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1 Introduction

Political agents operate simultaneously at di!erent time horizons. Presidents and prime-ministers

may seek reelection at the end of their terms, but they may also seek many other shorter- or longer-

term goals, ranging from weathering current political setbacks or successfully appoint o"cials to

transforming things like the foreign policy prole of their countries or the social bases of support

for their parties. Besides, most - if not all - political processes of any interest are the result of

a combination of the actions of several agents, who have themselves di!erent short- and long-

term objectives, causing political time-series to combine components that operate on di!erent

frequencies. And in spite of the relative slowness of social, cultural and institutional change, it is

probably unwise to assume, especially over prolonged periods of time, that the underlying processes

generating the time series data we observe are themselves time invariant.

The almost trivial statements above raise a number of rather non-trivial problems in what

concerns the analysis of time series data and the kind of assumptions made about the underlying

process that generates them. Several tools in econometrics that aim at uncovering relations at

di!erent frequencies and dynamic relationships in time series data have already made their way
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into Political Science. Spectral analysis has been used to determine which frequencies play relevant

roles in explaining the overall variance of time series, by decomposing the observed pattern over

time into a spectrum of cycles of di!erent lengths, just as a prism decomposes white light into a

spectrum of colors of di!erent wavelengths or frequencies. In Political Science, spectral analysis

as been applied to the study of terrorist attacks (Enders and Sandler 2000, 2002 and 2006), wars

(Beck 1991), military expenditures (Williams and McGinnis 1992 and Gerace 2002), policy agendas

(Howlett 1998), government popularity (Goodhart and Bhansali 1970; Miller and Mackie 1973,

Richards 1992) and election returns (Lin and Guillén 1998; Merrill, Grofman, and Brunell 2008).

However, there is an important limitation with the spectral analysis approach. First, while

spectral analysis techniques are only appropriate for strictly stationary time-series, many, if not all,

economic and political time-series are, in fact, noisy, complex and strongly non-stationary. Second,

under the Fourier transform used for spectral analysis, the time information of a time-series becomes

very di"cult to uncover. Because of this loss of information, it is hard to distinguish transient

relations or to identify structural changes. As Goldstein (1988, chapter 8) argues, when studying

social phenomena, one should not expect to encounter cycles of perfect xed periodicity, unlike

some cycles we observe in physical processes. Goldstein argues that attempts to decompose long-

run political cycles into their components using spectral analysis (based on the Fourier transform)

are misleading, because they implicitly assume that these political cycles are well approximated

by sine and cosine functions of xed periodicity.

Beck (1991) responds to Goldstein’s criticism of spectral analysis. Beck’s argument is, in

its essence, a statistical one: "any stationary series has a spectral representation, and frequency

analysis is appropriate whenever ARMA analysis is adequate". Beck’s argument is correct. The

spectral representation theorem indeed guarantees that the analysis of stationary processes in the

“frequency domain” is equivalent to “time domain” analysis, based on the autocovariance function.

But Beck’s argument could be reversed. Instead of arguing that if an ARMA representation of a

stationary time-series is adequate then spectral representation is also adequate, one could argue

that if the spectral representation is inadequate to study political time-series then the spectral

representation theorem guarantees that ARMA representations are also inadequate. When we

estimate some ARMA process, we are estimating some coe"cients that summarize the dynamics

of the time series for the chosen time period. As Lebo and Box-Ste!ensmeier (2008) write, "[t]here

is much more we may wish to know – how does it vary over time, how volatile, and what are
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the impacts of di!erent circumstances? For example, a regression coe"cient can tell us how

subjective economic evaluations a!ect leader or party approval over a long period of data, but it

is much less useful in determining how those e!ects may vary in the months leading up to and

following an election". The development of dynamic conditional correlation (DCC) models under

the ARCH/GARCH framework (Engle 2002) provided a way to estimate time-varying correlations

as a function of past correlations and volatilities. Lebo and Box-Ste!ensmeier (2008) used DCC to

address the lack of constancy of evaluations of the economy as predictors of presidential approval.

The implication is that, although very useful, ARMA (and VARMA) models cannot capture all

the features of the data one may be interested in. DCC is indeed an important breakthrough in

addressing the kind of time-varying relationships of which spectral analysis inevitably loses sight.

Still, this method (and others, like Kalman ltering) is completely silent about relationships across

frequencies.

Wavelet analysis helps overcoming these problems in the analysis of the cyclical components of a

time series and of the frequencies that explain its variance. It performs the estimation of the spectral

characteristics of a time-series as a function of time, revealing how the di!erent periodic components

of the time-series change over time. While the Fourier transform breaks down a time-series into

constituent sinusoids of di!erent frequencies and innite duration in time, the wavelet transform

expands the time-series into shifted and scaled versions of a function — the so-calledmother-wavelet

— that has limited spectral band and limited duration in time. As a coherent mathematical body,

wavelet theory was born in the mid-1980s (Grossmann and Morlet 1984, Goupillaud et al. 1984).1

After 1990, the literature rapidly expanded and wavelet analysis is now extensively used in Physics,

Geophysics, Astronomy, Epidemiology, Signal Processing, Oceanography, etc. Unfortunately, and

in spite of all its potential, to our knowledge, this technique has never been used in Political

Science and it is rarely used in Economics. The pioneering work of Ramsey and Lampart (1998),

Ramsey (1999), and Gençay et al. (2001) is largely unknown among social scientists, who reveal a

strong preference for traditional time-series methods, overlooking the potential for using wavelets

to analyze time-series data.2

Probably, the most compelling reason for wavelets not being more popular among us is related

with the di"culty of performing multivariate analysis with it. To overcome this problem, in the

1See Hubbard (1996) for a very nice non-technical historic account of wavelet analysis.
2For a detailed review of wavelet applications to economic data, the reader is referred to Crowley (2007).
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1990s, wavelet tools were generalized to accommodate the analysis of time-frequency dependencies

between two time-series. The cross-wavelet power, the cross-wavelet coherency, and the phase-

di!erence, proposed by Hudgins et al. (1993) and Torrence and Compo (1998) have been applied

in di!erent scientic elds, ranging from Medicine (Zhan et al. 2006) and Epidemiology (Cazelles et

al. 2007) to Astrophysics (Kelly et al. 2003, and Bloomeld et al. 2004) and Geophysics (Jevrejeva

et al. 2003 and Grinsted et al. 2004). Gallegati (2008) and Aguiar-Conraria et al. (2008) showed

that cross-wavelet analysis could be also be applied to study pairs of Economic time-series. While

the (single) wavelet power spectrum describes the evolution of the volatility of a time-series at the

di!erent frequencies, with periods of large variance associated with periods of large power at the

di!erent scales, the cross-wavelet power of two time-series describes the local covariance between

the two variables in the time-frequency space. One can also look at the wavelet coherency as

a localized correlation coe"cient in the time-frequency space. The phase can be viewed as the

position in the pseudo-cycle of the series as a function of frequency, therefore the phase-di!erence

gives us information on the delay, or synchronization, between oscillations of the two time-series.

