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Abstract

The wide availability of high-frequency data for many financial instruments
stimulates a upsurge interest in statistical research on the estimation of volatil-
ity. Jump-diffusion processes observed with market microstructure noise are
frequently used to model high-frequency financial data. Yet, existing methods
are developed for either noisy data from a continuous diffusion price model or
data from a jump-diffusion price model without noise. We propose methods
to cope with both jumps in the price and market microstructure noise in the
observed data. They allow us to estimate both integrated volatility and jump
variation from the data sampled from jump-diffusion price processes, contam-
inated with the market microstructure noise. Our approach is to first remove
jumps from the data and then apply a noise-resistent method to estimated the
integrated volatility. The asymptotic analysis and the simulation study reveal
that the proposed wavelet methods can successfully remove the jumps in the
price processes and the integrated volatility can be estimated as well as the
case with no presence of jumps in the price processes. In addition, they have
outstanding statistical efficiency. The methods are illustrated by applications
to two high-frequency exchange rate data sets.
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1 Introduction

Diffusion based stochastic models are often employed to describe complex dynamic

systems where it is essential to incorporate internally or externally originating random

fluctuations in the system. They have been widely applied to problems in fields

such as biology, engineering, finance, physics, and psychology. As a result, there has

been a great demand in developing statistical inferences for diffusion models (Prakasa

Rao, 1999). This paper investigates nonparametric estimation for noisy data from

a jump-diffusion model. The problem is motivated from modeling and analysis of

high-frequency financial data.

In financial time series there are extensive and vibrant research on modeling and

forecasting volatility of returns such as parametric models like GARCH and stochastic

volatility models (Bollerslev, Chou and Kroner, 1992; Gouriéroux, 1997; Shephard,

1996; Wang, 2002), or implied volatilities from option prices in conjunction with

specific option pricing models such as the Black-Scholes model (Fouque, Papanicolaou,

and Sircar, 2000). These studies are for low-frequency financial data, at daily or

longer time horizons. Over past decade there has been a radical improvement in

the availability of intraday financial data, which are referred to as high-frequency

financial data (Dacorogna, Geçay, Müller, Pictet and Olsen, 2001). Nowadays, thanks

to technological innovations, high-frequency financial data are available for a host of

different financial instruments on markets of all locations and at scales like individual

bids to buy and sell, and the full distribution of such bids.

Historically the availability of financial data at increasingly high frequency allow

us to incorporate more data in volatility modeling and to improve forecasting perfor-
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mance. However, because of their complex structures, it is very hard to find appro-

priate parametric models for high-frequency data. Volatility models at the daily level

cannot readily accommodate high-frequency data, and parametric models specified

directly for intradaily data generally fail to capture interdaily volatility movements.

It is natural to use flexible nonparametric approach for high-frequency volatility

analysis. One popular nonparametric method is the so-called realized volatility (RV)

constructed from the summation of high-frequency intradaily squared returns (Ander-

sen, Bollerslev, Diebold and Labys, 2003), and another one is the realized bi-power

variation (RBPV) constructed from the summation of appropriately scaled cross-

products of adjacent high-frequency absolute returns (Barndorff-Nielsen and Shep-

hard, 2005). Theoretical justifications of these nonparametric methods are based on

the idealized assumption that observed high-frequency data are true underlying asset

returns. Under this assumption, asymptotic theory for RV and RBPV is established

by connecting them to quadratic variation and bi-power variation. RV and RBPV are

combined together to test for jumps in prices and to estimate integrated volatility and

jump variation. See Andersen, Bollerslev and Diebold (2003) and Barndorff-Nielsen

and Shephard (2002, 2005).

The idealized assumption is, however, severely challenged by high-frequency data.

In reality, high-frequency returns are very noisy and hence do not allow for reliable

inferences of RV and RBPV regarding the true underlying latent volatility. The noise

is due to the imperfections of trading processes — vast array of issues collectively

known as market microstructure including price discreteness, infrequent trading, and

bid-ask bounce effects. The higher the frequency that prices are sampled at, the more

pronounced the microstructure noises. This is evidenced and analyzed by, for exam-
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Figure 1: (a). Plot of the RV as a function of sampling time interval in minute. The
horizon axis is the time interval in minute that the data are sampled from Euro-dollar
exchange rates on January 7, 2004, for computing the RV. The shorter the sampling time
interval is, the higher the sampling frequency. The RV shoots up as the sampling time
interval gets shorter, which suggests the presence of the microstructure noise. (b). Plot
of estimated integrated volatility using MSRV for Euro-dollar exchange rates on January
9, 2004. The bar on the left panel shows the estimate of integrated volatility obtained
by applying MSRV to the whole data, and the right panel indicates the sum of the four
estimated values obtained by applying the same MSRV procedure to each of the four pieces
of the data. The left panel estimate is two times larger than the right panel estimate, which
indicates the existence of jumps.

ple, Aı̈t-Sahalia et al.(2005), Zhang et al.(2005), Zhang (2004), Bandi and Russell

(2005). To provide some evidence for currency markets, Figure 1(a) plots the RV as

a function of sampling time in minute for the returns of Euro-dollar exchange rates

on January 7, 2004. Clearly, as the sampling interval gets smaller (or equivalently

sampling frequency gets higher), the RV shoots up. For log price data following a

diffusion process without noise, the RV will approach to its quadratic variation, as

sampling time goes to zero. If there is no noise in the data, we would expect the RV to

be stabilized, as sampling frequency increases. The “exposition” of the RV near the

origin in Figure 1(a) along with market microstructure provide some evidence that
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the observed exchange rates contain noise. To mitigate the effects of microstructure

noise, common practice is to sample available high-frequency data over longer time

horizons and use the subsample, a small fraction of the available data, to compute RV

and RBPV. The length of subsampling interval is ad hoc, ranging from 5 to 30 min-

utes for exchange rate data, for instance. This corresponds to take a stable estimate

from Figure 1(a). For the continuous price model, to better handle microstructure

noise, researchers investigated the “optimal” frequency for subsampling, and prefilter-

ing and debiasing. See, for example, Aı̈t-Sahalia et al.(2005) and Bandi and Russell

(2005).

