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Can Fuzzy Logic Make Technical Analysis 20/20?

Xu-Shen Zhou and Ming Dong

One of the most challenging areas in technical analysis is the automatic detection of technical
pnttvrm that would be similarly detected by the eyes of experts. In this study, cognitive uncertainty
was incorporated in technical analysis by using a fuzzy logic-based approach. The results show
that the algorithm can detect subtle differences in a clearly defined pattern. Significant postpattern
abnormal returns were found that varied directly with the fuzziness of a pattern. This approach can
be valuable for investors as a way to incorporate human cognition into historical trading statistics

so as to form future winning strategies.

echnical analysis of securities, which is

based on prices and volume rather than

underlying company fundamentals, has

been a practice among practitioners and
academic researchers for many decades. Recent
applications of artificial intelligence (AI) technolo-
gies and the positive results of statistical tests of
effectiveness in technical analysis have generated
greater interest in the approach. Al technologies,
such as genetic algorithms, fuzzy logic, pattern
recognition, and machine learning, have contrib-
uted computerized assistance to make the process
of knowledge discovery more efficient and closer
to human cognitive abilities (in this field, “know-
ledge discovery” usually refers to finding nontriv-
ial and useful patterns in the data, such as those
presented by stock charts).

Leigh, Purvis, and Ragusa (2002) introduced a
decision support system that would incorporate
pattern recognizers, neural networks, and genetic
algorithms. In forecasting the NYSE Composite
Index through technical analysis, the system
achieved high-quality results. Wong, Wang, Goh,
and Quek (1992) developed a fuzzy neural system
for stock selection. The system was intended to
resemble the experts’ knowledge. On the one hand,
using a genetic algorithm, Allen and Karjalainen
(1999) found technical trading rules for the S&P 500
Index. They then applied these rules to out-of-
sampled ally prices of the S&P 500. After transaction
costs, the rules did not earn excess returns over a
simple buy-and-hold strategy. On the other hand,
also using a genetic algorithm for finding optimal
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parameters of trading rules, Fernandez-Rodriguez,
Gonzalez-Martel, and Sosvilla-Rivero (2001)
applied the trading rules to the General Index of the
Madrid Stock Market and found that the rules were
always better than a risk-adjusted buy-and-hold
strategy (for reasonable trading costs). Neely,
Weller, and Dittmar (1997) also found economically
significant out-of-sample excess returns in the for-
eign exchanges by using the trading rules generated
by a genetic algorithm.

Most technical analysis research focuses on
general trading rulcb, such as the rules based on
moving averages;' only a few studies have exam-
ined visual technical patterns, such as head-and-
shoulders shapes and double tops. Levy (1971)
tested the predictive power of 32 “five-point chart
patterns” and found no predictive power in the
chart patterns for U.S. stock markets. The tests did
notinclude volume, however, and the chart patterns
did not follow the rules practitioners say they use.
Neftci (1991) found that even well-defined trading
rules are useless in prediction unless the process
under consideration is nonlinear. Brock, Lakon-
ishok, and LeBaron (1992) examined the trading
range breakout (resistance and support levels) in the
Dow Jones Index from 1897 to 1986, and they devel-
oped a trading strategy based on buy and sell sig-
nals. A buy signal was generated when the price
rose above the resistant level, which was defined as
the local maximum. A sell signal was generated
when the price dropped below the support level,
which was the local minimum. The result shows that
such buy and sell signals are informative. Chang
and Osler (1999) studied the profitability and effi-
ciency of the head-and-shoulders pattern in foreign
exchange markets. They found that the technical
pattern is profitable but not efficient because simpler
trading rules dominated the trading strategy based
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on the head-and-shoulders pattern. Lo, Mamaysky,
and Wang (2000) proposed using pattern recogni-
tion and statistical inference methods in technical
analysis for visual technical patterns. Their method
allowed computer programs to automatically detect
these patterns. They used the conditional (condi-
tioned on the technical patterns) and unconditional
distributions of returns to test the informativeness
of technical analysis and found evidence that tech-
nical patterns are informative.