The paper proceeds as follows. In section 2, we present the continuous wavelet transform,

discuss its localization properties and the optimal characteristics of the Morlet wavelet. We also

describe the wavelet power spectrum, the cross-wavelet power spectrum, the wavelet coherency and

the phase-di!erence and illustrate the usefulness of these tools using simulated data. In section 3,

we propose a new metric that will allow us to estimate a dissimilarity matrix between the electoral

cycles of di!erent states. In section 4, we apply these tools to study presidential electoral cycles in

and across the United States. Section 5 concludes.

2 Wavelets: Frequency Analysis Across Time

To overcome the problems of analyzing non-stationary data, Gabor (1946) introduced the Short

Time Fourier Transform. The basic idea is to break a time-series into smaller sub-samples and

apply the Fourier transform to each sub-sample. However, this approach is ine"cient because the

frequency resolution is the same across all di!erent frequencies. One major advantage a!orded

by the wavelet transform is the ability to perform natural local analysis of a time-series in the

sense that the length of wavelets varies endogenously: it stretches into a long wavelet function to

measure the low frequency movements; and it compresses into a short wavelet function to measure
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the high frequency movements. In order to capture abrupt changes, for example, one would like

to have very short functions (narrow windows). At the same time, to isolate slow and persistent

movements, one would like to have very long functions (wide windows). This is exactly what can

be achieved with the wavelet transform. It is true that the Heisenberg uncertainty principle proves

that there will always be a trade-o! between localization in time and localization in frequency; in

particular, we cannot ask for a function to be, simultaneously, band and time limited. However,

a mother wavelet can be chosen with a fast decay in time and frequency which, for all practical

purposes, corresponds to an e!ective band and time limiting; see Daubechies (1992).

2.1 The Wavelet

In what follows, !2 (R) denotes the set of square integrable functions, i.e. the set of functions

dened on the real line such that k"k :=
R!
"! |" (#)|

2 $# %"& with the usual inner product, h"& 'i :=
R!
"! " (#) '

# (#) $#( The asterisk superscript denotes complex conjugation. Given a function " (#) #

!2 (R), ) (*) :=
R!
"! " (#) +

"!2"#$$# will denote the Fourier transform of " (#) ( We recall the well-

known Parseval relation, valid for all " (#) & ' (#) # !2 (R), h" (#) & ' (#)i = h) (*) & , (*)i & from which

the Plancherel identity immediately follows: k" (#)k2 = k) (*)k2 ( The minimum requirements

imposed on a function - (#) to qualify for being a mother (admissible or analyzing) wavelet are

that - # !2 (R) and also fullls a technical condition, usually referred to as the admissibility

condition, which reads as follows:

0 % .% :=

Z !

"!

|! (*)|
|* |

$* %"& (1)

where ! (*) is the Fourier transform of - (#) & see Daubechies (1992, p. 24).

The wavelet - is usually normalized to have unit energy: k-k2 =
R!
"! |- (#)|

2 $# = 1( The

square integrability of - is a very mild decay condition; the wavelets used in practice have much

faster decay; typical behavior will be exponential decay or even compact support. For functions

with su"cient decay it turns out that the admissibility condition (1) is equivalent to requiring

! (0) =
R!
"! - (#) $# = 0( This means that the function - has to wiggle up and down the #$axis,

i.e. it must behave like a wave; this, together with the decaying property, justies the choice of

the term wavelet (originally, in French, ondelette) to designate -.
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2.2 The Continuous Wavelet Transform

Starting with a mother wavelet -, a family -&'( of “wavelet daughters” can be obtained by simply

scaling - by / and translating it by 0

-&'( (#) :=
1p
|/|
-

µ
#$ 0
/

¶
, /& 0 # R& / 6= 0( (2)

The parameter / is a scaling or dilation factor that controls the length of the wavelet (the

factor 11
p
|/| being introduced to guarantee preservation of the unit energy,

°°-&'(
°° = 1) and 0 is

a location parameter that indicates where the wavelet is centered. Scaling a wavelet simply means

stretching it (if |/| 2 1), or compressing it (if |/| % 1).3

Given a function " (#) # !2 (R) (a time-series), its continuous wavelet transform (CWT) with

respect to the wavelet - is a function 3) (/& 0) obtained by projecting " (#) & in the !2 sense, onto

the over-complete family
©
-&'(

ª
:

3) (/& 0) =
!
"&-&'(

®
=

Z !

"!
" (#)

1p
|/|
-#
µ
#$ 0
/

¶
$#( (3)

Because the wavelet function - (#) may, in general, be complex, the wavelet transform3) may

also be complex. The transform can then be divided into its real part, R{3)} &and imaginary

part, I {3)}, or in its amplitude, |3)|, and phase, 4) (/& 0) = tan"1
³
I{*!}
R{*!}

´
(The phase of a

given time-series " (#)can be viewed as the position in the pseudo-cycle of the series(For real-valued

wavelet functions the imaginary part is zero and the phase is undened. Therefore, in order to

separate the phase and amplitude information of a time-series it is important to make use of

complex wavelets. It is also convenient to choose - (#) to be progressive or analytic, i.e. to be such

that ! (*) = 0 for * % 0.4

The importance of the admissibility condition (1) comes from the fact that it guarantees that

it is possible to recover " (#)from its wavelet transform. When - is analytic, if " (#) is real,5 the

reconstruction formula is given by

" (#) =
2

.%

Z !

0

"Z !

"!
R
¡
3) (/& 0)-&'( (#)

¢
$0

¸
$/

/2
( (4)

3Note that for negative !, the function is also reected.
4Note that an analytic function is necessarily complex.
5See Aguiar-Conraria et al. (2008) for the case of complex " (#).
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Therefore, we can easily go from " (#)to its wavelet transform, and from the wavelet transform

back to " (#). Note that one can limit the integration over a range of scales, performing a band-pass

ltering of the original series. See Daubechies (1992, pp. 27-28) or Kaiser (1994, pp. 70-73) for

more details about analytic wavelets.

2.3 Localization Properties

Let the wavelet - be normalized so that k-k = 1 and dene its center 5$ by

5$ =

Z !

"!
# |- (#)|2 $#( (5)

In other words, the center of the wavelet is simply the mean of the probability distribution obtained

from |- (#)|2. As a measure of concentration of - around its center one usually takes the standard

deviation 6$:

6$ =

½Z !

"!
(#$ 5$)

2 |- (#)|2 $#
¾ 1

2

( (6)

In a total similar manner, one can also dene the center 5# and standard deviation 6# of the

Fourier transform !(*) of -.

The interval [5$ $ 6$& 5$ + 6$] is the set where - attains its “most signicant”values whilst

the interval
£
5# $ 6# & 5# + 6#

¤
plays the same role for ! (*) ( The rectangle [5$ $ 6$& 5$ + 6$] ×

£
5# $ 6# & 5# + 6#

¤
in the (#& *)$plane is called the Heisenberg box or window in the time-frequency

plane. We then say that - is localized around the point
¡
5$& 5#

¢
of the time-frequency plane with

uncertainty given by 6$6# .

