
Electronic copy available at: http://ssrn.com/abstract=1523365

 1

MATLAB applications of trading rules and GARCH with wavelets analysis

Eleftherios Giovanis

Abstract

In this paper we provide MATLAB routines for two major used trading rules, the

moving average indicator and MACD oscillator as also the GARCH univariate

regression with Monte Carlo simulations and wavelets decomposition, which is an

update of an older algorithm.

Keywords: MATLAB, moving average, MACD, trading rules, technical analysis,

GARCH, wavelets, Monte-Carlo

1. Introduction

We won’t get to the traditional literature reviews of what someone examines what the

other one studies or someone else found or proposes an excellent model. There isn’t

the excellent model and if someone wants to read fancy words and huge referees in

literature this is not the paper you want to read. We just present some MATLAB

functions for use in Forex trading and to experiment with them. Unfortunately some

of these techniques haven’t yet been introduced in universities and the economic and

finance departments, because some of them have been developed by practitioners and

real financial traders and not academicians, and because they haven’t been published

the academicians. Since only the last year have been acknowledged and technical

analysis can really lead to profits than the traditional econometric models of random

walk, ARIMA, GARCH and others. As for the other procedures academicians claim

that are very difficult to learn them. Anyway economist’s academicians around the

world claim that they are the leaders in social sciences, because they use models and

as also claim that the differential or autoregressive econometric models, with a

magical way can learn. How these models can learn. You won’t get any answer or the

answers will be childish. Unfortunately they haven’t seen the progress of psychology

or sociology scientists who use neural networks and genetics and other advanced

models. These are the truly leaders of social sciences.

* I would like to give many thanks to Andrea Durelli for his important note to correct a wrong which

was existed in the initial routine

Electronic copy available at: http://ssrn.com/abstract=1523365

 2

2. Methodology

2.1. Moving Average

The simple moving average is defined as:

∑
−

=
−=

1

0

)/1(SMA
L

i

itt pL (1)

Relation (1) can be used as a trading rule, which generates a buy signal when the

current stock price is higher or above the moving average and a sell signal when it is

below. Relation (1) is the simple moving average, while there are also additional

modifications in moving average, as the exponential, the square root weighted, the

weighted or the linear moving average. The results among the various modifications

of moving average as usually the same, as also many financial traders claim that.

2.2 Moving Average Convergence / Divergence (MACD)

The MACD oscillator is computed by subtraction of the 26-period exponential

moving average with the 12-period exponential moving average. In the first case the

smoothing factor a is 0.075 and in the second case is 0.15 Then the 9-period

exponential moving average of MACD, with smoothing factor α equal with 0.20, is

used as the signal line. So if the MACD and 9-period moving average lines are

crossed and if the MACD line falls below the other, then a sell signal is generated,

while in the opposite situation we have a buy signal. More specifically is defined as:

26-12- -MACD ttt EMAEMA= (2)

If MACD line rises above the 9-period EMA line then buy

Else If MACD line falls below the 9-period EMA line then sell

2.3 Moving Average Convergence / Divergence (MACD)

In this part we present the computational algorithm we propose in a simple

manner. The steps of the computation are:

 3

a) First we decompose data applying discrete wavelet transformation (DWT) with

Daubechies wavelets on the initial stock returns (Daubechies, [1994]). More

specifically the DWT of a signal X for 1 level is defined as:

∑
∞

∞=

=
-k

k]-2[][][ngkXnyhighpass (3)

∑
∞

∞=

=
-k

k]-2[][][nhkXnylowpass (4)

,where g and h denote the impulse response and the filter outputs are sub-sampled by

two. The final convolution is:

 2↓⋅= gXyhighpass (5)

2↓⋅= hXylowpass (6)

The DWT is computed by successive lowpass and highpass filtering of the discrete-

time domain signal. Because the data sample might varies usually data of 4000-5500

and data length above 6000 and for short periods forecasts as 10-20, then a

decomposition level 4-7 might be more appropriate. For longer predicted lengths 1-3

decomposition level might be better. There is not a specific theory, proof, to show the

appropriate used level, you have to make your own tests, but even the empirical

practice is much better of the theory or what we are learning in education, who they

never test the model, that they teach, even in trial account or in a hobby way.

b) The second step is to estimate a GARCH (1,1) process where the mean and

variance equations are presented in relations (10) and (12) respectively

tt cR ε+= (7)

),0(~ 2σε t (8)

2

11

2

10

2

−− ++= ttt aua σωσ
 (9)

 4

, where Rt is defined as stock returns, c is the constant and εt is the disturbance term

which follow the distribution in (8). Parameter ω is the constant of the variance

equation, α0 is the coefficient of ARCH effects and similarly α1 is the coefficient of