Subsampling throws away most of available data. For example, at the sampling

frequency of 30 minutes per data point for stock price, there are only about 16 data

points per day, while sampling at frequency of 1 minute per data, there are about

480 data points. The former results in very inefficient statistical estimates. Under

the continuous diffusion price model, to improve the efficiency, Zhang et al.(2005)

and Zhang (2004) invented two-time scale RV (TSRV) and multiple-time scale RV

(MSRV) to reduce microstructure noise by averaging over RVs at various subsampling

frequencies. See also Zhou (1996) and Hansen and Lunde (2005). Despite their

successes, the procedures have not taken into account of the possible jumps due to

the inflow of market news during the trading session. To illustrate the point, we take

the Euro-dollar exchange rate data on January 9, 2004. We directly apply to the

whole data set MSRV with 11 scales of returns sampled from every 5 to 15 minutes

and estimate integrated volatility on that day. The estimated value is 10.5 × 10−5

labeled as ‘MSRV’ bar in Figure 1(b). On the other hand, the whole data are divided

into 4 pieces, at three locations where the exchange rates might contain jumps. We
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apply the same MSRV procedure to each piece of the data to estimate integrated

volatility over each subinterval, and then add up these four estimates of integrated

volatilities to obtain the integrated volatility on January 9, 2004. This gives an

estimated value 4.8×10−5, which is labeled as ‘Jump MSRV’ bar in Figure 1(b). The

estimated integrated volatility based on the whole data set is twice as large as the

sum of the estimated integrated volatilities based on four subintervals. This gives an

indication of jumps in data, since the MSRV estimate of integrated volatility based on

the whole data should be close to the sum of the separate estimates for high frequency

data from a continuous diffusion process. It also shows that the methods based on

the continuous diffusion are not adequate for estimating integrated volatilities.

As market returns frequently contain jumps (Andersen, Bollerslev and Diebold,

2003; Barndorff-Nielsen and Shephard, 2005; Eraker, Johannes and Polson, 2003;

Huang and Tauchen, 2005), it is important to have methods that handle automatically

the possible jumps in the financial market. Separating variations due to jump and

continuous parts are very important for asset pricing, portfolio allocation and risk

management, as the former is usually less predictable than the latter due to the

inflow of market news. To detect jump locations efficiently, wavelets methods are

employed which are powerful for detecting jumps as demonstrated in Wang (1995).

In this paper, we propose a wavelet based multi-scale approach to perform efficient

jump and volatility analysis for high-frequency data. The proposed methods handle

data with both microstructure noise and jumps in prices, providing comprehensive

noise resistant estimators of integrated volatility and jump variation. The challenge of

our problem is to first detect the jumps from the sample paths of diffusion processes,

which are usually much rougher than those in nonparametric change point problems.
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Thanks to the availability of high-frequency data, jump locations and sizes can be

accurately estimated. With the wavelet transformation, the information about jump

locations and jump sizes is stored at high-resolution wavelet coefficients, while the

low-resolution ones contain useful information for integrated volatility. With jump

locations and sizes being estimated, they are removed from the observed data, result-

ing in jump adjusted data which are almost from a continuous process masked with

microstructure noise. We demonstrate that the jump effect on the average RV for

the jump adjusted data is OP (n−1/4), the best rate that the integrated volatility can

be estimated (Gloter and Jacod 2001 and Zhang 2004). We can then apply TSRV of

Zhang et al.(2005) and MSRV of Zhang (2004) to the jump adjusted data and obtain

estimators of integrated volatility. A wavelet based estimator of integrated volatility

is also proposed and studied.

The rest of the paper is organized as follows. Section 2 specifies stochastic model

for high-frequency data and statistical problems. We study the estimation of jump

variation in Section 3 and the volatility estimation in Section 4 and establish con-

vergence rates for the proposed estimators. Section 5 presents simulation results

to evaluate the finite sample performance of the proposed methods and applies the

methods to high-frequency exchange rate data. Section 6 features the conclusions.

All technical proofs are relegated to Section 7.

2 Nonparametric volatility model

Due to market microstructure, high-frequency data are very noisy. This is convinc-

ingly demonstrated in Zhang et al.(2005). See also Figure 1(a). A common modeling

7



approach is to treat microstructure noise as usual “observation error” and to then

assume that the observed high-frequency data Yt are equal to the latent, true log-price

process Xt of a security plus market micro-structure noise εt, that is,

Yt = Xt + εt, t ∈ [0, 1], (1)

where Yt is the logarithm of the observable transaction price of the security, and is

observed at times ti = i/n, i = 0, · · · , n, and εt is zero mean i.i.d. noise with variance

η2 and finite fourth moment, independent of Xt.

The true log-price process Xt, t ∈ [0, 1], is generally assumed to be a semi-

martingale of the form

Xt =

∫ t

0

µs ds +

∫ t

0

σs dWs +
Nt∑

`=1

L`, (2)

where the three terms on the right hand side of (2) correspond to the drift, diffusion

and jump parts of X, respectively. In the diffusion term, Wt is a standard Brownian

motion, and the diffusion variance σ2
t is called spot volatility. For the jump part, Nt

represents the number of jumps in X up to time t, and L` denotes the jump size.

The log-price process X given in (2) has quadratic variation

[X, X]t =

∫ t

0

σ2
s ds +

Nt∑

`=1

L2
` . (3)

The total quadratic variation of Xt has two parts: integrated volatility and jump

variation. Denote them by

Θ =

∫ 1

0

σ2
s ds, Ψ =

N1∑

`=1

L2
` .

The goal is to estimate Θ and Ψ, which will be considered in next two sections.
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3 Jump analysis

To estimate jump variation Ψ, we first apply the wavelet method to the observed

data and locate all jumps in the sample path of Xt and then use the estimated

jump locations to estimate jump size for each estimated jump. The jump variation is

estimated by the sum of squares of all estimated jump sizes.

3.1 Wavelets

Wavelets are orthonormal bases obtained by dyadically dilating and translating a

pair of specially constructed functions which are called father wavelet and mother

wavelet. Let ϕ and ψ be father and mother wavelets, respectively. Dyadically dilate

and translate them to obtain wavelet basis ϕ(t), ψj,k(t) = 2j/2 ψ(2j t−k), j = 1, 2, · · · ,

k = 1, · · · , 2j. We can expand a function over the wavelet basis. One special property

of the wavelet expansion is the localization property that the coefficient of ψj,k(t)

reveals information content of the function at location k 2−j and frequency 2j. For

example, if a function is Hölder continuous with exponent α at a point, then the

wavelet coefficients of ψj,k(t) with k 2−j near the point decay at order 2−j (α+1/2); if

the function has a jump at that point, then the wavelet coefficients of ψj,k(t) with k 2−j

near the given point is bounded below by 2−j/2 multiplying by a positive constant. See

Vidakovic (1999) and Wang (1995, 2006). This special feature enables us to separate

jumps from continuous part.
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3.2 Jump estimation

Before introducing our estimation method, some heuristic discussions are helpful. Let

Xj,k, Yj,k, and εj,k be the wavelet coefficients of Xt, Yt, and εt, respectively. Then from

model (1) we obtain that Yj,k = Xj,k + εj,k, k = 1, · · · , 2j, j = 1, · · · , log2(n). The

sample path corresponding to the first two terms of Xt in (2) is Hölder continuous

with exponent α arbitrarily close to 1/2, and the third term has a stepwise sample

path. Thus, at the time point t = k 2−j where the log-price process Xt is continuous,

Xj,k is of order 2−j (α+1/2); whereas nearby a jump point of X, Xj,k converges to zero

at a speed no faster than 2−j/2, an order of magnitude larger than those at continuous

points. As εt are i.i.d. noise, εj,k is white noise with mean zero and variance η2/n.