The uncertainty principle, rst established by Werner Karl Heisenberg in the context of Quan-

tum Mechanics, gives a lower bound on the product of the standard deviations of position and

momentum for a system, implying that it is impossible to have a particle that has an arbitrarily

well-dened position and momentum simultaneously.

In our context, the Heisenberg uncertainty principle tells us that there is always a trade-

o! between localization in time and localization in frequency; in particular, we cannot ask for

a function to be, simultaneously, band and time limited. To be more precise, the Heisenberg

uncertainty principle establishes that the uncertainty is bounded from below by the quantity 1147:

6$6# %
1

47
( (7)
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If the mother wavelet - is centered at 5$& has standard deviation 6$ and its wavelet transform

! (*) is centered at 5# with a standard deviation 6# , then one can easily show that the daughter

wavelet -('& will be centered at 0 + /5$ with standard deviation /6$, whilst its Fourier transform

!&'( will have center
+"
& and standard deviation

,"
& .

From the Parseval relation, we know that 3) (/& 0) =
!
" (#) & -&'( (#)

®
= h) (*) &!&'( (*)i.

Therefore, the continuous wavelet transform 3)(/& 0) gives us local information within a time-

frequency window [0 + /5$ $ /6$& 0 + /5$ + /6$]×
h
+"
& $

,"
& &

+"
& +

,"
&

i
. In particular, if - is chosen

so that 5$ = 0 and 5# = 1& then the window associated with -('& becomes

[0 $ /6$& 0 + /6$]×
"
1

/
$
6#
/
&
1

/
+
6#
/

¸
(8)

In this case, the wavelet transform 3) (/& 0) will give us information on " (#) for # near the instant

# = 0 & with precision /6$& and information about ) (*) for frequency values near the frequency

* = 1
& & with precision

,"
& ( Therefore, small/large values of / correspond to information about " (#)

in a ne/broad scale and, even with a constant area of the windows, 8 = 46$6# , their dimensions

change according to the scale; the windows stretch for large values of / (broad scales / — low

frequencies * = 11/) and compress for small values of / (ne scale / — high frequencies * = 11/).

This is one major advantages a!orded by the wavelet transform, when compared to the Short Time

Fourier Transform: its ability to perform natural local analysis of a time-series in the sense that

the length of wavelets varies endogenously. It stretches into a long wavelet function to measure

the low frequency movements; and it compresses into a short wavelet function to measure the high

frequency movements.

2.4 The Morlet Wavelet: optimal joint time-frequency concentration

There are several types of wavelet functions available with di!erent characteristics, such as, Morlet,

Mexican hat, Haar, Daubechies, etc. Since the wavelet coe"cients 3) (/& 0) contain combined

information on both the function " (#) and the analyzing wavelet - (#), the choice of the wavelet is

an important aspect to be taken into account, which will depend on the particular application one

has in mind. We choose a complex wavelet, as it yields a complex transform, with information on

both the amplitude and phase, important to study cycles synchronism between di!erent time-series.
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We will use the Morlet wavelet, introduced in Goupillaud et al. (1984):

-- (#) = 7
" 1
4

µ
+!-$ $ +"

#2

2

¶
+"

$2

2 ( (9)

The term +"
#2

2 is introduced to guarantee the fulllment of the admissibility condition; however,

for 9 % 5 this term becomes negligible. The simplied version

-- (#) = 7
" 1
4 +!-$+"

$2

2 (10)

of (9) is normally used (and still referred to as a Morlet wavelet). Our results in the next section,

were obtained with the particular choice 9 = 6.

Figure 1: On the left: the Morlet wavelet -6 (#)– real part (solid line) and imaginary part (dashed
line). On the right: its Fourier transform.

This wavelet has interesting characteristics. First of all, for 9 2 5, for all practical purposes,

the wavelet can be considered as analytic; see Foufoula-Georgiou and Kumar (1994).

The wavelet (10) is centered at the point
¡
0& -2"

¢
of the time-frequency plane; hence, for the

particular choice 9 = 6, one has that the frequency center is 5# =
6
2"and the relationship between

the scale and frequency is simply * =
+"
& &

1
& ( Therefore there is biunivocal relation between scale

and frequency and we will use both terms interchangeably

It is simple to verify that the time standard deviation is 6$ = 11
'
2 and the frequency standard

deviation is 6# = 11
¡
27
'
2
¢
( Therefore, the uncertainty of the corresponding Heisenberg box

attains the minimum possible value 6$6# = 1
4" ( In this sense, the Morlet wavelet has optimal joint
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time-frequency concentration.

2.5 Wavelet Power Spectrum

In view of the energy preservation formula, and in analogy with the terminology used in the Fourier

case, we simply dene the (local) wavelet power spectrum as :)(/& 0) = |3)(/& 0)|2 & which gives us

a measure of the local variance. Torrence and Compo (1998) showed how the statistical signicance

of wavelet power can be assessed against the null hypothesis that the data generating process is

given by an 8; (0) stationary process with a certain background power spectrum (<# ):

=

Ã
|3) (/& 0)|2

62)
% >

!
=
1

2
<#?

2
. (>) & (11)

at each time 0 and scale /. The value of <# is the mean spectrum at the Fourier frequency *

that corresponds to the wavelet scale / – in our case / & 1
# – and @ is equal to 1 or 2, for real

or complex wavelets respectively. For more general processes, one has to rely on Monte Carlo

Simulations.

2.5.1 Example

As we have argued before, the main advantage of wavelet analysis over spectral analysis is the

possibility of tracing transitional changes across time. To illustrate this, consider the following

experiment with simulated data. We generate 50 years of monthly data according to the following

data generating process:

'$ = cos

µ
27

>1
#

¶
+ cos

µ
27

>2
#

¶
+ A$& # =

1

12
&
2

12
& · · ·& 50 (12)

with

#
$%

$&

>1 = 5 if 20 ( # % 30

>1 = 3 otherwise
and >2 = 10

Formula (12) tells us that the time series '$ is the sum of two periodic components and a white

noise.6 The second period component represents a 10 year cycle while the rst periodic component

shows some transient dynamics. In the beginning, it represents a 3 year cycle that, temporarily,

6This formulation is not as restrictive as it may seem. An autoregressive process of order 2, or higher, with an
oscillatory behavior, will have a solution that involves sines and cosines. We, therefore, could have generated similar
time series using a more common auto regressive process. We chose to explicitly have a cosine because the period of
the oscillation is observed directly.
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changes to a 5 year cycle between the second end the third decades.

!5

!4

!3

!2

!1

0

1

2

3

4

5

0 10 20 30 40 50

yt

Figure 2: '$ = cos
³
2"
/1
#
´
+ cos

³
2"
/2
#
´
+ A$

This change in the dynamics is very di"cult to spot in Figure 2. If we use traditional the

traditional spectral analysis, this information on the transient dynamics is completely lost, as we

can see in Figure 3.c. The power spectral density estimate is able to capture the 3 and the 10 year

cycles but it completely fails to capture the 5 year cycle that occurred for a decade. Comparing

with Figure 3.b, we observe that spectral analysis gives us essentially the same information as the

global wavelet power spectrum, which is an average, across time, of the wavelet power spectrum.