Despite these advances in technical analysis,
challenges remain in two key areas. The first is the
area of automatic detection of technical patterns that
would be similarly detected by expert investors.
Such a detection process would closely resemble or
capture human cognitive abilities—even intuition.
This challenge has produced fewer academic studies
than studies of patterns in other technical trading
rules and produced inconclusive results. Regarding
expert traders, Lo and Repin (2001) noted:

The most successful traders seem to trade

based on their intuition about price swings and

market dynamics, often without the ability (or

the need) to articulate a precise quantitative

algorithm for making these complex decisions

(Schwager 1989, 1992; and Niederhofer 1997).

Their intuitive trading rules are based on the

associations and relations between various

information tokens that are formed on a sub-

conscious level. (p. 13)

Because of the way the successful traders make
decisions, a subtle difference in technical patterns
may be apparent to experienced traders but not to
average traders. Computer pattern-recognition
programs should be designed to capture such
slight differences and extract the useful informa-
tion from the noise.

The second challenge is to statistically test the
effectiveness of technical analysis. Controversy
and confusion exist regarding how useful and
informative technical analysis is. Different test
methods, because of their conflicting results, have
only added to the controversy.

The study we report here contributes to the
research on technical analysis by making improve-
ments in these two challenging areas. As Zadeh
(1978) pointed out, human cognitive uncertainty
can be introduced into the automatic detection and
analysis process. Human cognitive uncertainty is
the uncertainty that deals with the phenomena aris-
ing from human thinking, reasoning, cognition, and
perception. This reformulation of technical indica-
tors takes machines a step closer to thinking and
reasoning like human experts in the stock markets.

Our approach to technical analysis is based on
fuzzy logic, which is one of the best tools to model
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cognitive uncertainty. Fuzzy logic has been used in
finance in business decision making (Hutchinson
1998) and in the analysis of financial variables
(Dolan 1994), financial markets (Chorafas 1994),
mechanical artificial trading (Ruggiero 1994), and
commercial software for analyzing candlestick pat-
terns in the futures markets (Ruggiero 1995). The
use of fuzzy logic in this article to analyze the effec-
tiveness of major visual technical patterns, how-
ever, has not been attempted in previous studies.

Fuzzy Logic and Smoothing

We used fuzzy logic to introduce human cognitive
uncertainty into automatic technical pattern detec-
tion and analysis. To capture price information
accurately and reduce noise, we first smoothed the
stock prices by using the Gaussian kernel method
as used by Lo, Mamaysky, and Wang.? Then, we
identified the extrema—that is, the local stationary
maximum and minimum values for the price. In
this section, we provide a brief review of fuzzy logic
and the Gaussian kernel-based smoothing method.

Fuzzy Logic. Fuzzy logic refers to a logical
system that generalizes classical two-value logic
for reasoning under uncertainty. Various classes
of uncertainties can be classified into two broad
categories—statistical and cognitive. Cognitive
uncertainty arises from human thinking, reason-
ing, and cognition (Gupta 1991). It can be further
classified into vagueness and ambiguity. Vagueness
is associated with the difficulty of making sharp
or precise distinctions in the world, whereas ambi-
guity is associated with the situation of two or
more alternatives such that the choice between
them is left unspecified (Klir 1987).

Set and element are two basic notions of set
theory. In classical set theory, an element either
belongs to a certain set or it does not. In the real
world, however, such certainty is often unrealistic
because of imprecise measurements, noise, vague-
ness, subjectivity, and so on. For example, the con-
cept of “tall” is inherently fuzzy. Any set of tall
people would be subjective. Moreover, some peo-
ple mightbe obviously tall, whereas others are only
relatively tall. Fuzzy set theory deals with such a
situation.

