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Abstract

We introduce "factors on demand", a modular, multi-asset-class return decom-
position framework that extends beyond the standard systematic-plus-idiosyncratic
approach. This framework, which rests on the conditional link between flexible
bottom-up estimation factor models and flexible top-down attribution factor
models, attains higher explanatory power, empirical accuracy and theoretical
consistency than standard approaches.

We explore applications stemming from factors on demand
- The joint use of a statistical model with non-idiosyncratic residual for return
estimation and a cross-sectional model for return attribution
- The optimal hedge of a portfolio of options, even when the investment horizon
is close to the expiry and thus the securities are heavily non-linear
- The "on demand" feature of FoD to extract a parsimonious set of few dominant
attribution factors/hedges that change dynamically with time
- Accommodating in the same platform global and regional models that give
rise to the same, consistent risk numbers
- Point-in-time style analysis, as opposed to the standard trailing regression
- Risk attribution to select target portfolios to track the effect of incremental
alpha signals on the allocation process

Fully commented code supporting the above case studies is available at MAT-
LAB Central File Exchange under the author’s page
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1 Introduction

Linear factor models are widely used by risk and portfolio managers to measure
and manage the risk in their positions. In the standard framework, given a
portfolio with weights w, the model expresses the portfolio return Ry, as a
linear combination of a set of factors Zj and a residual 7,

K

Ry = dwiZk+ 1y, (1)
k=1

where dy, . are portfolio-specific coefficients that transfer the randomness of the
K factors into the portfolio return. The decomposition (1) is obtained in two
steps. First, the returns of all N securities are expressed in terms of the same
K "systematic" factors Zi, and security-specific "idiosyncratic" residuals

K

Ry=> dniZi+m,, n=1,..N. (2)
k=1

The parameters in (2) are estimated from historical observations by means of
regression techniques and thus (2) is an estimation factor model. Then, the indi-
vidual systematic-plus-idiosyncratic estimation models (2) are aggregated using
the relationship Ry = Y~ | w, R,, to provide the attribution factor model (1)
for the portfolio return. As we see, in the standard framework, the attribut-
ion factor model is obtained from the bottom-up aggregation of the estimation
factor models, see Figure 1A.

Two enhancements stem from the standard framework, one focused on at-
tribution for portfolio management platforms, the other focused on estimation
for risk management platforms, see Figure 1B-C.

Enhanced portfolio management platforms distinguish between an estima-
tion factor model R,, = ZlL:l by, F; + Uy, with L systematic factors F; and an
attribution factor model R,, = Zszl dn 1 Zi +1, with K attribution factors Zj.
Both factor models are applied to the single-security returns and the two models
are connected by a linear transformation, see e.g. Meucci (2007) and Menchero
and Poduri (2008). Then the single-security estimation and attribution models
are aggregated to the portfolio level for risk estimation or attribution purposes
respectively, see Figure 1B. Despite the enhancement, the estimation model fails
to accurately measure the risk of non-linear instruments such as options, among
other shortcomings.

Enhanced risk management platforms, which focus on estimation, do not fit
the estimation factor model to the returns of the securities. Rather, an estima-
tion factor model X, = Zlel bs 1 Fi + Us is fitted to the S risk drivers of the
securities, such as credit spreads and implied volatilities, which are non-linearly
related to the portfolio return. This approach yields accurate measures for the
risk of any instrument. However, the attribution step is not done. This makes
it difficult to interpret and take action on the positions, see Figure 1C.
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Figure 1: Factors on Demand versus other approaches to factor modeling

Factors on Demand (FoD) is a framework that incorporates the benefits
of these enhancements without their shortcomings. FoD combines flexible es-
timation factor models that provide accurate return estimation for non-linear
instruments with flexible attribution factor models, tailored to the specific port-
folio under analysis. This is achieved by expanding on the above frameworks in
three directions, see Figure 1D.

First, in FoD, flexible sets of estimation factors F are connected to another
flexible set of attribution factors Z by a conditional link. This feature allows
the user to perform the attribution (1) with different sets of factors Z without
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affecting the projected risk numbers of the portfolio. Furthermore, this feature
yields an exact, easy to interpret, actionable linear attribution of the portfolio
return Ry, to the factors Z, even when the attribution factors are intrinsically
non-linearly related to the portfolio return.

Second, FoD computes the attribution (1) top-down directly on the port-
folio return, instead of aggregating single-security attributions by means of the
portfolio weights as in Figure 1A,B. In this context, the single-security attri-
bution is a special case of the top-down attribution applied to a single-security
portfolio. Due to the top-down approach, by construction the FoD attribut-
ion (1) has higher explanatory power than the bottom-up aggregation of other
approaches.

Third, FoD does not rely on systematic-plus-idiosyncratic factor models, but
rather on more general dominant-plus-residual models. This feature allows
for a much more flexible choice of factors. Furthermore, the systematic-plus-
idiosyncratic assumption is empirically and theoretically incorrect, as discussed
in the companion article Meucci (2010), and thus the projected risk numbers
that follow from such an assumption are inaccurate.

A combination of the above three features allows FoD to perform attribut-
ion with fully flexible criteria, such as r-square maximization for style analysis
or CVaR minimization for hedging, and fully flexible constraints, such as the
maximum number of factors allowed in the attribution.

In Section 2 we review the steps to build the advanced multi-asset-class risk
management platform sketched in Figure 1 C.

