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four different exchange rates and find that the opportunity cost of using chartist rules tends
to be prohibitively high. We also present a method to decompose this opportunity cost
into two parts: (i) a cost related to the misallocation of wealth, which increases with the
investor’s level of risk aversion (allocational cost); and (i) a cost related to the investor’s
erroneous belief regarding the sign of the expected excess return (expectational cost).
The results indicate that up to medium levels of risk aversion expectational costs are the
principal component of the total opportunity cost of using technical trading rules. For
higher levels of risk aversion, allocational costs become the most important component of
the total opportunity cost.
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1 Introduction

Despite the numerous studies reporting the pervasive use and profitability of technical trading
rules (TTRs),! also called chartist rules, there is still a considerable amount of scepticism in
the academic literature regarding their true value. Critics of chartist rules often point to the
seemingly suboptimal nature of the portfolio composition implied by these rules (e.g. Skouras,
2001a). After all, investment strategies based on such rules (i) restrict the information set
to a narrow group of pre-defined information variables, (ii) assume a positive relation of the
sign of the signal with future expected excess returns?, and (i) imply a bang-bang type of
investment strategy, i.e. a strategy where all wealth is invested either short or long. Each
of these assumptions goes against the standard rational investor paradigm. The first two
assumptions possibly go against the rationality of expectations formation, while the third is
in general at odds with the assumption of risk aversion.

In this paper, we assess the value for rational risk averse investors of using TTRs in the
foreign exchange rate market. The main motivation being that even if such rules turn out
to be suboptimal, the observed practice of using these rules could still be considered as near
rational for a large class of risk averse agents. More specifically, if the cost for risk averse
agents of using TTRs is low, one may argue that following such rules of thumb comes close
to the optimal trading strategy and could, therefore, be rationalized in terms of information
cost type of arguments. Skouras (2001b), for instance, argues that such discrete rules are
easier to learn than optimal decision rules.

The opportunity cost associated with the use of TTRs for risk averse agents can be
decomposed into two components. We present a simple method to compute each of these
components, which involves the introduction of a hypothetical, risk neutral agent. The first
cost component originates from the suboptimality of the investment strategy due to the
agent’s level of risk aversion (allocational cost). It is associated with the misallocation of
wealth and can be recovered by contrasting the portfolio positions of risk averse and risk
neutral agents. Since both agents have identical expectations, the difference in their trading
positions can be linked to the costs of risk averse agents investing according to bang-bang
investment strategies. The second cost component relates to the potential error made by
chartist traders due to the assumed relation between the chartist signal and the expected
excess return (expectational cost). Risk neutral liquidity constrained agents have in common
with chartist traders that investment strategies will typically be bang-bang solutions. As a
result, differences in their trading positions isolate the costs associated with expectational
errors in the relation between the technical trading signal and the expected return. If this
relation is always positive, chartist trading strategies are equivalent to those of rational risk
neutral liquidity constrained agents. In this case, chartist rules are, therefore, also rational
(Skouras, 2001a). Combining these cost components results in a total opportunity cost for a

'See, among others, Gengay (1999), LeBaron (1992, 1999, 2002), Neely et al. (1997), and Taylor (1980).
*We assume here a standardized rule where a positive (negative) technical trading signal corresponds to a
long (short) investment position.



rational risk averse agent of using TTRs. We use this technique to identify possible classes
of risk averse agents for which these opportunity costs are limited. In this case, one could
perhaps rationalize the use of TTRs in terms of near-rational behavior.

Computing the costs of chartist trading rules implies both the identification of technical
trading signals and the design of a statistical model to relate the conditional moments of the
excess returns to the technical trading signal. In this paper, we restrict the analysis to the
class of moving average signals, or rules. This is the most widely used class of TTRs in the
foreign exchange market and it has been shown to be robust in their profit generating capaci-
ties. We also opt for a relatively simple model relating return moments to the trading signal.
While more advanced techniques such as the nonparametric regression technique of Brandt
(1999), or nonlinear models such as neural nets (Gengay, 1999) or Markov switching models
(e.g. Dewachter, 2001) could be used, we try to strike a balance between generality and com-
putational costs. We, therefore, use a regression approach to estimate possible time-varying
parameters of a Taylor expansion of the relation between return moments and trading signals.
This approach is sufficiently flexible to allow for nonlinearities in the signal-return moment
relation while at the same time is computationally tractable so as to allow for continuous
updating of the parameters.

The remainder of the paper is organized in three main sections. In section 2, we discuss
the proposed decomposition of the costs associated with the use of TTRs. The empirical
results are presented in section 3. In this section, we first analyze the statistical models
relating trading signals to return moments. We do find evidence of a nonlinear relation for
both the conditional expected return and for the variance. Using these models to construct
the optimal portfolio rule for classes of risk averse agents, we subsequently analyze the value
of technical trading signals and the costs associated with the use of TTRs. We summarize

the main findings of the paper in the concluding section.