Thus, at high resolution levels, Xj,k dominates εj,k nearby jump locations and is

negligible otherwise. From the comparison of decay order of wavelet coefficients, we

easily show that, at high resolution levels jn with 2jn ∼ n/ log2 n, nearby jump points

of the log-price process Xt, Yjn,k are significantly larger than the others.

We use a threshold Dn to calibrate |Yjn,k|, and to estimate the jump locations of

the sample path of Xt. The locations are estimated by the large absolute wavelet

coefficients |Yjn,k| that exceed threshold Dn. That is, if |Yjn,k| > Dn for some k, the

corresponding jump location is estimated by τ̂ = k 2−jn . One choice of threshold is

the universal threshold Dn = d
√

2 log n, where d is median of {|Yjn,k|, k = 1, · · · , 2jn}

divided by 0.6745, a robust estimate of standard deviation.

Under Conditions (A1)-(A4) stated in section 6, almost surely all sample paths

of Xt have finite number of jumps and otherwise is Hölder continuous with exponent

arbitrarily close to 1/2, and Xt and εt are independent. Because of the independence,

by conditioning on X, the wavelet jump detection for deterministic functions (Wang,
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1995; Raimondo, 1998) can be applied to all sample paths of X with i.i.d. additive

noise εt. Suppose that Xt has q jumps at τ1, · · · , τq. Denote the estimated q̂ jump

locations by τ̂1, · · · , τ̂q̂. Then from Wang (1995) and Raimondo (1998) we have under

Conditions (A1)-(A4),

lim
n→∞

P

(
q̂ = q,

q∑

`=1

|τ̂` − τ`| > n−1 log2 n

∣∣∣∣∣ X

)
= 0. (4)

3.3 Estimation of jump variation

To estimate jump variation of Xt, we need to estimate jump size along with each

estimated jump location. For each estimated jump location τ̂` of Xt, we choose a

small neighborhood τ̂`± δn for some δn > 0. Denote by Ȳτ̂`+ and Ȳτ̂`− the averages of

Yti over [τ̂`, τ̂` + δn] and [τ̂`− δn, τ̂`), respectively. We use L̂` = Ȳτ̂`+− Ȳτ̂`− to estimate

the true jump size L` = Xτ`
−Xτ`−. Jump variation Ψ, defined as

∑N1

`=1 L2
` , is then

estimated by the sum of squares of all the estimated jump sizes

Ψ̂ =

q̂∑

`=1

(Ȳτ̂`+ − Ȳτ̂`−)2. (5)

The following theorem gives its rate of convergence.

Theorem 1 Choose δn ∼ n−1/2. Then under Conditions (A1)-(A4) in Section 6, we

have as n →∞,

Ψ̂−Ψ = OP (n−1/4).

Theorem 1 shows that the proposed jump variation estimator has convergence

rate n−1/4. Thanks to large n for high-frequency data, the error is usually small.

In nonparametric regression jump size can usually be estimated with much higher

convergence rates. The slower rate here is due to the fact that the low degree of
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smoothness of the sample paths of the price process and our task of separating jumps

from less-smooth sample paths is much more challenging. In contrast, the task of

separating jumps from smooth curves is much easier.

The n−1/4 convergence rate matches with the optimal convergence rate for estimat-

ing integrated volatility in the continuous diffusion price model (Zhang, 2004). It is a

key to show later that the integrated volatility can be estimated for the jump-diffusion

price model asymptotically as well as for the continuous diffusion price model.

4 Volatility Analysis

Volatility measures the variability of the continuous part of the log-price process Xt.

After removing the jump part of Xt from the noisy observation Yt, existing methods

can be used to estimate the integrated volatility Θ =
∫ 1

0
σ2

s ds. In this section, we

first show that the estimation errors on the jump sizes and locations have negligible

effects on the estimation of integrated volatility and then applythe TSRV (Zhang,

Mykland and Aı̈t-Sahalia, 2005) and MSRV (Zhang, 2004) to estimate the integrated

volatility. Finally, we also introduce the wavelet realized volatility estimator to the

jump-adjusted data.

4.1 Data adjustment

Suppose our jump estimation shows that Xt has jumps at τ̂`, with jump size L̂`,

` = 1, · · · , q̂. Then the counting process Nt and the jump part of Xt are estimated

by, respectively,

N̂t =

q̂∑

`=1

1(τ̂` ≤ t), X̂d
t =

N̂t∑

`=1

L̂` =
∑

τ̂`≤t

L̂`. (6)
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To remove the jump effect from the data, we adjust data Yti by subtracting it from

the estimated jump part X̂d
t , resulting in

Y ∗
ti

= Yti − X̂d
ti

= Yti −
∑

τ̂`≤ti

L̂`, i = 1, · · · , n. (7)

For noisy high-frequency data under the continuous diffusion price model, good

estimators of Θ are based on the average of RVs for various subsampled data. As

the true jump locations and jump sizes are estimated accurately, jump effect can

be largely removed. Below we will show that their impact on the average realized

volatility is asymptotically negligible. To demonstrate this, let us introduce some

notations. For integer K, partition the whole sample into K subsamples and define

[Y ∗, Y ∗](K) =
1

K

K∑

k=1

n/K∑
j=1

(Y ∗
tk+j K

− Y ∗
tk+(j−1) K

)2 =
1

K

n−K∑
i=1

(Y ∗
ti+K − Y ∗

ti
)2

be the average of K subsampled realized volatilities (ASRV) for adjusted data. For

comparison, denote by Xc and Y c the continuous parts of X and Y , respectively, namely,

Xc
t =

∫ t

0

µs ds +

∫ t

0

σs dWs, Y c
t = Xc

t + εt. (8)

Define ASRV for Y c
ti
,

[Y c, Y c](K) =
1

K

K∑

k=1

n/K∑
j=1

(Y c
tk+j K

− Y c
tk+(j−1) K

)2 =
1

K

n−K∑
i=1

(Y c
ti+K − Y c

ti
)2.

Note that Y c
t are not observable and are treated as ideal data for the purpose of

theoretical comparison.