On the other hand, Figure 3.a shows the wavelet power spectrum itself. There we can see the

biggest advantage of wavelet analysis over spectral analysis. With wavelets we are able to estimate

the power spectrum as a function of time and, therefore, we do not lose the time dimension. The

wavelet power spectrum is able to capture not only the 3 and 10 year cycles, but also to capture

the change that occurred between years 20 and 30.

2.6 Cross-Wavelets and Phase-Di!erences

2.6.1 Cross-Wavelet Power

The cross-wavelet transform of two time-series, "(#) and '(#), rst introduced by Hudgins et al.

(1993), is simply dened as

3)0 (/& 0) =3) (/& 0)3
#
0 (/& 0) & (13)

where 3) and 30 are the wavelet transforms of " and ', respectively. The cross-wavelet power is

given by |3)0|. While we can interpret the wavelet power spectrum as depicting the local variance
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Figure 3: (a) Wavelet Power Spectrum – The black contour designates the 5% signi-
cance level based on a AR(1) null. The cone of inuence, which indicates the region a!ected
by edge e!ects, is shown with a thin black line. The color code for power ranges from blue
(low power) to red (high power). The white lines show the maxima of the undulations of
the wavelet power spectrum.
(b) Global Wavelet Power Spectrum – average wavelet power for each fre-
quency.
(c) Power Spectral Density – The power spectral density is calculated using a parametric
spectral estimation method, which implements the Yule-Walker algorithm.

of a time-series, the cross-wavelet power of two time-series depicts the local covariance between

these time-series at each scale and frequency. Therefore, cross-wavelet power gives us a quantied

indication of the similarity of power between two time-series. Torrence and Compo (1998) also

derived the cross-wavelet distribution assuming that the two time-series have Fourier Spectra < )#

and < 0# .Under the null, the cross-wavelet distribution is given by

=

Ã¯̄
3)3

#
0

¯̄

6)60
% >

!
=
B. (>)

@

q
< )# <

0
# (14)

&where B. (>) is the condence level associated with the probability > for a pdf dened by the

square root of the product of two ?2 distributions. For more general data generating processes one

has to rely on Monte Carlo simulations.
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2.6.2 Wavelet Coherency

As in the Fourier spectral approaches, wavelet coherency can be dened as the ratio of the cross-

spectrum to the product of the spectrum of each series, and can be thought of as the local corre-

lation, both in time and frequency, between two time-series. The wavelet coherency between two

time-series, "(#) and '(#)& is dened as follows:

;)0 (/& 0) =
|: (3)0 (/& 0))|

|: (3))(/& 0))|
1
2 |: (300(/& 0))|

1
2

& (15)

where : denotes a smoothing operator in both time and scale. Smoothing is necessary. Without

that step, coherency is identically one at all scales and times. Smoothing is achieved by a convolu-

tion in time and scale. The time convolution is done with a Gaussian and the scale convolution is

performed by a rectangular window; see Cazelles et al. (2007) for details.Theoretical distributions

for wavelet coherency have not been derived yet. Therefore, to assess the statistical signicance of

the estimated wavelet coherency, one has to rely on Monte Carlo simulation methods.

2.6.3 Phase Di!erence and the Instantaneous Time Lag

The phase-di!erence gives us information about the delays of the oscillations between two time-

series, "(#) and '(#)& as a function of time and frequency. As we said before, the phase of a given

time-series, 4)& can be viewed as the position in the pseudo-cycle of the series. The phase-di!erence,

4)'0& characterizes phase relationships between the two time-series, i.e. their relative position in

the pseudo-cycle. The phase-di!erence is dened as

4)'0(/& 0) = tan
"1
µ
I {3)0(/& 0)}
R{3)0(/& 0)}

¶
& with 4)'0 # [$7& 7] ( (16)

A phase-di!erence of zero indicates that the time-series move together at the specied frequency.

If 4)'0 #
¡
0& "2

¢
then the series move in phase, but the time-series ' leads "( If 4)'0 #

¡
$"
2 & 0
¢
then it

is " that is leading. A phase-di!erence of 7 (or $7) indicates an anti-phase relation. If 4)'0 #
¡
"
2 & 7

¢

then " is leading. Time-series ' is leading if 4)'0 #
¡
$7&$"

2

¢
.

With the phase di!erence one can calculate the instantaneous time lag between the two time-

series:

"C (/& 0) =
4)'0 (/& 0)

27D (0)
& (17)
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Figure 4: Cross-Wavelet Coherency – The color code for coherency ranges from blue (low
coherency — close to zero) to red (high coherency — close to one). The cone of inuence, which
indicates the region a!ected by edge e!ects is shown with a thin black line.
Phase-Di!erence – the phase-di!erence between the two series is indicated by arrows. Arrows
pointing to the right mean that the variables are in-phase. To the right and up, with "$ lagging.
To the right and down, with "$ leading. Arrows pointing to the left mean that the variables are
out of phase. To the left and up, with "$ leading. To the left and down, with "$ lagging.

where D (0) is the instantaneous frequency dened in a given frequency band as the rst normalized

moment in frequency of 3)0:

D (0) =

R #2
#1
* |3)0 (*& 0)| $*

R #2
#1
|3)0 (*& 0)| $*

(18)

2.6.4 Example

Again, we illustrate these concepts with the aid of a numerical example. As before, we also show

how wavelet analysis is suitable to identify changes in the dynamic relations of two time series.

Consider two time series that share two common cycles, with some delays. Again, this process can

be seen as the solution to some VAR.

"$ = sin

µ
27

3
#

¶
+ 3 sin

µ
27

6
#

¶
+ A)'$& # = 0&

1

12
&
2

12
& · · ·& 50 (19)

'$ =

#
$%

$&

4 sin
¡
2"
3

¡
#+ 415

12

¢¢
$ sin

¡
2"
6

¡
#$ 9

12

¢¢
+ A0'$& for # = 0& 112 &

2
12 & · · ·& 25

$4 sin
¡
2"
3

¡
#+ 415

12

¢¢
+ sin

¡
2"
6

¡
#$ 9

12

¢¢
+ A0'$& for # = 25 + 1

12 & 25 +
2
12 & · · ·& 50

(20)

Looking at the formulas, it is clear that "$ and '$ share a 3 and a 6 year cycles. However,
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these changes evolve with time and they are di!erent from cycle to cycle. Consider the rst cycle,

the 3 year cycle. The '$ cycle precedes the "$ cycle by 4 and a half months. For the rst half of

the sample, the relation between them is positive, while, in the second half, it becomes negative.

These features are captured in Figure 4. That both series have a strong 3 year cycle is revealed by

the regions of strong coherency at that frequency. That in the rst half of the sample the series

are in phase is shown by the arrows pointing to the right. That in the second half of the sample

the series are out of phase is shown by the arrows point to the left. The direction of the arrows

are given by the angle provided by equation 16 (the phase di!erence). Arrows pointing upwards

and to the right (angle between 0 and "
2 ) show that the series are in phase, with '$ leading; while

arrows pointing downwards and to the left (angle between $7 and $"
2 )show that the series are

out of phase, with '$ leading.