2 The opportunity cost of TTRs

TTRs are typically rules of thumb that relate a certain information variable, the technical
trading signal, to a trading position. In other words, a TTR specifies a mapping from the time
t signal z to an advised trading position acy (2¢), expressed as a percentage of the agent’s
initial wealth. A typical feature is the discontinuity in the mapping ac(z:). We assume that
the trading signal has been standardized such that the trading rule can be described as:

bL if 2z >0
acy (z) = 0if 2, =0 (1)

—bg if zz <0

where bg,br, > 0 denote the liquidity constraint faced by the chartist trader on a short and

long position, respectively.?

3 Although not considered here, trading rules can also include bands of inaction.



Obviously, the optimal portfolio composition might differ from the one implied by the
TTR. As noted by Skouras (2001a), utility-based optimal trading rules typically depend
on various factors, including the level of risk aversion and rational expectations about the
conditional return distribution. Adopting a standard mean-variance approach, the optimal
trading strategy for a rational, risk averse, liquidity constrained agent can be written as the
solution to the following problem:

max U, = max Ey [Witq] — %Vart(WtH) (2)

s.t.

Wt+1 = Wt<1 + 7’f + CkXt_H) (3)

o€ [—bs, bL]
where W, denotes the wealth at time ¢, + represents the investor’s level of risk aversion,
rs is the risk-free interest rate, « is the percentage of the initial wealth W; invested in the
risky asset, and Xy is the speculative return above the riskless interest rate obtained from
investing in the risky asset. We implicitly assume that the expectations are conditional on
the technical trading signal z;, or that E; [Xy11] = F[Xi41 | 2¢) . Assuming that the initial
wealth is equal to one (W; = 1), the optimal portfolio allocation can be expressed as:
ooy = By [Xi44] ' (@)
VVary(Xeq1)
Since typical TTRs merely specify trading positions (long or short), only under very restrictive
circumstances will these TTRs emerge as optimal trading rules. This is only possible, as
mentioned before, in the case of risk neutrality combined with liquidity constraints. In this
case, the optimal portfolio is a bang-bang solution and the investment position is determined
based only on the sign of the expected return. More formally, for a risk-neutral investor
(v = 0), the optimal trading rule is given by:

bL if E; [Xt+1] >0
Oé*RN = 0 if Et [Xt+1] =0 (5)

—bS 1f Et [Xt+1] < 0

Note, however, that this bang-bang solution under risk neutrality only collapses to the stan-
dard TTR if there is a positive relation between the sign of the chartist signal (z;) and the
expected excess return on the risky asset (Fy[X¢41]). Comparing (1) and (5), one observes
that only if the following equivalences hold will the optimal rule for a risk neutral agent be
equivalent to the standard chartist trading rule (o = acH):

EiXi41] >0< 2z >0,
Ei[Xi11] =06 2 =0, (6)
Et[Xt+1] <0< z <0.
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TTRs are, therefore, not necessarily irrational trading strategies. To the extent that
there is a positive relation between the information variable z; and the rationally expected
direction of the return, the strategy is optimal for risk neutral agents. Moreover, given the
continuity of the portfolio positions in +, technical trading strategies could also function as
near-rational trading rules for a specific subclass of risk averse agents, i.e. for 7's close to
zero. If the level of risk aversion is relatively high or the relation between the chartist signal
and the rationally expected return is not positive, the total opportunity cost of following a
TTR instead of the optimal strategy can become prohibitively high. Using eq. (2) and (3),
this cost can be quantified as the difference between the utility obtained by a rational risk
averse investor using his/her optimal trading strategy, UtRA(a}‘% 4), and the utility achieved
by the same investor now using the optimal trading strategy of a chartist trader, UtRA(aCH):

Aror(z) = Ufaga) — U (acH) (7)

* 1 *
= (aha —acm) Bi[Xen] - 57 (aih — afw) Vare (Xer). (8)

The above total cost of following the chartist trading rule instead of the optimal strategy
can be decomposed into two effects. For this, we add and subtract from (7) the utility obtained
by a rational risk averse investor making use of the optimal trading strategy of a risk neutral
agent, UfA (a%y):

Aror(z) = (Uf*(aka) — U aqw)) + (07 (k) = U (o))
= Aarr(z) + Apxp(2). 9)

The first effect, denominated allocational cost (Aarr), relates to the suboptmality of the
portfolio allocation for a risk averse investor when using the optimal strategy of a risk neutral
agent. Although both agents have the same expectation regarding future excess returns,
E; [Xi4+1], they adopt different trading strategies. Risk averse agents invest a percentage of
their wealth in the risky asset taking into account the riskiness of the trading position. Risk
neutral investors, on the other hand, always adopt a bang-bang strategy, i.e. they either take
a full long or short position depending only on the sign of the expected excess return. Using
again eq. (2) and (3), this cost can be expressed as:

1
Aari(z) = (ks — ahw) B [Xei] = 57 (s — ab) Var, (Xer). (10)

The second effect, denominated expectational cost (Agpxp), refers to the difference in
utility obtained by a risk averse investor making use of two different strategies: the one
adopted by a risk neutral investor and the one used by a chartist trader. These two agents
have in common the use of bang-bang strategies. Their trading positions differ, however, since
the portfolio decision of a risk neutral agent is based on the sign of the rationally expected
future excess return while the chartist trader only uses the sign of the trading signal for this
purpose. In other words, this cost component expresses the loss due solely to the possible



differences between the rational and the technical expectations? regarding the sign of future
excess returns. If chartist beliefs are inconsistent with the rationally expected sign of the
future excess return, following chartist trading rules results in a loss in expected terms. If, on
the other hand, chartist beliefs are consistent with the rational ones, i.e. the equivalence in (6)
holds, the trading strategies of both agents are the same, ajy = acn, and this expectational
cost drops out. The expression for the expectational cost is given by:

* 1 *
Apxp() = (afy — acn) B [Xen] = 57 (adiky = adw) Var (Xe). (11)

Note that only in two cases a’k can be different from a2, making the second term in
(11) different from zero: (i) when the trading signal is equal to zero but the expected excess
return on the risky asset is not, z; = 0 and E} [X;41] # 0. In this case, acy = 0 but ajy # 0;
and (i) when the expected excess return is equal to zero for a trading signal different from
zero, z; # 0 and E; [X¢y1] = 0. In this case afy = 0 but acyg # 0. In all other cases,
a% N = o% g and the mentioned term vanishes. In practice, both cases have a zero probability
of happening and the expectational cost can be considered as only a function of the difference
in the optimal positions of the risk neutral investor and the chartist trader (i.e. the second
term on the right-hand side of (11) drops out).

Observe also that both the allocational and the expectational costs are, by definition,
nonnegative. For the allocational cost, the trading position a4 is the one that maximizes
the utility of a risk averse investor. Any other strategy will, therefore, result in a lower utility.
Regading the expectational cost, the question is which suboptimal bang-bang strategy (afy
or acp) results in a higher utility for the risk averse investor. Since this investor shares the
same expectation regarding future excess returns as the risk neutral agent, the use of the
latter’s optimal strategy (aj5) will result in a higher utility in comparison with the one from
a chartist trader (acp), resulting in a positive expectational cost.

3 Empirical analysis
3.1 Data and TTRs

The empirical analysis is performed for a set of TTRs applied to the spot exchange rates of
four currencies against the U.S. dollar: the German mark, the British pound, the Japanese
yen, and the Swiss franc (DEM/USD, GBP/USD, JPY/USD, and CHF/USD, respectively).
Exchange rates are expressed in the standard way as the price in the domestic currency of
one U.S. dollar, considered here as the foreign currency. We use daily data for the above
exchange rates obtained from Datastream for the period January 1, 1973 to March 25, 2003,
yielding a total of 7887 observations.

The type of trading rule depends on the way the trading signal is computed. In this paper,
we restrict the empirical analysis to the class of moving average trading rules. This is one of

4Note that the rational expectation is formed based on the same information set used by the chartist trader,
i.e. the technical trading signal.



the most used trading rules since the early seventies and has been shown to generate excess
profits through time in the foreign exchange market. Furthermore, it also seems to work well
out-of-sample (see, for instance, Neely et al., 1997). Due to its widespread use, this choice
also aims at reducing possible selection bias with respect to the chosen class of trading rules.
The technical trading signal z; for this class of rules is constructed based on a short and a
long moving average window of past exchange rates:

K

1
> Sig

==

zZt —

—1, (12)
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—|o
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L St*]
i=0

<
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where S; denotes the exchange rate at time ¢, and K (L) denotes the size or number of
observations of the short (long) window of the moving average signal. The investment position
of a chartist trader at each point in time is determined based on the sign of z;, as expressed
in eq. (1). We consider three types of trading signals (or rules) depending on the number
of days incorporated in the short (K) and long (L) window of the moving average rule. The
following trading rules are used. Rule 1: K = 10, L = 50; Rule 2: K = 20, L = 100; and
Rule 3: K =40, L = 200. Due to the backward-looking nature of the moving average signal,
the effective number of data points in the sample of each trading rule depends on the size
of the long window used to compute the trading signal. Finally, in the computation of the
return from investing in the exchange rate market, we disregard the interest rate differential
between the countries, as standard in the literature.?

Table 1 presents the mean excess return obtained by an agent using the technical trading
signal to invest in the risky asset according to the bang-bang chartist strategy presented in (1).
The analysis is done for the whole sample period assuming that the investor can only invest
his/her own wealth (bg = by, = 1). One observes the standard result found in the literature
that investing according to TTRs generates significant mean excess returns. In our case,
both TTRs 1 and 2 generate significant excess returns at the 1% confidence level for the four
currencies considered (third line of results for each rule). The TTR 3 only generates significant
excess returns for the Japanese yen-U.S. dollar. Note also that the trading rule profits are
not homogeneous across positive and negative signals (first and second line of results for each
rule). Typically, trading rules are more profitable in one of the two investment positions.