Theorem 2 If K/n + log2 n/K → 0, under Conditions (A1)-(A4) in Section 6, we

have

[Y ∗, Y ∗](K) = [Y c, Y c](K) + OP (n−1/4 + K−1 log2 n).

Theorem 2 shows that the effect of jumps in ASRV is of order n−1/4, if K is chosen

be of order lower than n1/4.
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4.2 TSRV for jump adjusted data

TSRV of Zhang et al.(2005) is used for volatility estimation under a continuous price

model. Direct application of TSRV to the noisy data Y from the jump-diffusion

price model yields an inconsistent estimator of integrated volatility, as it converges

in probability to the quadratic variation process given by (3). Direct application of

TSRV to the jump adjusted data Y ∗ and denote by JTSRV the obtained estimator

of Θ, which is given as follows:

Θ̂K = [Y ∗, Y ∗](K) − 1

K
[Y ∗, Y ∗](1).

An immediate consequence of Theorem 2 is that the same asymptotic distribution

result of the TSRV estimator under the continuous price model in Zhang et al.(2005,

Theorem 4) also holds for JTSRV Θ̂K under the jump-diffusion price model.

Theorem 3 Under Conditions (A1)-(A5) in Section 6, and K = c n2/3 for some

c > 0, we have n1/6 (Θ̂K −Θ) converges in law to a standard normal random variable

multiplying by the square root of 8 c−2 η2 + 8 c
∫ 1

0
σ4

t dt/3, where η2 = V ar(εt).

Thus, for estimating integrated volatility, JTSRV under the jump-diffusion price

model has the same performance asymptotically as TSRV under the continuous dif-

fusion price model.

4.3 MSRV for jump adjusted data

For the continuous diffusion price model, Zhang (2004) used ASRV over many sub-

sampling frequencies to construct MSRV and achieve the optimal convergence rate

n−1/4 for estimating Θ (Gloter and Jacod, 2001). Like TSRV, MSRV applied to ob-

servations with jumps yields an inconsistent estimator of integrated volatility. Insted,
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we apply MSRV to the jump adjusted data Y ∗
ti

and denote by JMSRV the resulting

estimator of Θ. The resulting JMSRV is as follows,

Θ̂ =
M∑

m=1

am[Y ∗, Y ∗](Km) + ζ
(
[Y ∗, Y ∗](K1) − [Y ∗, Y ∗](KM )

)
,

where M is an integer, Km = m + C, with C the integer part of n1/2, and

am =
12 (m + C)(m−M/2− 1/2)

M (M2 − 1)
, ζ =

(M + C)(C + 1)

(n + 1)(M − 1)
.

We derive the convergence rate of such a procedure by using Theorems 1 and 2 and

Zhang (2004). Note that, unlike Zhang (2004), we need to take the partition numbers

Km at least as big as n1/2 in order to apply Theorem 2 and obtain n−1/4 convergence

rate. Constant C is introduced in above procedure to achieve that goal.

Theorem 4 Under Conditions (A1)-(A5) in Section 6, and M ∼ n1/2, we have

Θ̂−Θ = OP (n−1/4).

Theorem 4 shows that like the continuous diffusion price model, we can estimate

the integrated volatility at the optimal convergence rate n−1/4 for the jump-diffusion

price model. Thus, jumps have no asymptotic impact on the volatility estimation.

4.4 Wavelet volatility for jump adjusted data

Let

y∗i = Y ∗
ti
− Y ∗

ti−1
, xc

i = Xc
ti
−Xc

ti−1
=

∫ ti

ti−1

µs ds +

∫ ti

ti−1

σu dWu.

Then, the realized volatility for the ideal data {Xc
ti
} defined by (8) is

[Xc, Xc](1) =
n∑

i=1

(xc
i)

2.
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As {xc
i} are not observable, it is naturally replaced by

∑n
i=1(y

∗
i )

2. Each y∗i is con-

taminated with noise of level η, the summation cumulates the noise of order n, which

dominates Θ. This is shown in Zhang et al. (2005) and also evidenced in Figure

1(a). Thus, we need to remove noise εt from y∗i first before computing the realized

volatility. Since Xc
t and εt are independent, conditioning on Xc

t , the problem is the

same as that for nonparametric regression (Vidakovic, 1999, chapter 6). Hence, the

technique can be used to denoise the data.

Consider the wavelet coefficients of xc
i . Due to the sparse wavelet representation,

most volatility information xc
i is stored in relatively a small number of large wavelet

coefficients at low and middle levels, whereas the information about noise is con-

tained in wavelet coefficients at very high levels. The sum of squares contributed by

the relatively small number of large wavelet coefficients at low and middle levels al-

most accounts for [Xc, Xc](1). Similar to stationary wavelet transformation, to better

suppress noise we consider data shifts and use wavelet transformation of each shifted

data set to form the sum of the squared wavelet coefficients. We then take the average

of all the sums as an estimator of integrated volatility.

To define the estimator specifically, we introduce some notations. Given a se-

quence of zi, i = 1, · · · , n, define the shift operator

(Sz)i = zi+1, for i = 1, · · · , n− 1, and (Sz)i = 0, for i ≥ n.

Denote by y`
j,k the wavelet transformations of (S`−1y∗)i, ` = 1, · · · , K = 2Jn for some

integer Jn < log2 n. To estimate integrated volatility, we form the sum of squares of

the wavelet coefficients y`
j,k up to the level log2 n− Jn.
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Define wavelet RV (WRV)

WRV =
1

n

2Jn∑

`=1

log2 n−Jn∑
j=1

2j∑

k=1

(
y`

j,k

)2
,

and WRV estimator of integrated volatility Θ

Θ̂W = WRV− 2−Jn [Y ∗, Y ∗](1).

The following theorem relates Θ̂W under Haar wavelet to JTSRV estimator Θ̂K .

Theorem 5 When Haar wavelet is used, the WRV estimator Θ̂W is equal to the

JTSRV estimator Θ̂K with partition number K = 2Jn.

Theorem 5 shows that JTSRV corresponds to the WRV estimator with Haar

wavelet. Thus, they will share the same asymptotic distribution. When smooth

wavelets are used, the WRV estimators are different from the JTSRV estimator. It

is an interesting problem to study the asymptotic behavior of the WRV estimators

under smooth wavelets.