Looking at the 6 year cycle, we observe that in the rst half the series are out of phase, and

that they are in phase in the second half. "$ leads '$ throughout the sample.

2.7 Transform of nite discrete data

If one is dealing with a discrete time-series " = {"2& E = 0& ( ( ( & C $ 1} of C observations with

a uniform time step F#, the integral in (3) has to be discretized and is, therefore, replaced by a

summation over the C time steps; also, it is convenient, for computational e"ciency, to compute

the transform for C values of the parameter 0 , 0 = GF#; G = 0& ( ( ( & C $ 1. In practice, naturally,

the wavelet transform is computed only for a selected set of scale values / # {/3& H = 0& ( ( ( & D $ 1}

(corresponding to a certain choice of frequencies *3). Hence, our computed wavelet spectrum of

the discrete-time series " will simply be a D × C matrix 3) whose (H&G) element is given by

3)(H&G) =
F#
'
/3

4"1X

2=0

"2-
#
µ
(E$G)

F#

/3

¶
H = 0& ( ( ( & D $ 1& G = 0& ( ( ( & C $ 1( (21)

Although it is possible to calculate the wavelet transform using the above formula for each value

of H andG, one can also identify the computation for all the values ofG simultaneously as a simple

convolution of two sequences; in this case, one can follow the standard procedure and calculate this

convolution as a simple product in the Fourier domain, using the Fast Fourier Transform algorithm

to go forth and back from time to spectral domain; this is the technique prescribed by Torrence
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and Compo (1998).7

As with other types of transforms, the CWT applied to a nite length time-series inevitably

su!ers from border distortions; this is due to the fact that the values of the transform at the

beginning and the end of the time-series are always incorrectly computed, in the sense that they

involve “missing”values of the series which are then articially prescribed; the most common choices

are zero padding — extension of the time-series by zeros — or periodization. Since the “e!ective

support”of the wavelet at scale / is proportional to /, these edge-e!ects also increase with /. The

region in which the transform su!ers from these edge e!ects is called the cone of inuence. In this

area of the time-frequency plane the results are unreliable and have to be interpreted carefully. In

this paper, the cone of inuence is dened, following Torrence and Compo (1998), as the +$folding

time of the wavelet at the scale /, that is, so that the wavelet power of a Dirac F at the edges

decreases by a factor of +"2. In the case of the Morlet wavelet this is given by
'
2/.

3 Wavelet Spectra Distance Matrix

To estimate a dissimilarity matrix between two variables, e.g. the electoral cycles of di!erent

states, based on their wavelet spectra, one has to nd a metric to measure the distances between

two wavelet spectra. Comparing time-series based on their wavelet spectra is, in a sense, like

comparing two images. Direct comparison is not suitable because there is no guarantee that

regions of low power will not overshadow the comparison. It would be like comparing two pencil-

drawing sketches based mainly on the color of the paper, disregarding the sketches themselves.

We build on the work of Rouyer et al. (2008) and use the singular value decomposition (SVD) of

a matrix to focus on the common high power time-frequency regions. This method is similar to

Principal Component Analysis, but while with the latter nds linear combinations that maximize

the variance, subject to some orthogonality conditions, the method we use extracts the components

that maximize covariances instead, subject to similar orthogonality conditions. Therefore, the rst

extracted components correspond to the most important common patterns between the two wavelet

spectra. With that information, and after dening a metric to measure the pairwise distance

between the several extracted components, we can build a dissimilarity matrix between the several

analyzed countries. At that point, it is easy to implement clustering and multidimensional mapping

7A program code based on the above procedure is available at the site
http://paos.colorado.edu/research/wavelets/.
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algorithms to visualize the estimated distances.

Consider the covariance matrix .)0 := 3)3
5
0 & where 3

5
0 is the conjugate transpose, also

known as the Hermitian transpose, of 30( Its SVD decomposition yields

.)0 = I#J
5 &

where the matrices I and J are unitary matrices (i.e. I5I = J 5J = K), whose columns, u3

and v3 are, respectively, the singular vectors for3) and 30& and # is a diagonal matrix with the

singular values ordered from highest to lowest, 61 % 62 % ( ( ( % 66 % 0. The number of nonzero

singular values is equal to the rank of the matrix .)0( The SVD of .)0 guarantees that the singular

vectors u3 and v3 solve the problem of maximizing

p53 .)0qk = p
5
3 3)3

5
0 qk = p

5
3 3)

¡
q53 30

¢5

for all vectors p3 and p3 satisfying the orthogonality constraints p53 p7 = F37 & q
5
3 q7 = F37 & L =

1& ( ( ( & H& where F37 is the Kronecker delta. In other words, the so-called leading patterns, obtained

by projecting each spectrum 3) and 30 onto the respective singular vectors,

!3) := u
5
3 3) and !30 := v

5
3 30& (22)

are the linear combinations of the columns of3) and30& respectively, that maximize their mutual

covariance (subject to the referred orthogonality constraints). Moreover, since I53)30J =

I5.)0J = #& it follows immediately that the (squared) covariance of the Hth leading patterns is

given by

|!3) (!
3
0)
5 |2 = 623(

On the other hand, the (squared) covariance of 3) and 30 is given by k.)0k26 , where k(k6 is the

Frobenius matrix norm, dened by k8k6 :=
qP

!7 |M!7 |2. But, since this norm is invariant under

a unitary transformation, we have

k.)0k26 = kI
5.)0J k26 = k#k

2
6 =

6X

!=1

62! (

The (squared) singular values, 623& are the weights to be attributed to each leading pattern and are

17



Figure 5: Angles between real vectors.

equal to the (squared) covariance explained by each pair of singular vectors (axis).

If we denote by !) and !0 the matrices whose rows are the leading patterns !3) and !
3
0 ,

equation(22) shows that !) = I53) and !0 = J 530, from where we immediately obtain

3) = I!) =
6X

3=1

u3!
3
)& 30 = J !0 =

6X

3=1

v3!
3
0(

In practice, we select a certain number N % D of leading patterns, guaranteeing, for example, that

the fraction of covariance
³P8

3=1 6
2
3

´
1
³P6

3=1 6
2
3

´
is above a certain threshold, and use

3) &
8X

3=1

u3!
3
)& 30 &

8X

3=1

v3!
3
0(

What we have done so far is to reduce the information contained in the two wavelet spectra

to a few components. Now we need to nd a metric to measure the distance between the most

relevant components associated to the di!erent wavelet spectra. We need to measure the distance

between the leading patterns, !3) and !
3
0& and between the singular vectors, u3 and v3( To do

so, we compare two vectors by measuring the angle between each pair of corresponding segments.

This would be straightforward if all values were real (see Figure 5).

In our case, because we use a complex wavelet, we need to dene an angle in a complex vector

space. Unfortunately, very little guidance is available in the mathematical literature on angles in

complex vector spaces and there are several possibilities, see Scharnhorst (2001).