ARCH effects.

c) The third step is to simulate the residuals or the innovations of GARCH (1,1)

estimation with Monte-Carlo. First we should set up the parameters for the simulation

process. First we should define the random number generator seed for reproducibility,

which is set up at this way that every time that we run the algorithm the generator is

reset to its initial state. Because we have long sample we set up the simulated samples

roughly 4 times greater than the initial data. So for data ranging 4,600 through 6,500

we obtain a simulated sample equal with 20,000 and similarly for data around 10,000

we take a sample equal with 40,000.

d) The final step is to take a random permutation sample with length equal with the

initial data sample and then this sample is selected from the residuals or innovations

after a number of replications.

If the predicted value is positive then we buy

Else If the predicted value is negative then we sell

In the fourth method we get only the moving average of the wavelet decomposition in

the initial data and then we compare with the actual as in moving average trading rule

2.4 Estimation of Net Profits-Losses

In order to test which of the approaches we examine is the most profitable we

apply the following formula procedure to compute the net profits or losses. We

discriminate three cases in stock trading. The first one is the case when the stock

returns are positive, the second one when are zero and finally when stock returns are

negative. We define a dummy variable Dt+1.

If rt+1 > 0 then Dt+1 = 1 (10)

 5

If rt+1 = 0 then Dt+1 = Dt (11)

If rt+1 < 0 then Dt+1 = -1 (12)

The net profits-losses are given by relation:

)()(1111 ttttttt PDDcPPDR ⋅−−−⋅= ++++ (13)

Variables Dt+1 and Dt are defined as previously which is the forecasting and the

current signal respectively, variables Pt+1 and Pt are the future and current stock prices

respectively and c is the commission rate which is charged for the services of trading

and depending on whether it’s an intraday trading or electronic trading or depending

on the different rates offered by various companies and financial trading institutions

in different countries. Usually the commissions rates can be varied between 0.008 and

0.01, but nowadays in the Forex trading the most companies don’t charge any

commission rate.

References

Daubechies, I. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in

Applied Mathematics Lecture Notes, 61, Philadelphia, Pennsylvania, Society for

Industrial and Applied Mathematics, 1992

 6

MATLAB routine (script file)

clear all;

% Load input data

load file.mat

method=3 % 1 for moving average, 2 for MACD, 3 for GARCH and wavelets where

 % gives a ‘buy’ signal for positive predicted values and ‘sell’ signal for

 % negative values, 4 for the same with 3 but use moving average of

 % predicted values, 5,6,7 and 8 the same with 1,2,3 and 4 respectively but

 %for real application and not for testing or backtesting.

lag=50 % Define the length of moving average. Usually 10,20,30,50, 70,100 and

 % 200 are used.

factor='e' % 0 for simple, 0.5 for square root weighted moving average,

 % 1 for linear moving average, 2 for square weighted moving average

 % end 'e' for exponential

risk_free=0.001

length_test=100 % length of sample for testing. This script is used for testing. If you

 % wish to apply for future purposes set up the value of length_test=0

decomposition_tree=1 % lenght of decomposition tree

M=length_test; % length of predicted data

if method==1

train_data=data(1:end-length_test-1,:)

[Short,Long]=movavg(train_data,1,lag,factor)

test_sample=data(end-length_test:end,:)

test_long=Long(end-length_test-1:end,:)

stock=data(end-length_test-1:end,:)

[nk1,ni]=size(test_sample)

for kk=1:nk1

 if test_sample(kk,:)>test_long(kk,:)

 s(kk,:)=1 % buy

 elseif test_sample(kk,:)<test_long(kk,:)

 7

 s(kk,:)=-1 %sell

 end

end

for jj=2:nk1

 total(jj,:)=s(jj)*(stock(jj)-stock(jj-1))-0.001*(abs(s(jj)-s(jj-1))*stock(jj))

end

profit=sum(total)

average=mean(total)

standard_deviation=std(total)

sharpe_ratio=(average)/standard_deviation

elseif method==2

train_data=data(1:end-length_test-1,:)

[macdvec, nineperma] = macd(train_data)

test_sample=macdvec(end-length_test:end,:)

test_macd=nineperma(end-length_test:end,:)

stock=data(end-length_test-1:end,:)