5 Numerical studies

5.1 Simulations

Simulated high frequency data are minute by minute observations for 24 hours from

model (1) and (2) with drift in log price being equal to zero, that is, 1440 equally

spaced observations are simulated from the model. To obtain the 1440 observations,

we first use the Euler scheme to simulate a sample path of σ2
t from the following

Geometric Ornstein-Uhlenbeck volatility model,

d log σ2
t = −(0.6802 + 0.10 log σ2

t ) dt + 0.25 dW1,t, Corr(Wt,W1,t) = −0.62.
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Better simulation schemes (Fan 2005) can also be used, but the difference is expected

to be small. The 1440 values of
∫ ti

0
σs dWs, i = 1, · · · , 1440, are then approximated

by the discrete summations. These 1440 values form a simulated sample path of the

continuous part of Xt and are denoted by Xc
ti
. For the jump-diffusion model, two

jump cases are considered: Xt has one jump or three jumps over [0, 1]. The simulated

1440 values of the sample path of Xt with one or three jumps are obtained by adding

one or three jumps to Xc
ti
, respectively, with jump locations equally likely placed in

[0, 1] and jump size following i.i.d. normal distribution with mean zero and standard

deviation 1/30. Denote by the simulated values by Xti , i = 1, · · · , 1440. The observed

data {Yti} are obtained by adding i.i.d. noise εti ∼ N(0, η2) to Xti . The value of

η ranges from 0 to 0.001. We repeat the whole simulation process 5000 times and

evaluate MSEs of the estimators based on the 5000 repetitions.

In the simulation study, Daubechies s8 wavelet was used in the calculation of

wavelet coefficients for jump estimation and WRV. JTSRV was evaluated with K

being 5 and 15, which corresponds to 5- and 15-minute returns, respectively. We

computed WRV using wavelet coefficients at the first 8 levels. JMSRV was computed

with M = 11 and Km = 5, · · · , 15. To demonstrate the performances of the proposed

estimators we compared them with RBPV, RV and TSRV estimators directly applied

to the same data without jump adjustments. RBPV was evaluated for all data and

subsampled data corresponding to 5- and 15-minute returns, RV was computed based

on all data, and TSRV was applied with K = 5 and 15 partition groups corresponding

to 5- and 15-minute returns, respectively.

We plotted the MSEs of the estimators against noise level for continuous price

process (no jumps) in Figure 2, and for the price process with one and three jumps,
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(d) Jump Variation

Figure 2: Plots of MSE (multiplied by 104) under a continuous price process (no jumps). (a)
MSE using JMSRV (dotted curve) and RBPV (all data — dot-dash; 5-minute subsampled
data — dash; 15-minute subsampled data — solid). (b) MSE using JMSRV (dotted curve),
RV(dot-dashed curve) and TSRV (K = 5 — dashed; K = 15 — solid). (c) MSE using
JMSRV (dotted curve), JTSRV (K = 5 — dashed; K = 15 — solid) and WRV (dot-dashed
curve). (d) MSEs of Jump variation estimation using RBPV (solid curve) and wavelets
(dotted curve).

respectively in Figures 3 and 4. In each of Figures 2-4, (a), (b) and (c) plot the MSEs

of RBPV, RV and TSRV, and JTSRV and WRV, respectively, along with the MSE of

JMSRV for the purpose of comparison. All MSEs are multiplied by 104 to facilitate

the presentation.

For the case of continuous price process, Figure 2 shows that, when there is no

microstructure noise or noise level is very low, RV and RBPV based on all data are
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(c) JMSRV, JTSRV and WRV
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(d) Jump Variation

Figure 3: MSE (multiplied by 104) and jump variation plots under a continuous price
process with one jump. The same captions as those in Figure 2 are used.

the best. However, they are very sensitive to noise. As the noise level increases, their

performances quickly deteriorate, and they are overwhelmingly dominated by TSRV,

JMSRV, JTSRV and WRV estimators. For the subsampling based estimators, the

higher noise level is, the lower frequency subsample should be used to make their

MSEs smaller. The MSEs of MSRV and JMSRV are between those of TSRV and

JTSRV for 5- and 15-minute returns, respectively, as they essentially correspond to

average of TSRV estimators for returns from 5 and 15 minutes. TSRV, JMSRV,

JTSRV and WRV are noise resistant and have comparable performance, and none
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(c) JMSRV, JTSRV and WRV
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(d) Jump Variation

Figure 4: MSE (multiplied by 104) and jump variation plots under a continuous price
process with three jumps. The same captions as those in Figure 2 are used.

achieve the smallest MSE uniformly over the entire range of the noise level.

For the case of price process with jumps, Figures 3 and 4 demonstrate that the

proposed estimators outperforms all existing estimators. RV and TSRV are very

sensitive to jumps. In this case, it is necessary to remove the jumps first before

calculating the estimated integraged volatility. Regardless of noise level, one jump

in the price process is enough to destroy RV and TSRV estimators with MSEs far

larger than those of JMSRV, JTSRV and WRV. This is clearly demonstrated by the

fact that the rescaled MSEs of RV and TSRV in Figure 3(b) have values far above
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0.04, while the rescaled MSEs of the proposed JMSRV, JTSRV and WRV in Figure

3(c) are close to 0.001. In the case of one jump, Figures 3(a) and 3(c) imply that

RBPV based estimators have larger MSEs than the proposed JMSRV, JTSRV and

WRV. RBPV is proposed to handle jumps for data without noise. For very low noise

levels, RBPV for all data has slightly less MSE than the JMSRV. But as noise level

increases, its MSE increases dramatically, with MSE values many times larger than

that of the JMSRV. When the price process has three jumps, Figures 4(a) and (c)

indicate that the proposed estimators obviously outperforms RBPV based estimators

at all noise levels, and again Figure 4(b) suggests that the behaviors of RV and TSRV

estimators are completely ruined by the jumps.

For the estimation of jump variation Ψ in the jump-diffusion price model, we

have checked the performance of the proposed estimator Ψ̂ in (5) and compared it

with the existing estimator in Barndorff-Nielsen and Shephard (2005), which is the

difference of RV and π/2 of RBPV of order (1, 1). We evaluated the existing estimator

based on all and subsampled data and found that the MSEs are very close. Figures

3(d) and 4(d) plot, against noise level, the MSEs of the proposed estimator and the

existing estimator based on 5-minute returns for one and three jumps, respectively.