In Section 3 we introduce the FoD top-down conditional attribution that
extends the risk management platform to an advanced flexible portfolio man-
agement platform. While illustrating the theory, we present some applications
to highlight the advantages of FoD. One application relies on FoD to jointly use
a statistical model with non-idiosyncratic residual for estimation and a cross-
sectional model for attribution. Another application leverages FoD to optimally
hedge a portfolio of options, even when the investment horizon is close to the ex-
piry and thus the securities are heavily non-linear. Yet another application uses
the "on demand" feature of FoD to extract a parsimonious set of few dominant
attribution factors/hedges that change dynamically as time elapses.

In Section 4 we present a few more applications of FoD: accommodating
global and regional models that give rise to the same, consistent risk numbers;
point-in-time style analysis, as opposed to the standard trailing regression ap-
proach; and risk attribution to select target portfolios to track the effect of
incremental alpha signals on the allocation process.

In Appendix A.1 we present a primer on the scenarios-probabilities repre-
sentation of a distribution and the generation of Monte Carlo scenarios for FoD.
in Appendix A.2 we discuss risk decomposition and analysis for distributions
represented as scenarios-probabilities pairs.

Fully documented code for the applications is available for download at
MATLAB Central File Exchange under the author’s page as "Factors on De-
mand".



2 The traditional steps of risk modeling

Consider a security or a portfolio whose value at the generic time ¢ is P;, where
we assume that any potential cash flow generated is reinvested in the same
security or portfolio. We denote by T the current time when the investment
decision is made and by 7 the horizon of the investment: the horizon is typically
one day for traders, of the order of a few weeks for portfolio managers, and
possibly years for private investors. The current value Pr is observable in the
market, but the value at the horizon Pry, is a random variable. We denote
by R the forward-looking linear return from the current time to the investment

horizon
Pry, — Pr

3

- ®)

More general definitions of return apply for leveraged instruments, which are
also covered by FoD, but this issue is beyond the scope of this paper. Our
ultimate goal is to estimate, analyze, stress-test, and optimize the distribution

of the return (3). To achieve this, we perform the following steps, refer to Figure
2.
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Figure 2: Road map for FoD implementation

Step 1: quest for invariance

The return of a security R is driven by one or more risk drivers, i.e. stochastic
variables that determine its outcome. We denote by X; = (X 1,. .. 7Xt,5)/ the
potentially large set of all the .S risk drivers in a given market. In turn, these risk
drivers are driven by the invariants, which are shocks €; = (e 1, ... ,et7S)/ that



are identically and independently distributed and that, due to these features, can
be estimated from empirical observations, see Meucci (2005) for more details.

The most commonly assumed dynamic process that connects the risk drivers
with the invariants is the random walk

h(Xt) = h(Xt_1)+Et, (4)

where h is a suitable invertible deterministic function. Refer to Meucci (2009b)
for an overview of more complex dynamics that include autocorrelations, sto-
chastic volatility, long memory, etc.

To illustrate, consider one specific stock. Then the driver X; is the price
itself, and the invariant €; is the compounded return

¢=InX; —InX,_q, (5)

which defines a random walk as in (4).

As a second example, consider a corporate bond. Then the drivers are the
interest rates of a reference curve RcY, where y denotes the rate term such as
one month, six months, one year, and the spreads Sp} over those rates

!/
X; = (Rc,}m,...,Rcfoy,Sp%m,...,Spfoy> : (6)
and the invariants €; are the changes in curve and spreads
€ = Xt — Xt—l- (7)

Again, this is a random walk as in (4).
Finally, consider a European call option with a given strike and expiry on a
given underlying. Then the drivers are the underlying, which trades at the price

m,

Uy, and the entries ;" of the implied volatility surface for that underlying
— =\
X, = (Ut, ot UT’T> , (8)

where [m, ..., m| x|z, ...,7| denotes the points of a grid of moneyness and time-
to-expiry values. In this case the invariants are the compounded returns of the
underlying and the volatility surface

e =InX; —InX;_q, 9)
which is a random walk as in (4).

Step 2: estimation

This step determines the distribution of the invariants, as represented by the
pdf fe, which can be estimated by a variety of multivariate inference techniques,
which include simple historical, nonparametric, maximum likelihood, Bayesian,
robust, see Meucci (2005) for an in-depth overview.
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Figure 3: Scenarios-probabilities pair (£;p) correspoding to the distribution f,
of the invariants

The estimation process of the distribution fe yields all the inputs necessary
to generate a J x S panel £ of J scenarios and a J-dimensional vector p of
probabilities for the invariants

fe=(&p). (10)

The generic j-th row &;. of £ represents a joint scenario for the S invariants
and the generic j-th entry p; of p represents the probability of that scenario,
refer to Figure 3. Notice that the probabilities p; are not necessarily all equal
to each other.

To illustrate, fe can be estimated as the empirical historical distribution.
Then ;. = €, are the historical observations of the invariants detected in the
quest for invariance step, and p; = 1/T', where T is the total number of his-
torical observations. We emphasize that the historical observations are used to
represent the forward-looking distribution fe of the invariants.

Alternatively, (£;p) can be Monte Carlo scenarios and probabilities corre-
sponding to the copula and marginal distributions of the forward-looking esti-
mated distribution fe obtained as discussed in Appendix A.1.