A fuzzy set directly addresses such situations
by allowing membership in a set to be a matter of
degree. The degree of membership is expressed by
a number between 0 and 1, where 0 means entirely
not in the set, 1 means completely in the set, and a
number in between means partially in the set. Usu-
ally, the membership function of fuzzy set A is
denoted 4 and the membership value of x in A is
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denoted as p4(x). Fuzzy sets usually overlap (to
reflect “fuzziness” of the concepts) and, for com-
pleteness, should cover the whole universe under
consideration.

Figure 1 provides an example of the concept
of “income” in fuzzy sets. Income u can belong to
three fuzzy subsets—Low, Medium, and High—
with different membership values. For example,
when u = 20, 000, its membership for fuzzy subset
Low is p;,,, and its membership for fuzzy subset
Medium is ppg, i, The solid line in Figure 1 shows
the trapezoid membership functions for the three
fuzzy subsets.

The most commonly used membership func-
tions are the triangular membership function and

the trapezoid membership function. As shown in
Figure 2, the trapezoid membership can be fully
characterized by four parameters—I, Ip, r, and rp.

Gaussian Kernel-Based Smoothing. Any
study of technical analysis starts from the recogni-
tion that the stock market is a nonlinear dynamic
system and that nonlinearity contains certain regu-
larities or patterns. In general, the stock price at time
f, Py, can be described by the following equation:

Py=H(X,)+¢, witht=1,2,...,T, (1)
where
H = a dynamic system

a state vector at time ¢
noise
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Figure 1. “Income” Example of Fuzzy Sets
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One of the most common methods for
eliminating noise is smoothing, in which the noise
is greatly reduced by averaging the data. Assume
we have n observations of P{, withi=1,2, ..., n;
then, it can be easily shown that H(X,) =
Py — H(X;) when n — . Of course, P, is a time
series and we cannot get 1 observations of P(t). If
we assume H is sufficiently smooth, however, we
can use the average over a predefined neighbor-
hood instead of over n observations. In this case, P,
can be calculated by the weighted sum as follows:

Py=Y wP,i€S, (2)
S

where S is the predefined neighborhood and w; is
the corresponding weight for data point P;.

One popular approach to choosing the
weights is to use Gaussian kernel regression. If
there are n data points in the neighborhood of
point t, we can generate n Gaussian distributions,
with each distribution centered at one of the data
points. Then, we have

p (PP 2e
PI:ZP;F(_ ) n’

k. 2 1/2
i=1 (o 2n) 3)

with'i' = 1,2, ..,

where o2, the variance of the Gaussian distribution,
acts as a smoothing parameter. If 2 is too large, the
data are oversmoothed. Conversely, if o2 is too
small, the data will be undersmoothed.

We collected the data of the NASDAQ Index
from 22 October 2001 through 21 February 2002 and
smoothed it using the Gaussian kernel approach
with standard deviations of 6 = 1 and & = 3. Figure
3 shows the two smoothing effects, with Panel A
for o =1 and Panel B for ¢ = 3.

Fuzzy Logic-Based Automating
Technical Analysis

The first step in automating technical analysis is the
detection of technical patterns. The detection must
be able to match the judgment of a professional
technical analyst. Following Lo et al., we used a
sequence of five consecutive local extrema, Ey, . . .,
Es, to describe a pattern template. In general, any
pattern template with five such extrema can be
described by the tree shown in Figure 4. We can
control the shape of the pattern template by defin-
ing the three-layer comparisons and three weights,
Wy, Wy, Wy, in the tree. By studying each pattern on
the node of the tree, we can analyze all the technical
pattern templates.