When jumps are present in the log price process, we have also checked the number

of estimated jumps. The percentage of finding correct number of jumps ranges from

90% to 99% over the noise level. For the continuous price case, there is no jump and

the jump variation is zero. To check the performances of the proposed estimator and

the existing estimator in this case, we have plotted their MSEs in Figure 2(d). The

simulation shows that the proposed estimators have excellent performance and are

overwhelmingly better than the existing estimator.
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5.2 Applications

We have applied the proposed methods to two exchange rate data sets: one minute

Euro-dollar and Yen-dollar exchange rates for the first seven months in 2004. The data

sets were obtained from Quickstars, L. L. C., Connecticut, U.S.A. Figures 5(a) and

6(a) show the plots of the two exchange rate data. We applied our jump estimation to

the exchange rate data for each day and plotted the estimated number of daily jumps

in Figures 5(b) and 6(b). The plots show that jumps occur very often in the exchange

rates. We computed WRV and the proposed estimator of jump variation for each day

and plotted the estimated daily integrated volatility and jump variation in Figures

5(c-d) and 6(c-d). For these two data sets, jump variations often make significant

contribution to total variations. To quantify the contribution, we calculated the ratios

of the daily estimated jump variations and the daily integrated volatilities and plotted

them in Figure 7. The percentages of days with jump variation exceeding 10% and

20% of integrated volatility are, respectively, 41% and 24% for Euro-dollar exchange

rates and 30% and 19% for Yen-dollar exchange rates. For several days, the estimated

jump variations even surpass the estimated integrated volatilities. This shows that

ignoring jump effect in volatility estimation can inflate the volatility substantially.

6 Conclusions

We develop nonparametric methods to estimate jumps and jump variations for noisy

data from a jump-diffusion model. With the estimated jumps we adjust data for

jumps and then propose to apply TSRV and MSRV to the jump adjusted data for

the estimation of integrated volatility. We also construct WRV from the jump ad-
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Figure 5: (a) Euro-dollar exchange rates from January to July, 2004. (b) The number of
estimated jumps in each day. (c) Estimated daily integrated volatility. (d) Estimated daily
jump variation.

justed data to estimate integrated volatility. Asymptotic theory established for the

proposed estimators shows that the integrated volatility can be estimated under the

jump-diffusion price model asymptotically as well as under the continuous diffusion

price model. Simulations demonstrate that the proposed estimators have comparable

performance with existing methods for either noisy data from the continuous diffusion

model or noiseless data from the jump-diffusion model, but they outperform exist-

ing methods when data contains jumps. An application of the jump and volatility

estimation methods to two high-frequency Euro-dollar and Yen-dollar exchange rate
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Figure 6: (a) Japanese Yen-dollar exchange rates from January to July, 2004. (b) The
number of estimated jumps in each day. (c) Estimated daily integrated volatility. (d)
Estimated daily jump variation.

data reveals important information in the exchange rates.

The paper initiates a new research direction on jump and volatility estimation in

the field of high-frequency financial data. The proposed methods will stimulate more

research on multiscale methods. The paper also leaves some issues and open problems

for future investigation. They include asymptotic theory of WRV under smooth

wavelets, the performance of the proposed methods for data with infinitely many

jumps modeled by Lévy processes, characterization of log price process whose sample

path has sparse representations under wavelets and other bases, and refinement of
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Figure 7: The ratios of estimated daily jump variations and integrated volatilities for (a)
Euro-dollar and (b) Japanese Yen-dollar exchange rates. Two horizontal lines are at 10%
and 20% levels.

WRV with thresholding techniques to take full advantage of bases used.

7 Technical conditions and Proofs

We first state the technical conditions on model (1) and (2) that are needed for the

technical proof and then outline the proofs of the results.

(A1). Wavelets (ψ, φ) used in jump estimation are differentiable.

(A2). µt and σ2
t are continuous in t almost surely and satisfy

E

(
max
0≤t≤1

µ2
t

)
< ∞, E

(
max
0≤t≤1

σ2
t

)
< ∞.

(A3). Counting process Nt has jump locations in [0, 1] at τ`, ` = 1, · · · , N1 < ∞.

(A4). (µt, σ
2
t , Wt), (Nt, L`) and εt are independent. εt are i.i.d. with a finite 4th mo-

ment.
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(A5). The continuous part of Xt is an Itô process, with (µt, σt) adapted to the complete

filtration generated by Brownian motion Wt.

Proof of Theorem 1. As q = N1 is finite, from (4), with probability tending to

one q̂ = q, it is enough to show

(Ȳτ̂`+ − Ȳτ̂`−)− (Xτ`
−Xτ`−) = OP (n−1/4), ` = 1, · · · , q̂ = q. (9)

We now prove for the case with ` = 1. Denote by m± the number of ti in [τ̂1, τ̂1 + δn]

and [τ̂1 − δn, τ̂1), respectively. Then |m+ −m−| ≤ 2, m+ ∼ m− ∼ n1/2, and

Ȳτ̂1+ =
1

m+

∑

0≤ti−τ̂1≤δn

Yti , Ȳτ̂1− =
1

m−

∑

0<τ̂1−ti≤δn

Yti .

As Yt contains four terms: noise, drift, diffusion and jump, denote by Ui the

differences between the two averages over [τ̂1, τ̂1 + δn] and [τ̂1 − δn, τ̂1), for the four

terms, respectively. Then,

(Ȳτ̂1+ − Ȳτ̂1−)− (Xτ1 −Xτ1−) =
4∑

i=1

Ui − LNτ1
, (10)

and it is enough to show that Ui, i = 1, 2, 3, and U4 − LNτ1
are OP (n−1/4).

First of all, let us consider the noise term. U1 is the difference of two averages of

m+ and m− i.i.d. random variables εt, respectively, so U1 has mean zero and variance

η2 (m−1
+ + m−1

− ) = O(n−1/2). Hence, U1 = OP (n−1/4).

Next, consider drift term. Use Condition (A2), it is easy to see that

U2 =
1

m+

∑

0≤ti−τ̂1≤δn

∫ ti

τ̂1

µs ds− 1

m−

∑

0<τ̂1−ti≤δn

∫ τ̂1

ti

µs ds

=
1

m+

OP

(
m+∑
i=1

i/n

)
+

1

m−
OP

(
m−∑
i=1

i/n

)
= OP (n−1/2).

Third, consider the continuous diffusion term. Note that

U3 =
1

m+

∑

τ̂1≤ti≤τ̂1+δn

∫ ti

τ1−2 δn

σs dWs − 1

m−

∑

τ̂1−δn≤ti<τ̂1

∫ ti

τ1−2 δn

σs dWs. (11)
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We will replace τ̂1 in above summations by τ1 and derive the order in probability

for the resulting difference. The difference between
∑

τ̂1≤ti≤τ̂1+δn

∫ ti
τ1−2 δn

σs dWs and

∑
τ1≤ti≤τ1+δn

∫ ti
τ1−2 δn

σs dWs involves integral terms
∫ ti

τ1−2 δn
σs dWs with ti falling to ex-

act one of the two intervals [τ̂1, τ̂1+δn] and [τ1, τ1+δn]. Since τ̂1−τ1 is OP (n−1 log2 n),

the total number of such terms is OP (log2 n). Because of Condition (A4), (σ,W ) and

τ1 are independent. The integrals
∫ ti

τ1−2 δn
σs dWs are OP (n−1/4 log1/2 n), which is

shown by applying Kolmogorov inequality for martingale, Condition (A2) and (4) as

follow,

P

(
max

{∣∣∣∣
∫ ti

τ1−2 δn

σs dWs

∣∣∣∣ , min(τ1, τ̂1) ≤ ti ≤ max(τ1, τ̂1) + δn

}
> n−1/4 log1/2 n

)

≤ P

(
max

τ1−δn≤ti≤τ1+2 δn

∣∣∣∣
∫ ti

τ1−2 δn

σs dWs

∣∣∣∣ > n−1/4 log1/2 n

)
+ P (|τ̂1 − τ1| > δn)

≤ 1

n−1/2 log n

∫ 2 δn

−2 δn

E
(
σ2

τ1+s

)
ds + o(1)

≤ 4 δn

n−1/2 log1/2 n
E

(
max
0≤t≤1

σ2
t

)
+ o(1) → 0, n →∞.