Step 3: dimension reduction
In a multi-asset-class platform, the dimension S of the invariants can become
very large. In order to properly estimate the distribution of the invariants fe we



reduce the dimension by imposing structure on the correlations of the invariants
through an estimation linear factor model

€ = B:F; + U,. (11)

In this expression F; is a L-dimensional vector of dominant estimation fac-
tors, where L is much smaller than S, the number of the invariants €;; B; is a
S x L matrix of coefficients that transfer the randomness of F; to €; and that
may depend on time t; and Uy is a S-dimensional vector of residuals. This
decomposition can be achieved by various time-series, cross-sectional, statisti-
cal/factor analysis, or hybrid models. In all models, including factor analysis,
the residuals are correlated Cor {Uy s, U; 4} # 0, see the proof in the companion
article Meucci (2010). Therefore, (11) is a dominant-plus-residual rather than
a systematic-plus-idiosyncratic linear factor model
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Figure 4: Scenarios-probabilities pair for invariants according to estimation fac-
tor model

Once we impose structure on the risk drivers by means of the estimation
linear factor model (11), the J x S panel of scenarios £ for the invariants (10)
is efficiently obtained in terms of a J x L panel F that corresponds to the
distribution of the non-noisy dominant estimation factors F, and a J x .S panel
U that corresponds to the distribution of the residuals U as

E=FB' + U, (12)

The dominant panel F is low-dimensional and can be generated with high pre-
cision. The residual panel U/, though large, requires much less computational
burden and sophistication, refer to Figure 4.



To illustrate, we estimate the distribution of the invariants by applying ran-
dom matrix theory, which appears to outperform cross-sectional models for es-
timation purposes, see Gatheral (2008). We model the invariants €, which is
a S-dimensional vector, as the sum of L < S dominant factors and a residual
that in turn is the sum of S — L residual factors. More precisely

L
d
€ = ZblFt,l aF Ut. (13)
=1
In this expression by,...,bg are the eigenvectors of the sample covariance of

€ and L is the cutoff which separates the significant non-noisy signals F; =
(Ft,lyn-,Ft,L)/ from the noisy residual U; = (U, .. -,Ut,s)/- For the non-
noisy signals we assume marginal distributions fitted to historical observations
by non-parametric kernel-smoothing and a normal copula. For the noisy residual
we assume

S
U EX Y by, (14)

where Xz is the average of the smallest S— L eigenvalues of the sample covariance
of € and V; ; are standard univariate independent normal variables. Notice that
the residuals are not idiosyncratic because they are correlated with each other.
To generate the scenarios panels F and U and the vector of probabilities p
please refer to Appendix A.1.

Step 4: projection
This step generates the scenarios-probabilities pair that correspond to the
distribution fx of the risk drivers X from the scenarios-probability pair of the
invariants
(&p) = (X;p). (15)
In this expression X is a J x S panel and the generic j-th row of X represents
one joint scenario for the S risk drivers X. We can generate X’ because the risk
drivers are driven by the invariants through dynamics such as the random walk

(4).

To illustrate, consider a market of stocks and options and assume that the
investment horizon is one step ahead, i.e. 7 =1 in (3). Then from (5) and (9)
we obtain for the risk drivers X = X744

X = XT * e€T+1 9 (16)

where * denotes the entry-by-entry multiplication and the exponential operates
entry-by-entry. Therefore for the scenarios we obtain

X = (1X7]) xef, (17)

where 1 is a J x 1 vector of ones.



Step 5: pricing
This steps generates the scenarios-probabilities pair that corresponds to the
distribution fgr of the securities returns from the scenarios-probabilities pair of
the risk drivers
(X;p) = (R;p). (18)

In this expression R is a J x N panel and the generic j-th row of R represents
one joint scenario for the forward-looking returns R of the N securities in the
market.

To obtain R, we consider the security-specific deterministic pricing functions
that map the S risk drivers X into the returns (3) of the security

R,=R,(X), n=1,...,N. (19)

Then
Rj,n =R, (Xj,~) ) (20)
where & . denotes the j-th row, i.e. the j-th joint scenario, in the risk drivers

panel X.

In our example, for a stock the single risk driver X is the price X7 at the
horizon T'+ 7 = T + 1 and thus R is the following J-dimensional vector

X

Rj=—L -1 21
J XT ? ( )
For a call option
Cps (X;.
R, = % .y (22)

where Cpg is the Black-Scholes pricing formula for the call option, C7 is the
currently traded price of the option, and X;. is the j-th joint scenario of the
risk drivers (8) at the horizon.

Step 6: aggregation
This step yields the scenarios-probabilities pair that corresponds to the dis-
tribution of the return Ry, of a generic portfolio w. Since Ry, = w'R we readily
obtain
w = (Rw;p). (23)

In this expression Rw is a J-dimensional vector. The generic j-th element of
Rw represents one scenario for the forward-looking return of the portfolio w,
which occurs with probability p;, the j-th entry of p.

3 FoD top-down conditional attribution
In this section we describe how to perform step 7, attribution, in Figure 2.

While building the risk-management platform in steps 1-6 we introduced a
few key stochastic variables, namely the invariants €, which drive the dynamics
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of the risk drivers X; the dominant factors F in the estimation factor model for
the invariants € = BF + U the securities returns R (X), which are determined
by the risk drivers through pricing functions; and the return Ry, = w'R (X) of
an arbitrary portfolio w.

Assume now that we want to attribute the portfolio return to K arbitrary
attribution factors Z = (Z1,...,Zx)’, i.e. yet-to-be realized random variables
that are correlated with the portfolio return. We aim at performing the attri-
bution as in formula (1), which we report here for convenience

K
Ry = Z dw,ka + Ny - (24>
k=1

For instance, assume that we hold a portfolio of options and that we have
used a statistical model € = BF+ U for the estimation of the invariants followed
by full repricing to obtain the distribution of the portfolio return.