In this study, we first focused on the eight pat-
tern templates proposed by Lo et al. They are head-
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and-shoulders (HS), inverse head-and-shoulders
(IHS), broadening tops (BTOP), broadening bottoms
(BBOT), triangle tops (TTOP), triangle bottoms
(TBOT), rectangle tops (RTOP), and rectangle bot-
toms (RBOT). For convenience in the discussion that
follows, we duplicate here the definitions of HS and
RTOP in Lo et al.:

o A head-and-shoulders pattern (HS) is character-
ized by a sequence of five consecutive local
extrema, Ey, . . ., Es5, such that

E; is a maximum,
E3 > E']_ and E:; > Es,

E, and E; are within 1.5 percent of their
average, and E;and E;are within 1.5 percent
of their average.

o A vrectangle tops pattern (RTOP) is characterized
by a sequence of five consecutive local
extrema, Ey, .. ., E5, such that

Eqis a maximum,
Tops are within (.75 percent of their average,

Bottoms are within 0.75 percent of their
average,
Lowest top > highest bottom.

From these definitions, if E; is a maximum,
Node 5 in Figure 4 contains an HS pattern and any
node on the bottom (Nodes 8 to 15) contains RTOP.
Furthermore, according to the definitions, Node 9
contains BTOP and Node 14 contains TTOP. There-
fore, if E; is a maximum, RTOP and HS overlap on
Nodes 10 and 11 (they are the leaves of Node 5),
RTOP and BTOP overlap on Node 9, and RTOP and
TTOP overlap on Node 14. Similarly, if E; is a min-
imum, Nodes 8 through 15 contain RBOT, Node 6
contains IHS, Node 9 contains TBOT, and Node 14
contains BBOT. Thus, RBOT and IHS overlap on
Nodes 12 and 13, RBOT and TBOT overlap on Node
9, and RBOT and BBOT overlap on Node 14.

Although these definitions are straightfor-
ward, their crisp (as opposed to fuzzy) nature suf-
fers from inadequate handling of the uncertainty of
human perception and reasoning. Consequently,
they cannot truly reflect the judgments of a profes-
sional technical analyst. Introducing fuzzy logic
into the definition of technical patterns provides a
better way to match the opinion of professional
technical analysts.

For this purpose, we first identified a visual
technical pattern based on the preceding defini-
tions. We then calculated the membership value of
the pattern using membership functions. Different
membership functions can be applied to ditferent
conditions of the pattern template. For illustration,
consider the following example of a U.S. stock.

www.cfapubs.org 57



Financial Analysts Journal

Figure 3. Smoothing Effect of Gaussian Kernel on NASDAQ Data,
22 October 2001 through 21 February 2002
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Figure 4. Pattern Template with Five Extrema, Three-Layer Comparisons, and Three Weights

w; = Ey/E

Uy = E'{/Eq

Figure 5 shows the smoothed stock prices after
Gaussian kernel-based smoothing and detection of
the corresponding extrema. The data used for Panel
A are the daily prices of Printrak International from
27 December 1999 through 12 January 2000; the data
used for Panel B are Printrak data from 22 December
1998 through 8 January 1999. We first examined the
two patterns and found that both satisfied the four
conditions of the HS template. We then calculated
the membership values for the patterns. Visually,
they are obviously different. For example, the price
difference between the two local minimums of the
pattern in Panel A is much less than the difference
in the pattern in Panel B. Fuzzification allows us to
model those subtle differences with ease. In fact,
according to our fuzzification process, the member-
ship of the pattern in Panel A is 1.0 whereas the
membership of the pattern in Panel B is only 0.67.

Fuzzification Process. We followed a consis-
tent method of fuzzification for all eight pattern
templates. To model the subtle differences of pat-
terns within the same pattern template, we fuzzi-
fied the crisp conditions of each pattern template
by using the trapezoid membership function
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shown in Figure 2. The parameters of trapezoid
membership functions for each condition of each
pattern template are shown in Table 1. For exam-
ple, the second row of Table 1 shows the parame-
ters for fuzzification of the first condition of the HS
pattern template. Here, the fuzzification is based on
the variable x that is defined as