Thus,

∑

τ̂1≤ti≤τ̂1+δn

∫ ti

τ1−2 δn

σs dWs −
∑

τ1≤ti≤τ1+δn

∫ ti

τ1−2 δn

σs dWs = OP (n−1/4 log5/2 n).

Similarly, we can show

∑

τ̂1−δn≤ti <τ̂1

∫ ti

τ1−2 δn

σs dWs −
∑

τ1−δn≤ti<τ1

∫ ti

τ1−2 δn

σs dWs = OP (n−1/4 log5/2 n).

Substituting above two equations into (11) we obtain

U3 =
1

m+

∑

τ1≤ti≤τ1+δn

∫ ti

τ1−2 δn

σs dWs −

1

m−

∑

τ1−δn≤ti<τ1

∫ ti

τ1−2 δn

σs dWs + OP (n−3/4 log5/2 n). (12)

Denote by Eτ , V arτ and Covτ conditional mean, variance and covariance given τ1.

Note that τ1 is independent of (σ,W ). Given τ1, for |ti − τ1| ≤ δn,
∫ ti

τ1−2 δn
σs dWs has
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conditional mean zero and

Covτ

(∫ ti

τ1−2 δn

σs dWs,

∫ t`

τ1−2 δn

σs dWs

)
=

∫ ti∧t`

τ1−2 δn

E(σ2
s) ds

≤ (ti ∧ t` − τ1 + 2 δn) max
0≤s≤1

E
(
σ2

s

)
.

Hence, it is easy to compute the following conditional mean and variance

1

m+

∑

0≤ti−τ1≤δn

Eτ

∫ ti

τ1−2 δn

σs dWs =
1

m−

∑

0<τ1−ti≤δn

Eτ

∫ ti

τ1−2 δn

σs dWs = 0, (13)

Varτ

(
1

m+

∑

0≤ti−τ1≤δn

∫ ti

τ1−2 δn

σs dWs − 1

m−

∑

0<τ1−ti≤δn

∫ ti

τ1−2 δn

σs dWs

)

=
1

m2
+

∑

τ1≤ti≤τ1+δn

∫ ti

τ1−2 δn

E(σ2
s) ds +

2

m2
+

∑

τ1≤ti<t`≤τ1+δn

∫ ti

τ1−2 δn

E(σ2
s) ds

+
1

m2−

∑

τ1−δn≤ti<τ1

∫ ti

τ1−2 δn

E(σ2
s) ds +

2

m2−

∑

τ1−δn≤ti<t`<τ1

∫ ti

τ1−2 δn

E(σ2
s) ds

≤ max
0≤s≤1

E(σ2
s)

(
4 δn +

1

m2
+

m+∑
i=1

i/n +
1

m2−

m−∑
i=1

i/n +
2

m2
+

m+∑
i=1

(m+ − i) i/n

+
2

m2−

m−∑
i=1

(m− − i) i/n

)
= O(n−1/2). (14)

Equations (13) and (14) together with Tchebysheff’s inequality imply that the differ-

ence of the first two terms on the right hand side of (12) is OP (n−1/4) under Pτ , and

hence it is OP (n−1/4). This result together with (12) shows that U3 = OP (n−1/4).

Finally, we consider the jump term. From Condition (A3), we have that the

minimum distance, min{τ`−τ`−1, ` = 1, · · · , N1} (τ0 = 0), between consecutive jumps

of Xt over [0, 1] is positive almost surely.

Denote by Ω1,n the event min{|τ` − τ`−1|, ` = 1, · · · , q} > 2 δn and Ω2,n the

event |τ̂` − τ`| ≤ n−1 log2 n for ` = 1, · · · , q = q̂, and let Ωn = Ω1,n ∩ Ω2,n.

Condition (A3) implies that min{τ` − τ`−1, ` = 1, · · · , q} is positive almost surely.

Then limn→∞ P (Ω1,n) = P (min{τ` − τ`−1, ` = 1, · · · , q} > 0) = 1. Also (4) implies
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limn→∞ P (Ω2,n) = 1. Hence limn→∞ P (Ωn) = 1. On Ωn, |τ̂1 − τ1| ≤ n−1 log2 n and

the distances between any two jumps of Xt are great than 2 δn, so if Xt jumps on the

interval [τ̂1 ± δn], it can jump only once and at τ1 ∈ [τ̂1 ± δn]. Thus, we have

U4 =
1

m+

∑

0≤ti−τ̂1≤δn

Nti∑

`=1

L` − 1

m−

∑

0<τ̂1−ti≤δn

Nti∑

`=1

L`

is equal to LNτ1
[1−n (τ1− τ̂1)/m+] if τ̂1 ≤ τ1 and LNτ1

[1−n (τ̂1− τ1)/m−] if τ̂1 > τ1.

We conclude that on Ωn

|U4 − LNτ1
| ≤ |LNτ1

| (m−
+ + m−1

− ) n |τ̂1 − τ1| ≤ |LNτ1
| (m−

+ + m−1
− ) log2 n.

By considering it on Ωn and Ωc
n we obtain

P (|U4 − LNτ1
| > n−1/2 log3 n) ≤ P (Ωc

n) + P
(
Ωn ∩

{|U4 − LNτ1
| > n−1/2 log3 n

})

≤ P (Ωc
n) + P

(
(m−

+ + m−1
− ) |LNτ1

| > n−1/2 log n
) → 0, as n →∞,

which implies U4 − LNτ1
= OP (n−1/2 log3 n) = oP (n−1/4).

Proof of Theorem 2. Suppose that X has q = N1 jumps at τ`, ` = 1, · · · , q.