Recall that, given two vectors a and b in the Euclidian vector space R2, with the usual inner

product ha&biR = a4b and norm kak =
p
ha&aiR& the angle between the two vectors, $ = $ (a&b) &
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can be found using the formula:

cos ($) =
ha&biR
kakkbk

& $ # [0& 7]( (23)

Now, assume that a and b are vectors in the vector space C2( There are two reasonable approaches

to dene a (real)-valued angle between a and b. The rst one is to consider the isomorphism

4 : C2 $) R22

a = (M1& ( ( ( & M2) 7) R(M1)& I(M1)& · · ·R(M2)& I(M2)

and simply dene the Euclidean angle between the complex vectors a and b as the angle (dened

by using formula (23)) between the real vectors 4(a) and 4(b).

The other approach is based on the use of the Hermitian inner product ha&biC = a5b and

corresponding norm kak =
p
ha&aiC( We can then dene the so-called Hermitian angle between

the complex vectors a and b, $5(a&b), by the formula

cos ($5) =
|ha&biC|
kakkbk

& $5 #
h
0&
7

2

i
( (24)

The measures are not equal, but they are related; see Scharnhorst (2001) for details. In what

follows, we make use of the Hermitian angle.

The distance between the Hth leading patterns !3) and !
3
0 is computed as:

$
³
!3) & !

3
0

´
=

1

C $ 1

4"1X

2=1

$5

³
l3)(E) & l

3
0(E)

´
& (25)

where l3)(E) is the two-component vector dened by the two “points”in R×C, <2 = (E&!3)(E)) and

<2+1 = ((E+ 1)& !
3
)(E+ 1)), i.e. l

3
)(E) = (1& !

3
)(E+ 1)$ !3)(E+ 1))& where !3)(E) denotes the Eth

component of !3). The distance between the singular vectors, $ (u3&v3) is dened in an analogous

way.

To compare the wavelet spectra of country " and country ', we compute the following distance:

dist (3)&30) =

P8
3=1 6

2
3

£
$
¡
!3)& !

3
0

¢
+ $ (u3&v3)

¤
P8
3=1 6

2
3

& (26)
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where 623 are the weights equal to the squared covariance explained by each axis. This distance is

computed for each pair of countries. With this information, we can ll a matrix of distances.

4 Two applications

4.1 Are there cycles in the American presidential election?

Are there partisan cycles in American politics? If so, for how long do they typically last? And has

this cyclicality remained unchanged throughout modern history?

The notion that there is some sort of pendularity in the partisan control of the Presidency

and Congress was rst taken up by historians, who posed an alternation between periods of polit-

ical and ideological dominance of liberal views and actors and periods of conservative dominance

(Adams 1918; Schlesinger 1948). This basic notion was later seized upon by the electoral realign-

ment literature, which claimed that certain elections (described as “critical” or “realigning”) bring

about sweeping changes in voters preferences and that such elections occur with a xed periodicity

(Burnham 1967 and 1970).

However, as the very concept of “realignment” and “realigning elections” came under severe

criticism (Carmines and Stimson 1989; Shafer 1991; Mayhew 2000 and 2002), so did the notion

that these cycles might even exist. Mayhew, in his discussion of the realignment literature, argues

that a simple dichotomization of types of elections between “realigning” and “nonrealigning” is

simply not borne out by the data and, as a result, “their periodicity is [also] in question” (Mayhew

2002: 60). Furthermore, there is evidence that, from the point of “party success” (i.e., victory in

the presidential election, either in popular or electoral votes), the patterns seem “largely random

from election to election” (Gans 1985: 236).

However, as Merrill, Grofman, and Brunell (2008) put it, deriving from the nding that elections

cannot be clearly dichotomized as “realigning” and “non realigning” that cycles in aggregate voting

behavior and election returns are necessarily absent is a stretch and there is the risk of “throwing

out the baby with the bathwater” (2008:15). In fact, and quite interestingly, one of the studies that

Mayhew uses to support the notion that elections cannot be sorted out in two types (Bartels 1998)

is also clear in establishing the existence of the “long-term equilibrating movements” rst detected

by Stokes and Iversen (1962), which produce “fairly regular alternations between Republican and

Democratic possession of the White House” (Bartels 1998: 293).
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What might be, therefore, the underlying cyclicality of those alternations? Here, in spite of

di!erent methodological approaches and di!erent time ranges used, the results have not been

dramatically di!erent from each other. Using data from 1860 to 1980 and a time-domain analysis,

Midlarsky (1984) detects 28-year intervals in the restoration points for Republican control of the

presidency. In the context of election forecasting and using an autoregressive model, Norpoth (1995

and 2002) estimates the average length of the presidential vote staying above 50% as about 2.5

terms in o"ce, i.e., a 20-year cycle. Finally, Lin and Guillén (1998), rst, and Merrill, et al. (2008),

later, using spectral analysis, detect a 26-years cycle for presidential elections. These results are

interestingly similar to the cycle-lengths detected early on by historians (Schlesinger 1948), but

rather di!erent from the longer cycles assumed by realignment scholars (Burhnam 1967), where

ascendancy of a particular party was argued to last for at least twice as long.

One major shortcoming of all these approaches, however, is their inability to determine whether

these periodic components of the presidential vote can be said to explain well the variance of the

time series throughout the entire time-span under examination or, instead, if certain frequencies

are peculiar to particular time-periods. This is where, precisely, the main advantage of wavelet

analysis over spectral analysis comes into play: the possibility of tracing transitional changes across

time. We can illustrate this advantage with a replication of the analysis in Merrill et al. (2008).

One of the series that they use is the share of democratic vote in the presidential elections between

1856 and 2004 — see Figure 6 (we added the 2008 election).

Figure 6: Democratic Vote Share for U.S President (1856 - 2008)

Merrill et al. (2008) estimate the power spectral density and identify a 26 year cycle given by

the peak of the estimated power spectrum (see Figure 7.a). On the other hand, Figure 7.b gives

us the wavelet power spectrum.

21



Figure 7: (a) Power Spectral Density of the Democratic Vote Share for Presidential
elections .
(b) Wavelet Power Spectrum– The black contour designates the 5% signicance level based
on a AR(1) null. The cone of inuence, which indicates the region a!ected by edge e!ects, is shown
with a thin black line. The color code for power ranges from blue (low power) to red (high power).
The white lines show the maxima of the undulations of the wavelet power spectrum

Two new di!erent pieces of information result from this analysis. First, the wavelet spectrum

identies not only the 26-year cycle, but also a transitional 15-year cycle between the late 1950s

and 1980. And although not statistically signicant, it is also possible to identify a very long cycle

of 60 years, basically equivalent to the one argued for in the realignment literature. Although that

latter cycle is not statistically signicant, the very fact that with 150 years of data one is able to

see some (light) evidence of a 60-year cycle is quite striking, given that not even three full cycles

can t in the data.