E;-Ave,

e )

where Ave; = (E; + E5)/2 and is the average value
of the first and last maximums and Ave, = (E; +
Eg)/2 and is the average value of the first and
second minimums. Under such definitions, vari-
able x indicates how high “the head” is above “the
shoulders” relative to the distance between “the
shoulders” and “the body” (the two minimums).
According to visual observation, when x is less
than 0.1, the head is so close to the shoulders that
the entire pattern looks nearly flat. Therefore, we
set the membership value in that case to zero.
When x is above 40, the head is very high and looks
like a spike in price instead of the normal HS
pattern. So, again, we set the membership value to
zero. When x is in the (1, 5) range, the head, the
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Figure 5. Fuzzification Effect: Printrak International
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Table 1. Trapezoid Membership Function Parameters

Pattern/Condition ! Ip p r

HS/IHS

Condition 1 0.1 1.0 5.0 40
Condition 2 —r. —x 0.005[(E; + E5)/2] 0.04[(Ey + E5)/2]
Condition 3 —n - 0.005[(E, + E4)/2] 0.005[(E; + Eg)/2]
BTOP/BBOT

Condition 1 0.1 0.8 i) 10
Condition 2 2 2.0 4.0 15
TTOP/TBOT

Condition 1 0.1 0.8 12 10
Condition 2 12 20 4.0 15
RTOP/RBOT

Condition 1 —x — 0.005[(E; + E5 + E5)/3] 0.04[(E + E5+ E5)/3]
Condition 2 —~ —0 0.005[(Es + E4)/2] 0.04[(E5 + £4)/2]
Condition 3 1.0 5.0 8 x

Note: See Figure 2 for the meaning of parameters [, Ip, r, and rp.

shoulders, and the body are well placed to provide
a perfect visualization of the HS pattern. In these
situations, we set the membership value to 1.

Based on this procedure, we can get those
parameters for fuzzification of the first condition
of the HS pattern template. Although the choices
of variable and parameters are ad hoc, adjustments
are made so the patterns with more symmetrical
visual shapes are assigned higher membership val-
ues (for example, the more symmetrical the two
shoulders look, the higher the membership value
for the HS pattern is). In the future, we can redefine
the variable x in Equation 4 or adjust the parame-
ters to achieve the best out-of-sample prediction
results in experiments.

Similarly, we could define the variables for all
the fuzzification processes (each condition and
each pattern template) that are listed in Table 2. We
fuzzified each variable by using the corresponding
membership function defined in Table 1. We then
obtained the pattern fuzzification membership
value by averaging over all memberships within
the pattern template. For example, if the member-
ship values of three conditions for the HS pattern
template were 0.8, 0.6, and 1.0, the membership
value of that pattern for the HS pattern template
was (0.8 + 0.6 + 1.0)/3 = 0.8.

Data and Sample Selection

To test our approach, we selected data from the
Center for Research in Security Prices daily data-
base for 2000. We first listed all of the companies
each year from 1962 to 2000 and selected companies
that were assigned CRSP size deciles from 1 to 10
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Table2. Variables for All Fuzzification Processes

(each condition and each pattern template)

Pattern/Condition

Variable

HS/IHS
Condition 1
Condition 2

Condition 3

BTOP/BBOT
Condition 1

Condition 2

TTOP/TBOT
Condition 1
Condition 2
RTOP
Condition 1
Condition 2
Caondition 3
RBOT
Condition 1
Condition 2
Condition 3

(2E3-Ey - Eg)/(Ey + E5— Ea—Ey)
0.5/ E5 - E4
0.5 Ey - E,

(Es—E3)/(Ex - Eq)
(Es—EDI(Ey—£3)

(Es=E3)/(E3-Eq)
(Ey - Eq)/(Eg=Ey)

ll.S[max(E,. Ey, Es) - I'I'Ii['l”:], !’.l_;, E.’.”
0.5 E; - Eyl
100[min(E,, E;’ f:q)/l'l‘kl\([z, Ey)=1]