[nk1,ni]=size(test_sample)

for kk=1:nk1

 if test_sample(kk,:)>test_macd(kk,:)

 s(kk,:)=1 % buy

 elseif test_sample(kk,:)<test_macd(kk,:)

 s(kk,:)=-1 % sell

 end

end

for jj=2:nk1

 total(jj,:)=s(jj)*(stock(jj)-stock(jj-1))-0.001*(abs(s(jj)-s(jj-1))*stock(jj))

end

profit=sum(total)

average=mean(total)

standard_deviation=std(total)

sharpe_ratio=(average)/standard_deviation

 8

elseif method==3

y=price2ret(data)

N=length(y)

% We decompose our data with function db3

[XX,l] = wavedec(y,decomposition_tree,'db3');

% We define GARCH (1,1) process

[Kappa, Alpha, Beta] = ugarch(XX, 1, 1)

% We set the random number generator seed for reproducability

randn('state', 0)

NumSamples = 20000;

firstpoint=length_test

% We simulate the process with Monte Carlo

[U , H] = ugarchsim(Kappa, Alpha, Beta, NumSamples);

% Length of vector

%V=1%length(data);

% From current day we extract firstpoint data randomly selected

currentprice = randperm(N-M);

currentprice= currentprice+N;

for j=1:firstpoint

Y1 = currentprice(j);

Y0 = Y1-N+1;

p = U(Y0:Y1);

p = p(:);

Y1(1,:) = p(1,:);

prediction = U(Y1+1:Y1+M);

end

[nk1,ni]=size(prediction)

for kk=1:nk1

 if prediction(kk,:)>0

 s(kk,:)=1 % buy

 elseif prediction(kk,:)<0

 s(kk,:)=-1 % sell

 end

end

stock=data(end-length_test:end,:)

for jj=2:nk1

 total(jj,:)=s(jj)*(stock(jj)-stock(jj-1))-0.001*(abs(s(jj)-s(jj-1))*stock(jj))

end

profit=sum(total)

average=mean(total)

standard_deviation=std(total)

sharpe_ratio=(average)/standard_deviation

 9

elseif method==4

N=length(data)

% We decompose our data with function db3

[XX,l] = wavedec(data,decomposition_tree,'db3');

train_data=XX(1:end-length_test-1,:)

[Short,Long]=movavg(train_data,1,lag,factor)

test_sample=data(end-length_test:end,:)

test_long=Long(end-length_test-1:end,:)

stock=data(end-length_test-1:end,:)

[nk1,ni]=size(test_sample)

for kk=1:nk1

 if test_sample(kk,:)>test_long(kk,:)

 s(kk,:)=1 % buy

 elseif test_sample(kk,:)<test_long(kk,:)

 s(kk,:)=-1 % sell

 end

end

for jj=2:nk1

 total(jj,:)=s(jj)*(stock(jj)-stock(jj-1))-0.001*(abs(s(jj)-s(jj-1))*stock(jj))

end

profit=sum(total)

average=mean(total)

standard_deviation=std(total)

sharpe_ratio=(average)/standard_deviation

elseif method==5

 [Short,Long]=movavg(data,1,lag,factor)

if data (end,:)> Long (end,:)

 s=1 % buy

 10

 elseif data (end,:)< Long (end,:)

 s=-1 % sell

 end

elseif method==6

[macdvec, nineperma] = macd(data)

if macdvec (end,:)> nineperma (end,:)

 s=1 % buy

 elseif macdvec (end,:)< nineperma (end,:)

 s=-1 % sell

 end

elseif method==7

y=price2ret(data)

N=length(y)

% We decompose our data with function db3

[XX,l] = wavedec(y,decomposition_tree,'db3');

% We define GARCH (1,1) process

[Kappa, Alpha, Beta] = ugarch(XX, 1, 1)

% We set the random number generator seed for reproducability

randn('state', 0)

NumSamples = 20000;

firstpoint=length_test

% We simulate the process with Monte Carlo

[U , H] = ugarchsim(Kappa, Alpha, Beta, NumSamples);

% Length of vector

%V=1%length(data);

% From current day we extract firstpoint data randomly selected

currentprice = randperm(N-M);

currentprice= currentprice+N;

for j=1:firstpoint

Y1 = currentprice(j);

Y0 = Y1-N+1;

p = U(Y0:Y1);

p = p(:);

Y1(1,:) = p(1,:);

prediction = U(Y1+1:Y1+M);

end

if prediction>0

 s=1 % buy

 11

 elseif prediction<0

 s=-1 % sell

 end

elseif method==8

N=length(data)

% We decompose our data with function db3

[XX,l] = wavedec(data,decomposition_tree,'db3');

 [Short,Long]=movavg(XX,1,lag,factor)

 if data(end,:)> Long (end,:)

 s=1 % buy

 elseif data (end,:)< Long (end,:)

 s=-1 % sell

 end

end