Suppose that we wish to attribute the portfolio return to cross-sectional
industry factors. One could be tempted to run a historical regression of the
options returns on the cross-sectional factors R, ; = Zszl dn kZkt + My and
then aggregate these single-security models to yield the portfolio-level attribu-
tion (24). However, this approach is not viable for options, because the returns
of the options are not invariants. Furthermore, even if the options returns were
invariants as it is the case for stocks, the newly fitted model would also create
new numbers for the risk of the portfolio, different from the numbers obtained
with the statistical model, which we elected as the option of choice for estima-
tion. It would not be optimal to have two sets of VaR, standard deviation, etc.
How can we reconcile such numbers?

Now consider again our portfolio of options, but suppose that we wish to
hedge it with a set of products. If the products chosen are among the under-
lyings, a simplistic approach would compute the "deltas" of the securities and
aggregate these deltas according to the portfolio weights. However, what if the
hedging products are not the underlyings? And how can we take advantage of
the correlations among the hedging products?

As a third challenge, suppose again that we wish to attribute our portfolio
of options to industry factors, but assume that the portfolio contains only a
minuscule portion of a given industry. Do we really want to see that industry
among the attribution factors?

FoD solves all the above and related problems, by relying on three pillars:
top-down attribution, conditional link between attribution factors and portfolio
return, and dominant-plus-residual models.

In practice, let us start with a given portfolio w and let us focus on the
aggregate portfolio residual, which depends on the attribution coefficients d as
follows

nd =wR(X) - d'Z. (25)

In order to perform the attribution (24) for the specific portfolio w, we select
the coefficients d top-down to give the distribution of the aggregate portfolio
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residual f,4 the most desirable features according to a fully flexible attribution
criterion 7 and fully flexible constraints C on the coefficients

dyw = argmax 7 (f,a). (26)
dec v

To illustrate, we can aim at maximizing the r-square of the attribution factors
by making the residual as small as possible. Then

T (f,0) = —E{(n3)’}. (27)

Furthermore, we can aim at using only the best K factors out of the total pool of
K factors Z, i.e. we apply the constraint card (d) < K, where card (d) denotes
the cardinality of d, i.e. the number of non-zero entries in the vector d. Then
the attribution optimization (26) becomes

dw = argmin E{(WR(X)—d'Z)’}. (28)
card(d)<K

Notice that the distribution of the residual (25) is determined by the joint
distribution fx z of the risk drivers and of the attribution factors. Therefore,
regardless which criterion 7 and constraints C we choose, in order to perform
the attribution optimization (26) we need fx z and the scenarios-probability
pair that corresponds to this distribution

Ixz = (X, Z|x;p). (29)

In this expression X is the J x S panel of scenarios for the S risk drivers
X that was generated in the projection step (15) together with the vector of
the respective probabilities p; and Z|x is a yet-to-be generated J x K panel of
scenarios for the K attribution factors Z, where the notation highlights that Z|»
is generated after X is given. We discuss later in this section the methodology to
generate Z|y in such a way that the generic j-th row of the joint panel (X, Z|x)
represents a joint scenario for X and Z that occurs with probability p;, the j-th
entry of p.

Assuming for now that Z|y has been generated, it becomes trivial to gen-
erate the scenarios-probabilities pair that correspond to the distribution of the
residual. Indeed, from (25) we obtain

fog = (Rw — Z[ad;p). (30)
Then the top-down attribution optimization (26) can be computed numerically
using the scenarios-probabilities pair (30).

This process yields the ultimate FoD attribution, which mirrors (24)

Rw = Z|xdy + 11y, (31)
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where with minor abuse of notation 7, here also indicates the J-dimensional
vector of the residual scenarios.

By construction, the FoD top-down approach attains a higher value for the
attribution criterion 7 than the bottom-up approaches in Figure 1A-B-C.

Furthermore, the bottom-up approaches in general fail to satisfy the con-
straints C in the attribution optimization, as we will see in the example that
follows.

Also, the portfolio return Rw on the left hand side in (31) is unaffected by
the attribution factors on the right hand side: the user can choose two differ-
ent attribution factor models to interpret and manage the portfolio, without
affecting the portfolio risk numbers. This is possible because the generation
of the scenarios for the attribution factors Z|x is conditioned on having first
generated scenarios for the portfolio return, which are fully driven by the risk
drivers scenarios X

Finally, the FoD attribution (31) is a dominant-plus-residual factor model,
rather than a more restrictive systematic-plus-idiosyncratic model. The port-
folio return, namely the left hand side in (31), correctly accounts for all the
correlations hidden on the right hand side in the attribution factors and in the
residual. The risk numbers for the portfolio such as the standard deviation are
based on the left hand side only and do not need to rely on theoretically and em-
pirically incorrect systematic-plus-idiosyncratic assumptions on the covariance
of the attribution factors and of the single-security residuals.

R-square
T

naive

rec. rejection -
rec. acceptance
1 1

0 5 10 15 20 25 30 35 40 45 50
Number of attribution factors 7

Figure 5: Performance of top-down FoD attribution as function of the number
of factors
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To illustrate the practical implementation of FoD, we continue with our
example (27)-(28). Using the scenarios-probabilities pair (29), we reformulate
the problem as follows

dw = argmin {d'Hd —2a’d}. (32)
card(d)<K

The K x K matrix H in the quadratic term and the K-dimensional vector a in
the linear term are defined in terms of the scenarios-probabilities pair as

J
Hyw = Y piZinZiw (33)
j=1

ag

J N
ijzj,k ZRj,nwn» (34)
j=1 n=1

where the returns scenarios R are a function of the scenarios for the risk drivers
X from the pricing step (18). The cardinally constrained quadratic program
(32) can be solved efficiently with heuristics such as recursive rejection routine
discussed in Meucci (2005). In Figure 5 we display a case study with a potential
pool of K = 50 factors, see the FoD code available at MATLAB Central File
Exchange under the author’s page for more details.