Insert Table 1

3.2 Least squares prediction models

Central in the above analysis is the projection of expected future excess return moments on
the technical trading signal z;. Naturally, the type of model used to project these moments on

5The speculative return Xi+1 = Aeiy1 + r} —ry+ Aet“r;‘c, where e denotes the natural logarithm of the

~

exchange rate, r} represents the risk-free return in the foreign country, is then simplified to X¢41 = Aegq1.



the set of chartist signals influences the results regarding the costs of using chartist strategies.
In this paper, we try to strike a balance between the generality in the class of functions used
to project moments and the computational cost of continuously updating these projections
to take into account the “real-time” flow of information.® We, therefore, approximate the
mapping between the first two excess return moments defined as

my (z) = Ei[Xi11]
(13)
ve (2) = Vard Xiy1)
and the information set, or trading signal, at time ¢ in terms of a Taylor expansion around
the mean of z;. We, furthermore, assume that agents follow the Least Squares (LS) learning
principles, i.e. use Ordinary Least Squares (OLS) techniques to estimate and update the
forecasting model according to the information set.” In practice, we use an expanding window
regression framework to estimate the parameters of a Taylor expansion:
me(z) = Z'B,
(14)
v (2) = Z'6;

where Z € RPTDX1 denotes the vector containing the independent variables: 1, z, 22, ... |

zP. The parameter vectors 3, and §; are obtained from regressing observed excess returns on
technical trading signals. We implicitly assume stationarity of the exchange rate changes and
hence stationarity of the distribution of the trading signal z;. We select the optimal order
of the Taylor approximation based on the Akaike Information Criterion (AIC). We restrict
the maximum order of the expansion to six and retain the one that minimizes the AIC. The
orders of the Taylor approximations are also allowed to differ across the mean and variance
equations and can be continuously updated based on the new flow of information. In the
out-of-sample exercise presented below, this criterion is updated at a fixed number of new
observations.

In order to save on space, the regression results are not presented here.® We illustrate the
main results by presenting the expected mean and variance of excess returns conditioned on
the chartist signal z; for the CHF /USD exchange rate based on the TTRs 1 to 3 (see top panel
of Figures 1 to 3, respectively). These results are computed using the whole sample period
to estimate the coefficients in eq. (14) ¥, equal to B and 67 in this case. The orders of the

%Note that the most general technique available to optimize the trading position is the one proposed
by Brandt (1999). He combines a nonparametric technique with the first order condition for the optimal
portfolio composition in order to derive a mapping between the portfolio and the information variable. This
approach could be used here as well. Nevertheless, this technique requires a significant computational effort
in the continuous updating of the information set. In a previous version of this paper, we have analyzed the
optimality of technical trading rules based on the Brandt technique (see Dewachter and Lyrio, 2002). The
portfolio allocation obtained there corresponds closely to the ones reported in this paper.

"This LS learning coincides with Bayesian learning under a diffuse prior, in which the agents are both
unsure of their models and parameter values (Sargent, 1993). We thank the referee for pointing this out to us.

8 All the results are, however, available upon request.

9For all exchange rates and trading rules, most of the computed coefficients are statistically significant at
the 5% confidence level.



Taylor expansions used in this equation are, therefore, only computed once. The histogram
of the trading signal is shown in the background. Two comments are to be made with respect
to these results. First, for a certain range of the trading signal around zero, the regression
results are approximately in line with the practice of technical traders, i.e. we observe a
one-to-one relation between the trading signal and the expected future excess return (top-left
panel of Figures 1 to 3). Considering the whole range of signals, however, one observes that
this relation is both non-linear and non-monotonic. In fact, for more extreme signals, with a
very low frequency of occurrence, this relation becomes inverted giving rise to a contrarian
strategy.

Second, we find that the trading signal contains relevant information concerning future
volatility. In line with the standard generalized autoregressive conditional heteroskedasticity
(GARCH) literature, we see that the trading signals are correlated with future volatility,
implying some predictability of z; with respect to v;. Also in line with the GARCH literature,

we observe a generally symmetric relation between the trading signal and the variance.'”

Insert Figures 1 to 3

In summary, the chartist signal contains significant information with respect to the future
evolution of the exchange rate. Nevertheless, the information in the signal does not fully
conform with the widely held beliefs of technical traders. Most importantly, the relation
between the trading signal and the rationally expected future returns is non-linear and non-

monotonic.

