portfolio given the

maximum market participation rate. This strategy is naive or shortsighted because we don’t consider
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neither different transaction cost to obtain this intermediate portfolio nor the risk and market impact

during following liquidation. We can improve that approach making strong but reasonable assumptions

about unwinding/hedging trajectories. The optimal time of execution is infinite and a trajectory for

a single stock or independent part of portfolio (eigenvector) is an exponential decay.

Φ(x) = (X − x)tη(X − x) + λ(xtCx+ zt
e2k

k2
z)→ min (44)
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3 Results and discussion

Wide universe. In this section we present more up-to-date, more realistic and on wider universe

results. The methodology we used is similar to the best approaches in Section 1, but the parameter

values and other details of trading strategies are intentionally hidden.

Figure 25: Regression of price time-series. Uniform

capital allocation

Figure 26: Regression of fractionally integrated re-

turn time-series. Uniform capital allocation

Figure 27: Regression of price time-series. Optimal

solution

Figure 28: Regression of fractionally integrated re-

turn time-series. Optimal solution

The strategies shown on Figures 19,20,21,22 look attractive, but we showed the results in a perfect

world without friction, i.e. market impact, fees and other chargers. We simulated perfect world (blue

lines) and adjusted to fees and market impact (green lines) returns on Figures 25,26,27,28 The

results at lower level (Figures 27,28 ) are better then at upper one (Figures 25,26). The results at

upper level were obtained by allocation of 1% of notional capital (in our simulation - $10 million)
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into stocks with 50 highest positive and 50 highest negative signals. Lower level charts proves that

the portfolio optimization is a powerful method to increase return and reduce risk. Optimization

looks as an unconditionally better choice in strategies implementation, but it is not. The special

financial optimization software can be efficient and comparatively friendly for traders but they are

very expensive, e.g. Axioma Portfolio Optimizer. It Is easy to find free or almost free general

optimization packages, but the development and maintenance of trading engines with them requires

more advanced and professional people. From left (Figures 25, 27) to right (Figures 26, 28 )

the theoretical values of Sharpe ratio grow but adjusted ones slightly drop. The reason is in much

higher turnover for fractional integrated time-series. Actually turnover greater then 100% means that

the portfolio rebalancing was overdue: signals have shorter life then intervals between trades. It is an

indication that the more frequent data is required for analysis and, correspondingly, intraday portfolio

rebalancing should be considered.

Out of the box. In the section 1.2 I used the unconventional names ”ultra-covariance” matrix

and ”infra-correlation” matrix. Rather than to coin new terms and ”to multiplied entities beyond

necessity” my intention was to to point out that something useful can exist out of the box - even if we

never saw or heard it. Covariance matrix is the natural measure for the relations between time-series

of similar stocks like the stocks of the same sector of S&P500 index. Largest principal component (the

component with the highest variance) is a good indicator of the sector behavior and can be chosen

as a next generation ETF . Note, that the volatilities of S&P500 stocks are not very different inside

their sectors. For wider universe using covariance matrix for PCA means giving more weights to

most volatile small cap stocks. Correlation (normalized covariance) matrix eliminates that premium.

To give the premium to most solid and ”flat” stocks we need to multiply correlation coefficients by

standard deviations in negative power. The step in opposite direction also can be explained (good

theoretician should be able to explain everything!): more volatile stocks are more sensitive to trends

and therefore serve as better indicators of future returns.

There are many other combinations of time-series and methods of their processing and filtering.

The most obvious one is a combination with the trading volume. Using changes in market value

(returns times volume traded) sequences seems pretty logical. But the opposite operation - calculating

volume time returns, i.e. dividing returns by trading volume looks logical as well and very popular.

Volume traded is better measure of events happened than calendar time. Actually both ideas are

far from perfect as is, because of very high volatility of daily volumes. Short time (including daily

and weekly) volume time-series would completely overshadow the most important price moves. Some

smoothing or different out-of-the-box tricks required to incorporate that additional information.