Notice that by construction the top-down approach (28) or (32) has a higher
r-square than the bottom-up approaches. Also, the bottom-up approaches can-
not satisfy the cardinality constraint in (28) or (32) . Finally, the constraint
correlates the attribution factors with the residual, and thus the resulting at-
tribution model is not systematic-plus-idiosyncratic, but rather dominant-plus-
residual.

Now we return to the generation of the scenarios Z|y that complete the
scenarios-probability pair (29) which corresponds to the joint distribution of
risk drivers and attribution factors fx z. We distinguish two methods, where
the first is a special case of the second.

The first method applies when the attribution factors are fully determined
by the S risk drivers X

Ze =2y (X), k=1,...,K. (35)

Then Z|y is easily obtained similarly to the panel of the securities returns (18):
for each factor k = 1,..., K we feed the J rows of the J x S panel of risk drivers
X through the function (35), thereby obtaining the .J entries of the k-th column
of Zl)(
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Figure 6: Delta-gamma option payoff approximation with different investment
horizons

To illustrate this first method, we use FoD to hedge a portfolio of options
on one stock with the stock. To solve this problem, one could be tempted to
rely on the "deltas", computed according to the Black-Scholes pricing formula.
However, the approximation of the option payoff provided by the delta and
higher order analytics such as the gamma becomes incorrect for long investment
horizons, due to the square root rule propagation of risk, see Figure 6.

Instead, we rely on a combination of FoD and full-repricing. In this context,
the options returns panel on the left hand side in (31) follows from (22) and the
single attribution factor on the right hand side in (31) is the return of the stock
(21)

X1
Zlx = X, 1, (36)
where X.; denotes the first column of the panel X, which corresponds to the
underlying (8). The single attribution coefficient d in (31) represents the weight
of the stock; and the residual is the return of the hedged portfolio.

Given that we intend to control the downside of the hedged position without
limiting its upside, we use the flexibility of FoD to specify the target in the
attribution optimization (26) as the conditional value at risk

T (fya) =—CVaR {n%}. (37)
Therefore, we solve

dw = argmin CVaR{Rw — dZ|+ }, (38)
d
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This problem can be solved by linear programming as in Rockafellar and Urya-
sev (2000), to yield the FoD attribution (31). Notice that (38) and (31) provide
an exact, actionable linear hedge for the portfolio return even when the op-
tions in the portfolio are close to expiry and thus heavily non-linear. Also,
this methodology can be readily extended to multiple hedging products with
cardinality constraint on the maximum number of hedging products.

In Figure 7 we report the number of stocks necessary to hedge single call
options with different expiries using the Black-Scholes delta and using the FoD
attribution (38) and (31). The code for this case study is available at MAT-
LAB Central File Exchange under the author’s page. For more details on the
computations, refer to Meucci (2009a).

‘ 100 days 150days 200days 250 days 300 days
FOD 5.8 53 5.0 49 48
BS 57 54 5.2 51 5.0

Figure 7: Number of stocks to hedge call options with long investment horizons

The second method to generate the scenarios Z|x that complete the scenarios-
probability pair (29) for fx z is more general, as it applies when the attribution
factors Z are not a simple direct function of the risk drivers X, but are statis-
tically correlated with them. Using the identity fx z = fxfzx, where fzx is
the conditional distribution of the attribution factors Z given the risk drivers
X, we realize that in order to obtain fx z we need to estimate fzx. To do
so, we pursue the quest for invariance for the risk drivers and then we apply
conditional estimation techniques similar to those discussed in Step 2. Then for
each row in the panel X, i.e. for each scenario of X, we generate one conditional
scenario for Z from fzx, thereby obtaining the J x K conditional panel Z|x.
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Figure 8: Risk analysis of equity portfolio with two underlying factor models:
non-idio statistical and cross-sectional

To illustrate this second method, we use FoD to attribute the portfolio return
to a cross-sectional factor model after the portfolio return has been estimated
as in Steps 1-6 using a statistical factor model for dimension reduction.

Consider a portfolio of stocks, where the returns of the securities R are
invariants. Assume that we use the random matrix theory statistical factor
model (11) to model their distribution as R = BF + U, where F are L dom-
inant non-noisy signals and U are noisy residuals. As in (12) we generate a
scenarios-probabilities pair (R = FB’ +U; p) for the stock returns that corre-
sponds to the returns distribution fr, where F are scenarios for the dominant
non-noisy signals and F are scenarios for the noisy residuals. With these inputs
we can compute the standard deviation of the portfolio oy and decompose it
into the additive contributions from each security using the Euler identity, see
e.g. Meucci (2005)

N 00w
n=1 n

In the top portion of Figure 8 we display such a decomposition in a case study
that follows the above steps, refer to Appendix A.2 and to the FoD code available
at MATLAB Central File Exchange under the author’s page.