3.3 Optimal portfolio allocation

We now compute the optimal portfolio allocation based on eq. (4). This value depends on
the sample used since the coefficients 3, and 6; in eq. (14) vary through time. As in the
previous section, we illustrate the main results based on the full sample period. The optimal
portfolio strategy is given by the standard mean-variance optimal portfolio, conditioned on
the signal z;:
mr (2t) _ ZyBr
yor (z)  vZior
The four bottom panels of Figures 1 to 3 depict the optimal portfolio composition for
the CHF /USD exchange rate in function of the observed trading signal z;. The dashed line
shows the unrestricted optimal portfolio, while the full line shows the optimal portfolio for

(15)

ara(2t) =

an investor constrained to invest his/her own wealth (bg = by, = 1). Note that the optimal
portfolio deviates significantly from the bang-bang strategy adopted by a risk neutral agent.
For weak absolute trading signals, the optimal portfolio is typically less aggressive than the
risk neutral solution (|ak4| < 1). The optimal rule is also clearly non-linearly related to the
trading signal. While for weak signals there seems to be a trend following strategy, i.e. go

10For a detailed study concerning the relation between a trading signal and both the mean and volatility of
stock returns, see Brock et al. (1992).



long when z > 0 and go short when z < 0, for strong positive or negative signals the optimal
trading strategy tends to become contrarian, i.e. go short if z >> 0 and long if z << 0.

3.4 The costs of using TTRs

In this section, we assess the opportunity cost for rational risk averse investors of using the
above mentioned TTRs . We consider four types of investors according to their level of risk
aversion (v = 1,5, 10, 20), ranging from a relatively aggressive investor to a very risk averse
one. As mentioned before, we adopt symmetric liquidity constraints by stipulating that an
agent can only invest his/her own wealth (equal to one at the beginning of each period,
W; = 1), implying that bg = by, = 1.

In this paper, we restrict ourselves to an out-of-sample analysis of the opportunity cost of
using TTRs. In-sample measures would only represent an accurate value of this opportunity
cost if the parameter estimates in (14) would not vary through time. We verify, however,
that these estimates are significantly different depending on the size of the sample used.!!
The out-of-sample analysis starts in November 01, 1976 (point 1001 out of a total of 7887
observations) and ends at the end of the sample (March 25, 2003).

The out-of-sample opportunity cost of using TTRs can be computed in two ways. One is
based on the agent’s expectations regarding the exchange rate mean and variance. It is then
the direct computation of eq. (10) and (11) based on expanding window regressions of (14)
up to time ¢ and on the resulting time-varying optimal portfolio expressed in (?7). Denoting
To and T respectively as the beginning and end points of the out-of-sample regressions, the
average opportunity cost components can be computed as:

T
Race = gy 32 [(@haler) (a0 me a) = 57 (o)~ aov(a0) 1 o)

1 T
Apxp = — o
EXP (T — TO T 1) tg:TO

(@ (2) = acn () mi (1) = 57 (k1) — b)) v (0]

The above computations give us the out-of-sample average opportunity cost of using a
TTR in terms of the expected mean and variance of the excess returns. As mentioned before,
these costs are, by definition, nonnegative. They do not reflect, however, the realized oppor-
tunity cost faced by the investor. For this reason and in order to save on space, the results
from these computations are not presented here.!?

We focus here on the second variant of the out-of-sample computations of the opportunity
cost components, which is based on the sample realizations of the mean and variance of the
excess exchange rate returns.'® As in the previous case, we first compute expanding window
regressions for the expected mean and variance of the excess exchange rate return based on

1 Although we omit the regression results here they are available upon request.
12 These results are, however, available upon request.
!3We thank the referee for suggesting this approach.
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the technical trading signal at time ¢, as given in (14).!* This allows us to compute the time
t optimal portfolio given by (?7). We then use the realized time ¢ 4+ 1 exchange rate return
to compute the agent’s realized return from investing in the risky asset. For the risk averse

A

agent, this is equal to rﬁ = ah4(2t)Aerq1, where e; denotes the natural logarithm of the

exchange rate, with a sample mean equal to

1 T-1

—RA __ Z RA
T = ——— Ty
T-T) 4,

From eq. (2) and (3) and the above definitions, we can compute the out-of-sample average
mean-variance utility of a risk averse investor using his/her optimal trading strategy:
—=RA

1 1 T-1
U Naha) = L4rp+7 oy — N (i 742
(@ha) / 2 (T—Tp-1) t:TO(t )

= 1+rp+ U (a}y),

where we denote U EA(a% 4) as the respective scaled out-of-sample mean-variance utility. The
out-of-sample mean-variance utility of the same risk averse investor now using the optimal
trading strategy of a risk neutral investor (aj,) and of a chartist trader (acy) can be
computed in the same way and are denoted, respectively, as URA(a}}N) and ﬁRA(ozCH). The
average allocational and expectational costs incurred by the risk averse agent in using the
TTR can be computed as a function of these utilities:

RA, rT * 7 *
(aRN) = URA<aRA) - URA(aRN)
Apxp =T agy) — T aow) = TR agy) — T (acn)

with the total average opportunity cost being equal to Aror = Aarr, +AEpxp. U RA(ozj2 ~) and

J— — A " —
Karp =T aja) - T

ﬁRA(aCH) denote the scaled out-of sample mean-variance utility obtained by a risk averse
investor when using the strategy of a risk neutral agent and of a chartist trader, respectively.
Note that in this out-of-sample case one would not necessarily expect a non-negative average
utility for the optimal trading strategy (17 RA(a}‘% 4))- Only if the implied model predicts in a
accurate way the out-of-sample expected excess return and variance, one would expect this
value to be positive.