Let

Xd
t =

Nt∑

`=1

L` =
∑
τ`≤t

L`

be the jump part of X. With the continuous parts of Xt and Yt defined in (8), we

yield Xt = Xc
t + Xd

t and Yt = Y c
t + Xd

t . From the definition of the data adjustment

in (6) and (7), we conclude

Y ∗
ti+K

− Y ∗
ti

= Y c
ti+K

− Y c
ti

+
∑

ti<τ`≤ti+K

L` −
∑

ti<τ̂`≤ti+K

L̂` ≡ Y c
ti+K

− Y c
ti

+ ξi. (15)

Similar to the jump part proof of Theorem 1, denote by Ωn the event min{|τ` −

τ`−1|, ` = 1, · · · , q} > K/n and |τ̂` − τ`| ≤ n−1 log2 n for ` = 1, · · · , q = q̂. Then

Condition (A3) and (4) imply limn→∞ P (Ωn) = 1. Note the facts that on Ωn, first
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Xt has at most one jump in each of intervals [ti, ti+K ] of length K/n; second, since

(K/n)/(n−1 log2 n) = K/ log2 n → ∞, in comparison with intervals [ti, ti+K ], the

interval formed by each pair τ` and τ̂` is tiny. Thus, on Ωn, there are only three cases

for the relationship between the two types of intervals:

(i) ti, ti+K < τ`, τ̂` or ti, ti+K > τ`, τ̂`,

(ii) ti < τ`, τ̂` < ti+K , and for each (τ`, τ̂`) there is at most n (K/n− |τ` − τ̂`|) ≤ K

such intervals [ti, ti+K ];

(iii) either ti or ti+K (but not both) is between τ` and τ̂`, and for each (τ`, τ̂`) there

is at most 2 n |τ` − τ̂`| ≤ 2 log2 n such intervals [ti, ti+K ].

Under the aforementioned three cases, ξi on Ωn is equal to 0, L`− L̂`, and L` or −L̂`,

respectively. Hence from (15) we have that for Cases (i), (ii) and (iii), (Y ∗
ti+K

−Y ∗
ti
)2−

(Y c
ti+K

− Y c
ti
)2 is, respectively, equal to zero, and bounded by |L` − L̂`| and |L`|+ |L̂`|

multiplying by positive constants. From the expression of ASRV in Section 4.1 we

have

[Y ∗, Y ∗](K) − [Y c, Y c](K) =
1

K

n−K∑
i=1

[
(Y ∗

ti+K
− Y ∗

ti
)2 − (Y c

ti+K
− Y c

ti
)2

]
.

Classifying above n − K summation terms according to Cases (i), (ii) and (iii), we

can bound [Y ∗, Y ∗](K) − [Y c, Y c](K) on Ωn by multiplying the bounds with the corre-

sponding total numbers of intervals [ti, ti+K ] under the three cases and then dividing

by K. Since the difference is zero for Case (i), we need to do multiplications only for

Cases (ii) and (iii). The resulting bound for [Y ∗, Y ∗](K)− [Y c, Y c](K) on Ωn is cHn,K ,

where c is a positive constant and

Hn,K =

q∑

`=1

|L` − L̂`|+ 2 K−1 log2 n

q∑

`=1

(|L`|+ |L̂`|).
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Again similar to the jump part proof of Theorem 1, we consider [Y ∗, Y ∗](K)−[Y c, Y c](K)

on Ωn and Ωc
n and obtain its order OP (n−1/4 + K−1 log2 n) as follows,

P
(∣∣[Y ∗, Y ∗](K) − [Y c, Y c](K)

∣∣ > d n−1/4 + dK−1 log2 n
)

≤ P (Ωc
n) + P

(
Ωn ∩

{
c |Hn,K | > dn−1/4 + dK−1 log2 n

})

≤ P (Ωc
n) + P

(|Hn,K | > d n−1/4/c + d log2 n/c
)

≤ P (Ωc
n) + P

(
q∑

`=1

|L` − L̂`| > d n−1/4/(2 c)

)
+ P

(
q∑

`=1

(|L`|+ |L̂`|) > d/(4 c)

)
,

which tends to zero as n → ∞ and then d → ∞, where the limit is due to the

facts that
∑q

`=1 |L` − L̂`| = OP (n−1/4) and
∑q

`=1(|L`| + |L̂`|) = OP (1), implied by

Conditions (A3) and Theorem 1.

Proof of Theorem 3. With K = c n2/3, we see that the rate n−1/4 +K−1 log2 n

is negligible in comparison with n−1/6. The theorem is a consequence of Theorem 2

and Zhang et al.(2005, theorem 4).

Proof of Theorem 4. The partition numbers Km = m + C ≥ C ∼ n1/2.

Applying Theorem 2 to [Y ∗, Y ∗](Km) we obtain that uniformly for all m = 1, · · · , M ,

[Y ∗, Y ∗](Km) − [Y c, Y c](Km) = OP

(
n−1/4 + K−1

m log2 n
)

= OP

(
n−1/4

)
.

So we can replace [Y ∗, Y ∗](Km) by [Y c, Y c](Km). As Y c is from the continuous price

model, the rest proof is similar to Zhang (2004) but can be much shorter and elemen-

tary, as we need to derive only convergence rate.

Proof of Theorem 5. Let J = log2 n. When processing orthogonal wavelet

transformation of shifted data (S`−1y∗)i, we stop the process at level J − Jn and

approximate (S`−1y∗)i in the Haar subspace at scale J − Jn. The sum of squares

J−Jn∑
j=1

2j−1∑

k=1

(
y`

j,k

)2
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is equal to the sum of squares of smooth wavelet coefficients corresponding to the

Haar space at scale J − Jn. For Haar wavelet transformation of (S`−1y∗)i = Y ∗
t`+i

,

the smooth wavelet coefficients at level J − Jn are 2(J−Jn)/2 (Y ∗
t
`+k 2Jn

− Y ∗
t
`+(k−1) 2Jn

),

k = 1, · · · , 2J−Jn . Thus we have

J−Jn∑
j=1

2j−1∑

k=1

(
y`

j,k

)2
= 2J−Jn

2J−Jn∑

k=1

(Y ∗
t
`+k 2Jn

− Y ∗
t
`+(k−1) 2Jn

)2.

Summation over ` leads to

WRV = n−1

2Jn∑

`=1

J−Jn∑
j=1

2j−1∑

k=1

(
y`

j,k

)2
= 2−Jn

2Jn∑

`=1

2J−Jn∑

k=1

(Y ∗
t
`+k 2Jn

−Y ∗
t
`+(k−1) 2Jn

)2 = [Y ∗, Y ∗](2Jn).

Thus, the WRV estimator Θ̂W agrees with JTSRV estimator Θ̂K with K = 2Jn .
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