Now, assume that we want to attribute the portfolio return to a set of K
cross-sectional factors Z, such as the GICS industry factors. To this purpose we
can apply the specific instance of FoD attribution optimization (32), which in
this context maximizes the r-square of a constrained number of cross-sectional
factors.
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To implement FoD we need to generate the conditional scenarios Z|r, where
we used the fact that in the case of stocks the returns R are also equivalent to the
risk drivers, see (21). Therefore, we would need to estimate the conditional dis-
tribution fzr. However, assuming independence of the cross-sectional factors
Z from the pure noise U we only need to estimate the conditional distribution
fz|p of the K cross-sectional factors on the few L non-noisy signals, because
fzir = fzjr- We apply simple regression techniques to estimate fzr and we
generate the conditional scenarios Z|# accordingly, see more details in Appendix
A.l.

With the above inputs we can solve the FoD attribution optimization (32)
and obtain the FoD attribution (31). Then we can decompose the same oy, as
(39) into the additive contributions from the attribution factors

K+1 oo
= E dp—— 40
o £ k adk’ ( )

where the (I? + 1)-st factor is the residual. In the bottom portion of Figure 8
we display this decomposition in our case study, refer to Appendix A.2 and to
the FoD code available at MATLAB Central File Exchange under the author’s
page.

We emphasize that in this application of FoD we obtained a portfolio-specific,
parsimonious cross-sectional factor model where the risk numbers follow from
random matrix theory, which is a statistical factor model with non-idiosyncratic
residual.

4 Further applications of FoD

In this section we present a few more applications of FoD. All the applications
follow the risk modeling steps 1-6 discussed in Section 2 and run the top-down
attribution optimization (26) to obtain the FoD attribution (31), which is step
7, refer to Figure 2.

4.1 Global versus regional factor models

In the equity market the returns of the stocks R can in first approximation be
considered as the invariants. This covers Step 1 in the road map to FoD in
Figure 2.

Suppose that we are focusing on one specific region, say the US. Suppose
that we rely on a cross-sectional model for estimation and dimension reduction,
Steps 2-3 in Figure 2. As in (11), we model

R =BF + 1, (41)
where F, the dominant estimation factors, are the GICS industries factor re-

turns.
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Now, suppose that we need to expand the platform to provide global cov-
erage. When analyzing their positions, global equity portfolio managers do not
appreciate the fine granularity provided by regional models. For instance, port-
folio managers needs to know about exposure to "Utilities" as a whole, and not
"Utilities US", "Utilities Country ABC", etc.

A possible approach to cater to both the regional and global portfolio man-
ager would be to estimate two different factor models: a global equity model,
based on a parsimonious set of aggregate factors to cater to the global manager;
and a set of regional models, based on much more granular regional factors, to
cater to the local managers.

This approach is suboptimal for several reasons, most notably the cost of
maintaining different systems and the inconsistency of the risk analysis. To
illustrate the latter, consider a US-only portfolio. We can compute the risk
of this portfolio based both on the regional model and on the global model,
obtaining two different sets of risk numbers.

FoD solves this dichotomy. First, we the use granular regional models for

estimation: given aset (a, ...,w) of regions, we fit the respective regional models
individually
R@ = B@g@ Ly
: (42)
R« = BWFW 4y,

and then we join these models by imposing structure on the cross-correlations.
Skipping the unnecessary Steps 4-5 of projection and pricing in Figure 2, we
generate the scenarios-probabilities pair (R;p) that corresponds to the distrib-
ution of the returns. Then as in (23) we obtain the scenarios-probabilities pair
(Rw;p) that corresponds to the aggregate distribution of the portfolio return,
Step 6 in Figure 2. This distribution is used to compute and analyze the risk in
the portfolio.

Next, we perform Step 7 in Figure 2, namely the FoD top-down attribution
(31), which we report here

Rw = Z|xdw + Ny - (43)

In this expression Z|y is the conditional panel that represents the distribution
of the attribution factors, which we set as either the global, or the regional
factors. To this purpose, we notice that, as in (35), the global factors are a
deterministic function of the regional factors
F(o)
7 = A : 7 (44)
Fw)

where A is a matrix that aggregates the granular regional factors into global
factors. Similarly, the regional factors are trivially a deterministic function (35)
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of themselves
F(o)
Z(F9) = : . (45)
Fw)
Therefore it is immediate to generate the conditional panel Z|y as in (35) and
comments thereafter.

To determine the exposures dy, in (43) we maximize the r-square of the
attribution factors to the portfolio, i.e. we set in (26) as target

T (fis) = —E{(n3)"}. (46)

obtaining a quadratic program such as (32). As in (32), we can, but we do not
need to, impose cardinality constraints to only select the most representative
factors for the specific portfolio w.

To summarize, using the global attribution factors (44) on the right hand
side in the FoD top-down attribution (43) we can express the portfolio return
on the left hand side, and all the risk numbers related to it, in a way suitable to
the global portfolio manager. On the other hand, using the regional attribution
factors (45) to perform the FoD attribution, we can express the same portfolio
return and risk numbers, in a way that suits the regional portfolio manager.

4.2 Style analysis

Consider a generic time ¢ and a portfolio w?. Style analysis amounts to express-
ing the portfolio return Ry as a linear combination of the returns Zj of a set
of style indices

K
Rur ~ 3 di 7, (47)
k=1

where in the notation we emphasized the time dependence of the exposures d..
Typically, the exposures d} of the style returns are constrained to be positive
and sum to one, in such a way that they can be interpreted as the weights of a
replication portfolio.

In the pathbreaking, now standard, approach by Sharpe (1992), the coeffi-
cients d}, are computed by running a constrained time series regression of the
realizations of the portfolio returns on the realizations of the style returns. This
approach is suboptimal because the regression approach assumes no dynamical
reallocation of the portfolio weights. Therefore, the result is a depiction of the
style over the estimation period, rather than a true point-in-time analysis of the
style of the current portfolio.