In-sample or out-of-sample? All time-series combinations and especially data mining such as

smoothing and filtering are significantly nonlinear procedures, all of them make the models less trans-

parent and therefore make proper formal statistic tests hard to design and even harder to believe.
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Pure out-of-sample tests are easy to run for high frequency strategies and almost mentally impossible

for daily trading strategies. Ideally the researcher should tune all parameters in sample leaving at

least a hundred points ( ∼ 5 months ) intact. After single out-of-sample run any further changes in

working version should be postponed for the next 5 months. The possibility to use more sophisti-

cated constructions that could provide some warranty against overfitting, for example, bootstrapping

is very limited because of subtle nature of portfolio level signal generation. A.Inoue and L.Kilian [14]

questioned and ”overturned the conventional wisdom that out-of-sample test results are more reliable

than in-sample test results”. Long time horizon and smooth and wide maximums of PnL functions

(see Table 1 and Table 2) of the most sensitive parameters are more important than unverified virgin-

ity of relatively small samples. Anyway, the electronic form of this publication allow me to respond

promptly to the questions about in-sample - out-of-sample tests and add updated results - see Figures

23 and 24. The results presented are not ”the best” - I didn’t try to maximize the PnL for all static

parameters in in-sample tests or make them dynamic (changing day by day during simulation). Also

I didn’t treat sectors separatively.

Even the most primitive of statistical arbitrage trading strategies, as we saw, can give us formally

the performance that is much better than the historical performance of indices. And this free lunch

is paid by other expenses: investments in smart trading engines and dynamic liquidity adjusted

optimization software.

I don’t discuss Execution section here. There are many fundamental and practical problems in

market impact and optimal execution theories that are not covered in literature. I am going to address

some of them in near future.
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A Appendix

A.1 Multidimensional optimization

Unconstrained N-dimensional optimization could be divided to N one-dimensional problems AC

(2000). We rewrite equations (25) in matrix form

Φ[x] = −
∫ T

0

Ψ(x, ẋ, t) dt→ max

Ψ(x, ẋ, t) = −αtx+ ẋtηẋ+ λ · xtΩx
(45)

where

α is a vector of expected returns

η is diagonal matrix of market impact coefficients.

Ω is a covariance matrix

The chain of linear transformations

ẋtηẋ = ẋtη1/2η1/2ẋ = (η1/2ẋ)t · (η1/2ẋ)

λ · xtΩx = (η1/2x)t(λη−1/2Ωη−1/2)(η1/2x) =

(η1/2x)tV tUV (η1/2x) = (V η1/2x)tU(V η1/2x) = ztUz

(η1/2ẋ)t · (η1/2ẋ) = (η1/2ẋ)tV −1V (η1/2ẋ) = (η1/2ẋ)tV tV (η1/2ẋ) = żtż

αtx = αt(η−1/2V t)(V η1/2x) = ((T −1)tα)t(T x) = αtzz

where

V is a matrix of eigenvectors

U is a diagonal matrix of eigenvalues{k2
1, k

2
2, . . . , k

2
N}

T is the transformation matrix: z = T x

makes the problem split.

Φ[z] = −
∫ T

0

Ψ(z, ż, t) dt→ max

Ψ(z, ż, t) = −αt
zz + żtż + ztUz

(46)

Applying Euler equation to (46) we get the system of N independent differential equations:

z̈i − k2
i z = −αzi i = 1, 2, . . . , N (47)
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A.1.1 Boundary conditions

For the first boundary problem:

x(0) = X0, x(T ) = XT (48)

we present the solution of (47) in the form:

z(t) = S1(t)C1 + S2(t)C2

where

S1(t) and S2(t)are two sets of independent solutions of homogeneous Euler equations

or explicitly


z1

z2

...

zN

 =


sinh(k1(T − t)) 0 . . . 0

0 sinh(k2(T − t)) . . . 0
...

...
. . .

...

0 0 . . . sinh(kN (T − t))



C11

C12

...

C1N



+


sinh(k1t) 0 . . . 0

0 sinh(k2t) . . . 0
...