Second, the statistically signicant evidence for the strongest cycle — the 26-year one — is, in

our wavelet spectrum, temporally localized. It starts in the turn of the 20th century but dissipates

by the end of the 1960s. By then, it seems to have been replaced by a shorter 15-year cycle, where

the electoral results of a particular party seem to improve (or worsen) for slightly less than two

consecutive terms. These time references should not be strange to students of electoral realignment.

While the 1894-96 elections mark one of the canonical moments for a change in the American party

system, the end of the 1960s also marks the beginning of an age of more balanced and nationally

competitive party system in presidential elections (Campbell 2006), a phenomenon captured in

that 15-years cycle of fundamental alternation between the parties of 2nd term presidents and the
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opposite parties. In other words, with wavelet analysis, we obtain a much more nuanced view

of the cyclicality of American electoral politics, and one that is cogently connected to real world

events that seem to represent structural breaks in the data.

4.2 Electoral Cycles Synchronism: how united are the United States of Amer-

ica?

Several studies of electoral realignments have already shown that the occurrence of critical elections

and their enduring consequences cannot be described as uniform national events. “There is simply

too much geopolitical diversity in the United States to justify such an expectation” (Nardulli 1995:

11). However, as Brown and Bruce argue (2008: 585), “most e!orts tend to focus overwhelmingly

on party competition at one level, either national or state, to the exclusion of the other”.

As explained before, our entire discussion about the existence of cycles in presidential election

results is mostly agnostic about the existence of “realigning elections” or “critical realignments” in

the sense that the literature has employed these terms. However, the same sort of question about

the national and subnational nature of realignments can be posed in what concerns the periodicity

of presidential election results: can the cycles we have detected in the previous section be said to

be common to all American states, or not?

We analyze the cycles in electoral behavior across the United States using State specic data on

American Presidential elections since 1896 until 2008. We have data for 45 states (see appendix).

For each state, we consider the votes on the Republican and the Democratic candidate and compute

the democratic share.8 All data was provided by the The American Presidency Project at UC Santa

Barbara (http://www.presidency.ucsb.edu).

Based on formula (26) (multiplied by 100) we compute a pairwise dissimilarity index. In Table

1, we have the dissimilarity between each state’s electoral cycle and the national cycle, which can

be interpreted as the core cycle. In Table 2, we have the pairwise dissimilarity between states.

Note that the higher the index, the lesser the synchronism between cycles. In that sense, the higher

the index between two entities, the further away they are from each other.

8The only exception is for the 1912 presidential run. In that election, Theodore Roosevelt failed to receive the
Republican nomination. Roosevelt, created the Progressive party and ran for president, diveding the Republican
electorate. For this specic election, we compare the votes of the Democratic candidate (Woodrow Wilson) with the
total of the votes of the other two major contendants (William Taft and Roosevelt).
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Table 1: Dissimilarity index between the National and the State electoral cycle

The 10 states with the electoral cycle more aligned with the national cycle are Ohio, Maine,

New Hampshire, New Jersey, California, Wyoming, Iowa, Connecticut, Indiana and New York.

Note that the fact that these states have an electoral cycle synchronized with the national cycle,

does not mean that the candidate that wins in these states is the candidate that wins the country.

It just means that the swings around the mean are synchronized.

Using Table 2, we can see that the most similar pair of states is New Jersey/New York, fol-

lowed by New Hampshire/Maine and New Jersey/Connecticut. The most dissimilar are Pennsyl-

vania/Mississippi, South Carolina/Indiana and South Carolina/Ohio.

Because Table 2 has too much information to be readable, more than 900 entries, we try to

visualize this matrix, performing some clustering analysis (e.g. see Camacho et al. 2006). First we

produce a hierarchical tree clustering. The idea is to group the states according to their similarities.

We follow a bottom up approach. We start with the 45 countries and group, in cluster, the two

most similar countries, say .1 and .2 (New Jersey and New York, to be more precise). In the

second round, countries .1 and .2 are replaced by a a combination of the two, say .46( Now one

has to build a new matrix, not only with the distance between the 44 remaining states, but also

with the distance between each state and .13 (which we consider to be the average of the individual

distances). The procedure continues until there is only one cluster with all the countries. In Figure
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8, we can see the result of this hierarchical clustering.

Table 2: Dissimilarity Index Matrix

Depending on how demanding we are to dene a cluster, one can identify several clusters. If

we partition the tree in three clusters, then we have a big cluster of several states whose cycles

are very similar. Then there is a smaller second cluster (Arkansas, Tennessee, Kentucky, North

Carolina, Virginia, Florida, Louisiana and Texas), and nally, a third cluster of states with a very

asynchronous electoral cycle (Alabama, Georgia, Mississippi and South Carolina). In sum, the two

clusters of states that exhibit greater dissimilarity from the ‘national’ cycle and from the ‘core’

states that are closest to that cycle include all the states from the South, plus a ‘border South’

state (Kentucky).”
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Figure 8: Hierarchical Tree Clusters

Although suggestive, the clustering tree has some limitations that may distort the analysis,

because each state is solely linked to one other state (or cluster of states), one may loose site of the

whole picture. An alternative approach is to use the dissimilarity matrix as a distance matrix and

map the states in a two axis system. The idea is to reduce the dissimilarity matrix to a two column

matrix. This new matrix, the conguration matrix, contains the position of each country in two

orthogonal axis. Therefore we can position each state on a two dimensional map. This cannot

be performed with perfect accuracy because the dissimilarity matrix is nonmetric. i.e. does not

represent euclidean distances. Its interpretation should be ordinal. Therefore, the goal is not to

reproduce the "distances" given by Table 2 on a map, but to nd a map, with pairwise distances

that reproduce, as much as possible, the ordering of Table 2. We use Kruskal (1964a and 1964ab)’s

stress algorithm and minimize the square di!erences between the distances in the map and the

true "distances" given in Table 2.

Again, although the precise frontiers are, naturally, a little bit arbitrary, in Figure 9 it is possible

to identify three clusters of states that almost coincide with the information we had extracted from

the clustering tree.
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Figure 9: Multidimensional Scaling Map

4.2.1 Wavelet Power Spectrum

In Figure 10, we can see the continuous wavelet power spectra of the electoral democratic share for

several states. We assess the statistical signicance against the null hypothesis of an AR(1).Looking

at the time-frequency decomposition some interesting facts are revealed. First, as we have already

argued, looking at the United Sates as a whole, we identify a persistent 26 year cycle, like Merrill

et al. (2008), but we also identify a transient 15 year cycle between early 1950s and 1980. The

same pattern is found in some states, like Virginia, Maine, Ohio, Maryland, New Hampshire, New

York, Pennsylvania, among some others. But not all states are alike. For example, in Washington

and Wisconsin most of the action occurred until 1950, at several frequencies. In Utah, the 16 year

cycle is not apparent. In Tennessee, a 10 * 14 year cycle is very strong between 1960 and 1990.

In Texas one can nd a cycle at these same frequencies before 1950, etc.