Tables 2 to 4 present the scaled out-of-sample mean-variance utility of a risk averse investor
making use of each of the three trading strategies under consideration (a4, ahy, acw) and
for the TTRs 1 to 3, respectively. We also present in these tables the resulting opportunity
cost components computed based on these utilities. We can derive a number of observations
from these results. First, the chartist signal contains ex post a significant value for rational
risk averse agents (see positive values for U4 (a%,)). This is the case since these signals
are used to compute the rationally expected mean and variance of the excess returns. The
obtained utility is higher for more aggressive agents (low 7). This does not imply, however,

' The orders of the Taylor approximations in (14) are computed at every 10 new observations.
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that rational risk averse agents should turn to technical trading strategies. In fact, in most
cases the use of a technical trading strategy generates a negative scaled utility for the rational
risk averse agent (see negative values for UR4(acp)). This value is in a few times positive
for agents with a very low level of risk aversion. As a result, one observes a rather significant
total opportunity cost of using TTRs, ranging from approximately 0 to 16% per year.

Insert Tables 2 to 4

Second, one observes that in most cases for levels of risk aversion up to 10, expectational
costs constitute the main component of the total opportunity cost of using a certain TTR. For
higher levels of risk aversion, allocational inefficiencies dominate this total opportunity cost,
becoming prohibitively large. Overall, expectational costs range from 1% to 10% per year,
which seem quite substantial. Since these costs do not depend on the agent’s level of risk
aversion, they constitute a lower bound on the total opportunity cost of using technical rules.
Even if the above costs were considered as reasonable, the allocation costs tend to increase
significantly with the increase in the level of risk aversion. Figure 4 illustrates this cost
decomposition for the GBP/USA exchange rate applying the TTR 2 (see Table 3). Aggressive
investors (low «y) using chartist rules are mainly concerned about possible expectational errors,
or errors in their judgement regarding the sign of the expected exchange rate return. Most
part of the opportunity cost for conservative investors (high 7) making use of technical rules
derive from the allocation of wealth in a non-optimized way, i.e. from using a bang-bang
strategy.

Insert Figure 4

In summary, although chartist signals contain ex post relevant and valuable information
to rational risk averse investors, TTRs are not an efficient or near-efficient way to incorporate
this information. TTRs fail to map accurately signals into trading positions both due to
expectational and allocational inefficiencies. The total cost for a risk averse investor of using
such rules is, therefore, prohibitively high. Note that in this paper we restrict the informa-
tion used by the rational investor to the same information set used by the chartist trader.
To answer the main question of this paper, we conclude that TTRs are not near-rational
equivalents to optimal trading rules.

4 Conclusions

The main goal of this paper was to answer the basic question whether or not TTRs could
be interpreted as near rational investment strategies for a class of risk averse agents. Based
on the above analysis, we conclude that they cannot be interpreted in that way. We find
that allocational and expectational costs generate prohibitively high welfare costs to rational
agents.

The relative importance of these two cost components varies clearly with the level of
risk aversion. For low levels of risk aversion, allocational costs tend to be very low and
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expectational costs impose, therefore, most of the cost of using TTRs. Since expectational
costs do not depend on the level of risk aversion, they can be seen as a lower bound on the
opportunity cost for risk averse agents of using chartist rules. This type of cost alone should
prevent investors from using the technical trading signal in order to apply chartist trading
strategies. Allocational costs increase with the level of risk aversion and tend to equate with
the level of expectational costs for levels of risk aversion around 10. For higher levels of risk
aversion, allocational costs are clearly the dominating effect within the total opportunity cost
of using such rules. The results hold in general for the three moving average rules and for

each of the exchange rates analyzed in this paper.
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Table 1: Annual mean excess return for the selected TTRs

DEM/USD GBP/USD JPY/USD CHF/USD
TTR 1: K=10, L=50

Return (p.a.) z <0 0.07559%%*  0.03253 0.10317%%%  0.09025%+*
Return (p.a.) z >0  0.05004* 0.06104**  0.05070%*  0.03713
Return (p.a.) 0.06308%*%  0.04702F%*%  0.07661%**  0.06446***

TTR 2: K=20, L=100

Return (p.a.) z <0 0.07200%%*  0.01666 0.08865%*%  (.07448%*
Return (p.a.) z >0 0.05441% 0.04615* 0.03685 0.02659
Return (p.a.) 0.06386***  0.03223* 0.06292%%%  0.05201%*

TTR 3: K=40, L=200

Return (p.a.) z <0 0.02319 0.00982 0.05915%*  0.05357*
Return (p.a.) z >0 0.00650 0.03860 0.01131 0.00657
Return (p.a.) 0.01538 0.02430 0.03738%  0.03245

The analysis is done for the whole sample period. The agent invests according to eq. (1)
and is constrained to invest his/her own wealth (bs = b = 1).