...
. . .

...

0 0 . . . sinh(kN t)



C21

C22

...

C2N


Multiplying boundary conditions (48) by transformation matrix we get(

S10 S20

S1T S2T

)(
C1

C2

)
=

(
Z0

ZT

)
where

S0 = S(0) ST = S(T )

With our choice for functional form of solution equations to define C1 and C2 would be divided

C1 = S−1
10 Z0 C2 = S−1

2T ZT

If all left or all right (or both) conditions are defined for trading rates instead of initial positions the

procedure is very similar. We just need to replace sinh(.) by cosh(.) in corresponding set of solutions.

Those homogeneous conditions are typical on practice, but if we have to calculate marginal cost of

particular position we should consider more special case:

(x1, x2, . . . , ẋk, . . . , xN )t|t=0 = (X1, X2, . . . , Qk, . . . , XN )t
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We denote a vector on the right side as X̃. The matrix equation for arbitrary constants C1 is

(DkT −1S1)|t=0C1 = X̃ (49)

where operator

Dk =

 E
... 0

... d
dt ...

0
... E


differentiate the k − th row of the matrix at right and leave other elements intact.

A.1.2 Terminal constraints

Usually it is required that at the end of the day portfolio will satisfy to the set of hard constraints,

e.g. cash and β neutrality (total or sector wise), budget constraint and possible fixed exposure to to

some particular stocks or groups of stocks.The problem is described by lagrangian:

Φ[x] = −
∫ T

0

Ψ(x, ẋ, t) dt+G(T,X)→ max

G(T,X) = λt(BtX − c) =

M∑
i=1

λi(β
t
iX − ci)

(50)

where λ = (λ1, λ2, . . . , λM ) is a vector of Lagrange coefficients, B is a (N ×M) matrix. For example

if the only constraint is cash neutrality then

B = (1, . . . , 1)t is a N-dimensional unity vector

As before we change the variable to make liquidity adjusted covariance matrix orthogonal. Additional

term in target function doesn’t depend on internal points and therefore doesn’t change the Euler

equations. What it does change is boundary condition at the right end of time interval. It gives rise

to the transversality condition with terminal value:

Ψż|t=T +GZ = 0

Ψż =
dΨ

dż
GZ =

dG

dZ

G(T,Z) = λt(BtT −1Z − c) = λt(B̃tZ − c)

(51)

z(0) = Z0 ż(T ) + B̃λ = 0 (52)

We present the solution in the form that satisfies initial condition:

26



z(t) =
cosh(k(T − t))

cosh(kT )
Z0 +

sinh(kt)

k cosh(kT )
C (53)

For the constants C we have the system of N +M equations:

C + B̃λ = 0

B̃t(Z0 + S2TC)− c = 0

S2T =
1

k
tanh(kT )

(54)

It follows that

λ =
B̃tZ0 − c
B̃tS2T B̃

C = −B̃λ
(55)

A.2 Multi-period liquidation

The standard approach to solve the tridiagonal system of linear equations is progonka a.k.a Thomp-

son’s algorithm. This algorithm perfectly fits our goal to find the optimal strategy with unknown

terminal time. At first stage of progonka called decomposition and forward substitution we sequen-

tially obtain the values of variables xk under implicit assumption that the next term xk+1 is equal to

zero. Because the risks factors always work in direction of decreasing the absolute value of a position

- the interval where the trajectory cross the line x = 0 would be the last. The algorithm is presented

by the following pseudo-code:

γ1 = b, β = b, n = 1, xn = r1/β, ẋ = −1

while(ẋ < 0 & xn > 0) {

n = n+ 1 Decomposition and forvard substitution

γn = 1/β

β = b− γn
xn = (r − xn)/β

ẋ =
k

sinh(kt1)
((α+ xn) · cosh(kt1)− (xn−1 + α))

}

xn = 0;

for (j = 2) to (n− 1) Backsubstitution

xn−j = xn−j − γn−j+1 · xn−j+1

(56)
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