0.5[max(Ey, E5, Es) — min(Ey, E3, Es)]
0.5 E, - £
100[min(Es, Ey)/max(E, Ex, E5)—1]

(a certain number of companies each year are not
assigned to any decile). Decile 1 contains the small-
est companies and Decile 10 contains the largest.
CRSP size deciles are assigned at the end of each
year on the basis of the entire universe of CRSP-
listed NYSE, Amex, and NASDAQ companies.
From each decile, we randomly selected 200 com-
panies with replacement (so, some companies were
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selected more than once). Because the number of
companies in the CRSP universe changed dramat-
ically between the 1960s and the 1990s, our sam-
pling method ensured that our sample would
contain the number of companies each year within
the size deciles proportional to the total number of
companies in that year.

We then applied our algorithm to each stock in
the sample for a sample period. Each stock’s sample
period started 12 months after the stock was
included in the CRSP database. A year was chosen
because we needed to match the sample company
with a control company based on the past year’s
stock performance. Because we also needed to mea-
sure the stock’s performance up to six months after
the occurrence of a technical pattern, our sample
period ended six months before the last day that a
stock’s data were available in CRSP. To be included
in our sample, the company also had to meet the
following criteria:

1. It had to be listed on the NYSE, Amex, or
NASDAQ and had to be an ordinary common
stock of a U.S.-based corporation (CRSP share
codes 10 and 11). We selected stocks based on
this criterion to be consistent with the selection
criteria imposed by event-study researchers,
such as Michaely, Thaler, and Womack (1995)
and Boehme and Sorescu (2002). After this
screening, the sample contained 1,699 stocks.

2. The company had to have been in the CRSP
database for 24 consecutive months. Based on
this criterion, each sample stock would have at
least six months of data available for our pat-
tern detection.

3. Atleast 80 percent of the price observations for
the company in the sample period had to be
available. Following Lo et al., we also omitted
missing price observations when we applied
our algorithm to the data.

Our final sample consisted of 1,451 stocks, for

which we detected a total of 44,150 occurrences of

technical patterns.

Statistical Tests

The debate surrounding trading profitability based
on technical patterns and major corporate events is
inconclusive, in part because different research
methods have been used. The variability in meth-
ods, in turn, stems from the fact that we do not have
a well-specified dynamic general equilibrium
asset-pricing model. The “bad model” problem can
be alleviated, however, in the examination of short-
term postevent performance (Fama 1998).
Following Boehme and Sorescu’s method of
matching sample with control companies, we com-
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puted short-term abnormal returns of sample com-
panies relative to a group of control companies
matched one to one on the basis of size and one-year
price momentum.? Although we did not control for
book-to-market ratio, our control company-
matching method allowed measurement of the
effectiveness of technical analysis to be comparable
to the measurement of the effectiveness of corporate
event studies.

We applied our algorithm to adjusted stock
prices (adjusted for all corporate events, including
stock splits and dividends). We chose this approach
because investors look at the adjusted stock price
chart every time an event such as a stock split
occurs. For any trading day, we used adjusted stock
prices m days before and r days after the trading
day in the Gaussian kernel-smoothing method (in
this study, m was 10 days and r was 3 days). We let
t = 0 be the day when the pattern had been com-
pleted for r days. We calculated postpattern returns
starting from t = 1, so the return on t = 1 did not
contain information that was used in detecting
technical patterns.

To find a size- and momentum-matched con-
trol company, we first chose all companies in CRSP
with a market value of equity between 70 percent
and 130 percent of the market value of equity of the
sample company at t = 0 (i.e., r days after the com-
pletion of a pattern). From this set of companies, we
selected the company with the one-year total return
closest to that of the sample company that had six
more months of daily return data in CRSP. Having
six months of daily returns allowed us to measure
abnormal returns for up to 120 trading days.

We computed the abnormal returns for com-
pany i on day t, AR, as

AR = Ry~ Ry, with t =1, . . ., 120, (5)

where R; is the return for company i for day t and
R is the return for the corresponding control com-
pany for that day.