Returns are presented in per annum terms by multiplying the daily returns by the number
of trading days, taken here to be 262. The entry Return (p.a.) z < 0 measures the annual
mean excess return obtained when the signal z was negative, implying a short position.
Analogously, Return (p.a.) z > 0 measures the annual mean excess return obtained when
the signal z was positive, implying a long position. The entry Return (p.a.) expresses the
annual mean excess return from trading according to both positive and negative signals.

ok KK and * indicate that the averages are statistically different from zero at the 1%, 5%
and 10% confidence level, respectively.
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Table 2: Average out-of-sample mean-variance utility and
cost decomposition of TTRs (TTR 1: K=10, L=50)

Level of risk aversion (7)
1 5 10 20
DEM/USD
UfA(ak,)  0.04609  0.03309  0.02327  0.01356
URA(a%,y)  0.04834  0.02561 -0.00281 -0.05966
URA(acy)  0.00023 -0.02253 -0.05098 -0.10787

AaLL -0.00225 0.00749  0.02608  0.07322

Rexp 0.04811 0.04811 0.04811  0.04811

Aror 0.04586  0.05560 0.07419  0.12133
GBP,/USD

Uff(agk,)  0.04869  0.03358  0.01860  0.00630
Ui (agy) 004693  0.02752  0.00327 -0.04525
URA(acg) 0.00996 -0.00946 -0.03374 -0.08230

AL 0.00176  0.00606  0.01533  0.05154

Aexp 0.03696  0.03696  0.03696  0.03696

Aror 0.03872  0.04302  0.05230  0.08850
JPY/USD

U™ (aj,) 0.08906  0.06976  0.04841  0.03069
URA(ajy)  0.08749  0.06326  0.03297 -0.02760
URA(acy)  0.00663 -0.01766 -0.04803 -0.10876

RaLL 0.00157 0.00650 0.01544  0.05829

Aexp 0.08084 0.08084 0.03084  0.08084

Aror 0.08241  0.08734  0.09628  0.13913
CHF/USD

UfA(ak,)  0.07143  0.05379  0.03011  0.01390
URA(aky)  0.06912  0.04007  0.00376 -0.06886
URA(acy) 0.00574 -0.02335 -0.05972 -0.13245

Aarr 0.00231  0.01372  0.02635 0.08276
Apxp 0.06337  0.06337 0.06337  0.06337
Aror 0.06568  0.07709 0.08972  0.14613

ﬁRA(a}A) denotes the scaled out-of-sample mean-variance utility of a risk averse investor
using his/her optimal trading strategy (afa). U™ (aky) and UB4(acn) denote the
scaled out-of-sample mean-variance utility of the same risk averse investor now using the
optimal trading strategy of a risk neutral investor (axy) and of a chartist trader (acwm),
respectively. KALL, KEXP, and Aror denote the average allocational cost, expectational
cost, and total opportunity cost, respectively, in terms of utility, incurred by a risk averse
investor using the optimal trading strategy of a chartist trader (acr). All entries are in
per annum terms.
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Table 3: Average out-of-sample mean-variance utility and
cost decomposition of TTRs (TTR 2: K=20, L=100)

Level of risk aversion (7)
1 5 10 20
DEM/USD
UlA(ak,)  0.06297  0.04436  0.03174  0.01745
URA(a%,y)  0.06067 0.03794  0.00953 -0.04728
URA(acy) -0.00289 -0.02565 -0.05410 -0.11100

AaLL 0.00230  0.00642 0.02221  0.06473

Rexp 0.06355 0.06355 0.06355 0.06355

Aror 0.06585  0.06997 0.08576  0.12828
GBP,/USD

Uf(ag,) 001900 0.01205  0.00513  -0.00091
Ui (agy) 001763 -0.00179 -0.02607 -0.07463
URA(acy) -0.00246 -0.02188 -0.04616 -0.09473

AL 0.00137  0.01384  0.03120  0.07372

Aexp 0.02008  0.02008  0.02008  0.02008

Aror 0.02145  0.03393  0.05128  0.09380
JPY/USD

U™ (aj,) 008191  0.06891  0.04905 0.03375
URA(ajy) 0.08240  0.05817  0.02787 -0.03271
URA(acy) -0.01922 -0.04351 -0.07388 -0.13461