If the portfolio weights w! are unknown and only the portfolio returns are
observable, a partial improvement is suggested in Corielli and Meucci (2004).
However, if the portfolio weights are known, FoD provides a substantial improve-
ment. First, we proceed as in Steps 1-6 in Figure 2 to obtain the scenarios-
probabilities pair (R? (X?);p’) for the returns of the securities from the risk
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drivers X, all of which are forward-looking at time t. Then we use the returns
of the style indices as attribution factors in the FoD top-down attribution (31).
To this purpose, we obtain as in Step 7 the conditional scenarios Z|%,, for the
returns of the style indices, which are forward-looking at time t. Then we com-
pute the exposures dy: to maximize the r-square of the style factors, i.e. we
set in (26) as target 7 (fya) = — E{ (nﬂ,f}. Rearranging, we obtain as in (32)
a quadratic program, with a different set of constraint

dy: = argmin {d'H,d — 2a;d}. (48)

d/1=1,d>0

The exposures (48) reflect the portfolio composition w' at time ¢, as well as the
forward-looking risk in the market at that time, instead of the average portfolio
composition and market structure during the rolling estimation window that
precedes t.

4.3 Portfolio-based risk-attribution

Another application of FoD is the risk-based representation of a given portfolio
w in terms of a select set of portfolios

WA W+ +Hdrwi. (49)

For instance, the portfolios wq,...,wg can be defined as the weights implied
by a set of "incremental alpha signals", see Grinold (2006).
To perform this attribution, first we generate the scenarios-probabilities pair
(R (X);p) that corresponds to the joint distribution of the securities returns
from the risk drivers X as in Steps 1-6 in Figure 2. Then we define as attribution
factors the returns of the portfolios (49) which we intend to use as a basis for
the attribution
Zlx=RX)wy,...,R(X)wWkg). (50)
Now we perform the FoD top-down attribution (31). If we compute the
exposures dyt to minimize the variance of the residual i.e. we set in (26) as

target 7 (fya) = — Var{(n&,f} and we do not impose constraints we obtain the
analytical solution that appears in Grinold (2006)

dy = (W'iw)_lw'iw, (51)

where W = (wy| -+ |wg) is the N x K matrix of the juxtaposition of the
holdings and X is the covariance of the returns panel R. More in general, we
can perform portfolio based risk attribution with general targets and general

constraints.
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A Appendix

In this appendix we discuss technical results that can be skipped at first reading.

A.1 Monte Carlo scenarios from marginal-copula distrib-
utions

Consider an arbitrary set of K random variables, which in this section we denote
by the K-dimensional vector X.

We represent the marginal distribution of each factor Xj; by means of its
cumulative distribution function:

Fy (z) =Prob{X, <z}, k=1,...,K. (52)

We use the information available in the time series of each factor to estimate all
the cdf’s (52).

Since the marginal distributions are determined in (52), the full joint dis-
tribution of the systematic factors X is completely determined by the choice
of a dependence structure, also known as copula, see e.g. Meucci (2005). For
instance, we can model the dependence among the factors by means of a normal
copula. In this case, consider a normal vector with correlation matrix I'

Y ~N(0,T). (53)
This amounts to modeling the joint distribution of the factors as follows

Xy Frh (@MW)
N : , (54)

X Fiet (8 (Vi)

where ® denotes the cdf of the standard normal distribution. This joint structure
is consistent with the marginal specification described above: indeed, it turns
out that the cdf of the generic k-th factor implied by (54) is precisely (52).

To ensure flexibility and modularity, we represent the joint distribution of
the factors X in terms of a J x K panel X of J joint Monte Carlo simulations: the
generic j-th row represents a joint scenario for the factors X and the generic k-th
column represents the marginal distribution of the k-th factor X;. The quality
of the simulations is roughly independent of the number K of risk factors. On
the other hand, the quality improves with the number of simulations, but so does
the computational cost: we choose the number J of simulations appropriately
to achieve a balance between quality and computational cost.

To produce X, first we generate a J x K panel C for the desired copula. For
instance, for a normal copula, first we generate a J x K panel ) of joint Monte
Carlo simulations from the normal distribution (53) by matching moments as in
Meucci (2009¢) or Gollamudi (2009), if we also need to match the joint moments
with another normal copula, as in the generation of conditional scenarios. Then
we apply the standard normal cdf ® to each entry of the panel ), thereby

24



obtaining the J x K panel C = ® (). The columns of this panel have a uniform
distribution and represent the copula.

F*

guantile function of desired distribution

C.,=0 (Y-,k )

uniform random variable

-1
X.,k = Fx (C-,k) random variable with desired distribution

Figure 9: Uniform distribution is transformed into desired marginal distribution
with desired joint structure

Once we have the copula panel C, we apply the suitable quantile function F}~ !
to each column of the copula panel C, by linear interpolation of the cdf grid as
in Meucci (2006), see Figure 9. More precisely, consider the linear interpolator
of a function zgiq = f (ygria) evaluated at a given grid of points ygriq. We
denote the interpolator as follows:

Y+ z = interp (y; Ygrid, Zgrid) - (55)

We evaluate each generic k-th marginal (52) on a grid of S ~ 10% points x5 j
that include extreme scenarios

For=Fy(zsr), s=1,...,85. (56)
Then we can produce the J x K panel X' entry-wise
X, = interp (Cjp; Fopy T ) (57)

where C;j is the (j,k)-th entry of the copula panel C, F.j; denotes the S-
dimensional vector of the cdf of the k-th marginal (56) and z.j denotes the
S-dimensional vector of the respective grid values. Indeed, it follows that x.
represents the quantile function F ! evaluated at the grid of points F.; and
Cj i represents a simulation of the k-th grade. Notice that we do not need to
invert the cdf explicitly, i.e. to compute the quantile function.
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A.2 Risk decomposition: a primer

Here we present a quick primer on risk decomposition and risk computation
techniques. For more details see Meucci (2005).