Although suggestive, the wavelet power spectrum is not the best tool to analyze business cycle

synchronization, as no information is revealed about the phase. Therefore, even if two states share

a similar high power region, one cannot infer that their electoral cycles look alike. It is possible

that while in one state the democratic share tends to increase in the other state the reverse is
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happening. We now move to the cross wavelet tools.
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Figure 10: Figure 10: On the left, the Democratic Share by State in each Presidential election
since 1896. On the right, the Wavelet Power Spectrum – The black contour designates the 5%
signicance level against an AR(1) null. The cone of inuence, which indicates the region a!ected
by edge e!ects, is shown with a thin black line. The color code for power ranges from blue (low
power) to red (high power). The white lines show the maxima of the undulations of the wavelet
power spectrum.

4.2.2 Phase-di!erence and cross-wavelets

To perform the cross-wavelet analysis we will focus on the wavelet coherency, instead of the wavelet

cross spectrum, because there is some redundancy between both measures and the wavelet co-

herency has the advantage of being normalized by the power spectrum of the two time-series.

Regions of high coherency between two countries are synonym of strong local (both in time and

frequency) correlation.
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Figure 11: On the Left:Cross-Wavelet Coherency $ The black thick contour designates the 5%

signicance level estimated by Monte Carlo simulations against an AR(1) null. The color code for

coherency ranges from blue (low coherency — close to zero) to red (high coherency — close to one).

On the right: Phase and instantaneous time lag between the two series. The green line represents

the National phase, and the blue line represents the state’s phase. The red line gives us the

instantaneous time lag between the two series.

The phase-di!erence gives us information on the delay, or synchronization, between oscillations

of the two time-series for a given frequency. In Figure 11, for each state, we estimate the coherency

between the national electoral democratic share and the state share. We also estimate the phase

of the oscillations at the national and state level, as well as their phase-di!erence. Given that we

identied two main cycles, one at the 14 year frequency and the other at the 27 years frequency, we

focus our phase di!erence analysis on these. So for each state, we calculate the average phase and
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phase-di!erence for the 12 * 16 and for the 22 * 32 frequency bands. For ease of interpretation,

we have the instantaneous time lag on the right axis.

We can appreciate some interesting dynamics. For example, the more peripherical states (ac-

cording to Table 1), like South Carolina and Mississippi, do not show many regions of high coher-

ence and the phase di!erence shows that their cycles not only are not aligned with the rest of the

country but also show no denite pattern. Other states, like Michigan, Pennsylvania, Washing-

ton, New Jersey, Minnesota, etc., show many areas of strong coherency and show oscillations that

are very much aligned with the national oscillations. Ohio, that according to table 1 is the most

aligned state, shows many regions of high coherency (probably the most coherent state), but their

phases reveal that its cycles have been slightly lagging the national cycle (although it is also clear

that even on that regard there has been a strong convergent since mid-century. In the case of New

York, we observe the opposite dynamics: New York seems to have led the national cycle (on both

frequencies) until mid-century, after which it converged to the national cycle. Massachusetts also

displays a change in the long run behavior. In the rst half of the sample, in the 22 * 32 frequency

band, the phases are very much aligned, but after 1950 this long cycle is lagging the national cycle.

We can also identify some states that are very much synchronized for some periods and some

frequencies, but not for others. North Carolina is one such example. In the rst half of last century,

there is a region of high coherency at the 27 years frequency, while in the second half the high

coherency shifts to the 12 * 18 year frequency. In this latter case, one can also see that the phases

are perfectly aligned with the national phase

If one had to choose the leader state, that choice would fall on North Dakota (also Illinois, but

not as strongly), whose cycles have persistently been leading the national cycles, on both frequency

bands.

5 Conclusions

We have claimed that wavelet analysis can naturally be applied to the study of political and

electoral cycles (given its periodic nature), specially when one is interested in estimating the

spectrum as a function of time, revealing how the di!erent periodic components of the time-series

change over time. The main advantage of the wavelet approach over spectral analysis is the ability

to analyze transient dynamics, both for single time-series or for the association between two time-

36



series. We used three tools that, to our knowledge, have not yet been used by political scientists:

the wavelet power spectrum, the cross-wavelet coherency and the phase-di!erence. While the

wavelet power spectrum quanties the main periodic component of a given time-series and its time

evolution, the cross-wavelet transform and the cross-wavelet coherency are used to quantify the

degree of linear relation between two non-stationary time-series in the time—frequency domain.

Phase analysis is a nonlinear technique that makes possible to study synchronization and delays

between two time-series across di!erent frequencies or timescales.

We have also developed a new metric to compare di!erent power spectra. We focused on the

common high power time-frequency regions, extracting the components of the covariance matrix

of the wavelet spectra pairs using the ‘Singular Value Decomposition’. Because the wavelet is

complex, we had to dene the distance between complex vectors, which led us to use Hermitian

angles. Given this, we proposed a metric to measure the distances between wavelet spectra and

build a dissimilarity matrix, to which clustering and multidimensional scaling techniques can be

applied.

Using aggregate data for the US presidential elections since 1856, we aimed at answering the

questions of whether there are cycles in presidential electoral politics and whether such cycles

are common to all states. Like previous works using either spectral analysis or autoregressive

models, we were able to identify a 26 year cycle. However, wavelet analysis also allowed us to

determine that such cycle dissipates since the late 1960s, and that a transitional 15 year cycle,

initiated in the late 1950s, has prevailed since then. Furthermore, using state level data for the

presidential elections since 1896, we found several interesting facts. There are several states, like

Ohio, Maine, New Hampshire, New Jersey, California, Wyoming, Iowa, etc., whose electoral cycle

is highly synchronized with the national electoral cycle. At the same time there are two clusters of

states that display asynchronous electoral cycles, i.e., all the states in South, particularly Alabama,

Georgia, Mississippi and South Carolina.

Finally, some peculiar dynamics were revealed with the use of the wavelet coherency and the

phase di!erence. We also saw that asynchronous states, like South Carolina and Mississippi, do not

show many regions of high coherence and the phase di!erence shows that their cycles not only are

not aligned with the rest of the country but also show no denite pattern. On the other extreme,

Ohio, which is the most synchronous state, has cycles that have been slightly lagging the national

cycle, although this lag has been disappearing with time. In other states, like New York, we observe
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the opposite dynamics: New York seems to have led the national cycle (on both frequencies) until

mid-century, after which it converged to the national cycle. We could also identify some states

that are very much synchronized for some periods and some frequencies, but not for others. For

example, North Carolina shows strong coherency at the 27 years frequency in the rst half of the

2009 century, while in the second half the high coherency shifts to the 12 * 18 year frequency,

with phases that are perfectly synchronized with the national phase. If one had to name a state

that has consistently led the national cycle, that choice would fall on North Dakota, whose cycles

have persistently been leading the national cycles, at all frequency bands.

In sum, this paper’s main contribution to the literature is to clearly demonstrate the utility of

wavelets and cross-wavelets for the analysis of political time-series and to illustrate how relation-

ships between variables can change over time and across di!erent frequencies. We applied these

wavelet tools to electoral data from the U.S. Presidential elections and we were able to detect tran-

sient e!ects which would be very di"cult to detect using spectral analysis or classical time-series

techniques. Such ndings have important implications for the discussion of the existence of cycles

in American politics.
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