Aarr -0.00050 0.01074 0.02118  0.06646

Apxp 0.10161 0.10161 0.10161 0.10161

Aror 0.10111 0.11235 0.12279  0.16807
CHF/USD

UfA(ak,)  0.06800 0.04115  0.02623  0.01528
URA(aky) 0.06423  0.03517 -0.00114 -0.07378
URA(acy) 0.00735 -0.02174 -0.05810 -0.13083

Aarr 0.00377  0.00597  0.02737  0.08906
Apxp 0.05687  0.05687  0.05687  0.05687
Aror 0.06064 0.06284 0.08424  0.14593

ﬁRA(a}A) denotes the scaled out-of-sample mean-variance utility of a risk averse investor
using his/her optimal trading strategy (afa). U™ (aky) and UB4(acn) denote the
scaled out-of-sample mean-variance utility of the same risk averse investor now using the
optimal trading strategy of a risk neutral investor (axy) and of a chartist trader (acwm),
respectively. KALL, KEXP, and Aror denote the average allocational cost, expectational
cost, and total opportunity cost, respectively, in terms of utility, incurred by a risk averse
investor using the optimal trading strategy of a chartist trader (acr). All entries are in
per annum terms.

16



Table 4: Average out-of-sample mean-variance utility and
cost decomposition of TTRs (TTR 3: K=40, L=200)

Level of risk aversion (7)
1 5 10 20
DEM/USD
UfA(a%,)  0.01507  0.00664 0.00069  0.00021
URA(a%y)  0.02796  0.00521 -0.02322 -0.08010
URA(acy)  0.01605 -0.00670 -0.03515 -0.09204

RaLL -0.01200 0.00142  0.02391  0.08031

Rexp 0.01191  0.01191  0.01191  0.01191

Aror -0.00099  0.01333  0.03582  0.09222
GBP,/USD

Ui (ag,) 002484 0.01750  0.01365  0.00936
Ui (agy) 002640  0.00698 -0.01730 -0.06584
URA(acy) -0.01357 -0.03300 -0.05728 -0.10584

AarL -0.00156  0.01052  0.03095  0.07520

Aexp 0.03997  0.03997  0.03997  0.03997

Aror 0.03841  0.05049  0.07092  0.11517
JPY/USD

U™ (aj,) 004824 0.02970 0.01588  0.00858
URA(ajy)  0.04341  0.01913  -0.01121 -0.07190
URA(acy) -0.00716 -0.03145 -0.06182 -0.12256

RaLL 0.00483  0.01057 0.02709  0.08049

Aexp 0.05056  0.05056  0.05056  0.05056

Aror 0.05539 0.06113 0.07765 0.13105
CHF/USD

UfA(a%,)  0.05853  0.03803  0.02287  0.01129
URA(a%y)  0.05543  0.02636  -0.00997 -0.08262
URA(acy) -0.01097 -0.04007 -0.07643 -0.14916

Aarr 0.00311  0.01167 0.03284 0.09391
Apxp 0.06639  0.06639 0.06639  0.06639
Aror 0.06950  0.07806  0.09923  0.16030

ﬁRA(a}A) denotes the scaled out-of-sample mean-variance utility of a risk averse investor
using his/her optimal trading strategy (afa). U™ (aky) and UB4(acn) denote the
scaled out-of-sample mean-variance utility of the same risk averse investor now using the
optimal trading strategy of a risk neutral investor (axy) and of a chartist trader (acwm),
respectively. KALL, KEXP, and Aror denote the average allocational cost, expectational
cost, and total opportunity cost, respectively, in terms of utility, incurred by a risk averse
investor using the optimal trading strategy of a chartist trader (acr). All entries are in
per annum terms.
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Figure 1: Daily expected return, variance and portfolio choice
for the CHF /USD using the full sample (TTR 1: K=10, L=>50)

EXPECTED RETURN VARIANCE
o B
g + 3 |
S g
-— oLs S --OLS
g
s
- IS
g g
s 2
2
7
g g
$ -o1e ~0.08 0.00 0.06 o1z 8-o1z ~0.08 0.00 0.06 012
signal ° signal
PORTFOLIO — gamma 1 PORTFOLIO - gamma 5
© o
-- oLs — -- oLs
OLS lig.constr. A OLS lig.constr.
o} \\ HE
\
- \
~ \
i
o >
[T ~0.06 0.00 0.06 0.12 012 ~0.06 0.00 0.06 012
signal stanal
PORTFOLIO — gamma 10 PORTFOLI0 — gamma 20

1.50

-- oL
OLS lig.constr.

0.75

-150 -0.75 _ 0.00

“o12 ~0.08 0.00 0.06 012 T o1z ~0.08 0.00 0.08 012
signal signal

Figure 2: Daily expected return, variance and portfolio choice
for the CHF/USD using the full sample (TTR 2: K=20, L=100)
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Figure 3: Daily expected return, variance and portfolio choice
for the CHF /USD using the full sample (TTR 3: K=40, L=200)
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