We start from the expression of the portfolio return as the product of a
vector of S risk sources F times the respective exposures b, which represent the
practitioner’s decision variables:

R= d.F.. (58)

This formulation includes R = w'R, where S = N, the number of securities;
F, = R,, represents the returns of the securities; and d = w represents the
respective portfolio weights as well as R = di,Z + n,, as obtained in the top-
down FoD attribution (24), where the last term in (58) would account for the
residual.

The standard deviation is defined as follows

Sdp = \/]E{(R—]E{R})Q}. (59)

In benchmark-relative allocations the standard deviation is known as tracking
error. Intuitively, the standard deviation is a measure of the oscillations of the
return in normal market conditions.

The VaR is defined as a quantile of the loss:

VaR. =Q_g(c), (60)

where Qx (c) denotes the ¢ x 100-quantile of the distribution of X, where the
confidence c is typically set very high, of the order of ¢ &~ 99%. Intuitively, in a
set of, say, 100,000 simulations, the 99%-confidence VaR is the best among the
worst 1,000 scenarios.

Since the VaR is insensitive to the distribution of the remaining 999 worst-
case scenarios, one introduces the ES, defined as the expected loss, conditioned
on the loss exceeding the VaR:

ES.=E{-R|—-R>VaR.}. (61)

Intuitively, in a set of, say, 100,000 simulations, the 99%-confidence ES is the
average among the worst 1,000 scenarios.

Ideally, we would like to write the risk of the portfolio, as measured by
volatility, VaR, or ES, as the product of the exposures times the factor-specific
"isolated" volatility, VaR, or ES of the individual sources of risk, in a way fully
symmetrical to (58). Unfortunately, such an identity does not hold. Let us
consider for instance the standard deviation (59). It is well known that

S
Sdr # Y d.Sds. (62)
s=1
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The theory behind risk contributions rests on the observation that volatility,
VaR and ES are homogenous: by doubling the exposures b in (58) we double
the risk in the portfolio, see Meucci (2005) for a detailed review. Although the
decomposition (62) is not feasible, the following identity holds true because the
volatility is homogeneous, as proved by Euler

S
0Sd
Sdr =Y di—r, (63)
s=1 8d5

where

8Sdy  Cov{F}d
ad d’Cov{F}d

Notice that (63) is an exact identity, not a first-order approximation. In words,
total risk can still be expressed as the sum of the contributions from each factor,
where the generic s-th contribution is the product of the "per-unit" marginal
contribution 95d/0d; times the "amount" of the s-th factor in the portfolio, as
represented by the exposure ds. Unfortunately, the per-unit marginal contribu-
tion Sd/dd; is not a truly "isolated", factor-specific quantity, as it depends on
the whole portfolio. However, within the scope of the given portfolio, (63) does
indeed provide an additive decomposition of risk.

We start with the J x S panel of joint scenarios F of the factors F in (58).
Due to the remarks after (58), F is either the panel of joint returns scenarios
R of the securities returns or, more generally

(64)

F=(Z2lxnw), (65)

where Z|y is the conditional panel of the attribution factors and 7, are the
residual scenarios in (31). Then, the covariance of F that appears in the partial
derivatives (64) is provided by the sample covariance of the panel F.

Just like for the standard deviation (62), the VaR is not the weighted average

of the isolated VaR’s: <

VaR. # Y d,VaR,. (66)
s=1
However, the VaR is homogeneous, too, and therefore we can write it as the
sum of the contributions from each factor:

S
VaR.=) ds%. (67)
s=1 s

Again, total risk can still be expressed as the sum of the contributions from
each factor, where the generic s-th contribution is the product of the "per-unit"
marginal contribution OV aR./dds times the "amount" of the s-th factor in the
portfolio, as represented by the exposure ds.

In non-normal markets the volatility does not fully determine the VaR. How-
ever, the partial derivatives that appear in (67) can be expressed conveniently as
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in Hallerbach (2003), Gourieroux, Laurent, and Scaillet (2000), Tasche (2002):

oVaR,
od

= -E{F|R=—-VaR.}. (68)

In turn, these expectations can be approximated numerically as in Mausser
(2003), Epperlein and Smillie (2006):

OVaR,
od

~ —k.Sq. (69)

In this expression Sq is a J x S panel, whose generic j-th column is the j-
th column of the panel F, sorted as the order statistics of the J-dimensional
vector —Fd; and k. is a Gaussian smoothing kernel peaked around the re-scaled
confidence level cJ.

Finally, also the ES is homogeneous and thus we can write also the ES as
the sum of the contributions from each factor:

S

B OES,

ES, = E ds—ads . (70)
s=1

In non-normal markets the volatility does not fully determine expected short-
fall. However, the partial derivatives that appear in (70) can be expressed as

OES,
od

=-E {F|R S _Qfd’F (C)} . (71)
In turn, we can approximate numerically these expectations as

0ES,
od

where q. is a step function that jumps from 0 to 1/¢.J at the re-scaled confidence
level c¢J of the ES.
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