We put all companies that completed a certain
pattern in a portfolio. For each day t, we computed
a mean abnormal return, MAR,, across all the com-
panies in the portfolio:

N, AR”

MAR, = (6)

i=1 t
where N, is the total number of companies in the
portfolio.
We then calculated the cumulative abnormal
return, CAR,, from day 1 to day £

¢
CAR, = Y MAR,. 7)
f=1
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Results

Applied to a random sample of 1,451 stocks from
1962 through 2000, our algorithm detected 44,150
patterns (3,562 of them belonging to more than one
pattern template) based on the definitions pre-
sented in Lo et al. The percentage of the total pat-
terns detected by type is as follows: HS, 17.12
percent; IHS, 15.88 percent; RTOP, 22.16 percent;
RBOT, 22.98 percent; BTOP, 6.05 percent; BBOT, 5.40
percent; TTOP, 4.82 percent; and TBOT, 5.59 percent.

Table 3 presents the number of patterns
detected, by decile, for each pattern for stocks with
trading prices of at least $2.00. For these stocks as a
group on the day the last extremum occurred, RTOP
and RBOT patterns occurred most frequently. HS
and THS were the second most frequently occurring
patterns. For the stocks with a price of $2.00 or more,
for all the pattern templates, the number of patterns
detected generally increased with the size of the
companies. Table 4 provides the number of patterns
detected for stocks with trading prices below $2.00.
The number of patterns decreased with increasing
size deciles. This result is not surprising because the
larger companies have fewer stocks with lower
prices ($2.00).

We also report, in Table 5, the number of pat-
terns detected within various ranges of member-
ship values within the pattern. Because the
frequency counts are different from pattern tem-
plate to pattern template and were affected by our
fuzzification procedures for each pattern template,
Table 5 shows lower frequencies for the HSand THS
patterns below a 0.7 membership value than for
RTOP and RBOT patterns in the same range.

Out of 41,727 patterns detected, we found (not
tabulated) 879 overlapping HS-RTOP and 808
overlapping ITHS-RBOT patterns, accounting for

8.74-11.92 percent of the total number of HS, IHS,
RTOP, and RBOT patterns. The number of other
overlapping patterns ranged from 71 to 100, which
accounted for 2.71-4.87 percent of the total number
of those single patterns. Because our statistical
tests on postpattern abnormal returns were based
on stand-alone patterns, caution should be exer-
cised in interpreting the results when there are
potential overlapping patterns. When overlapping
patterns give the same bullish or bearish signals,
the postpattern performance may be slightly over-
estimated. When overlapping patterns give con-
flicting buy and sell signals, the results may be
slightly underestimated.

Although formal treatments of overlapping
patterns are not found in previous literature, our
fuzzy logic approach can be a useful tool in dealing
with the patterns, especially with contradictory buy
and sell signals.* If two patterns, A and B, overlap,
one can treat the overlapping pattern as if it were the
one with the larger membership value and assign a
new membership value to it. If the bullish or bearish
signal of one pattern—say, Pattern A—is not clear,
one simply ignores that pattern and treats the over-
lapping pattern as Pattern B. For example, let m1 and
m2 be the membership value of the two patterns that
overlap. Assume that m1 > m2 and y < (0,1). We can
assign a new membership value, M, to the pattern.
If the two overlapping patterns are both bullish or
both bearish, M = m1 + (y)(m2). If one bullish and
one bearish pattern are detected, M = m1 — (y)(m2).
Of course, M could be any function of m1 and 2,
not necessarily a linear one, but using the linear
function is straightforward (y needs to be deter-
mined empirically). We discuss the bullish and
bearish signals of overlapping patterns later in the
article and leave the estimation of y to future work.

Table 3. Number of Patterns Detected for Stocks with Trading Prices of at
Least $2.00, 1962-2000

HS IHS RTOP RBOT BTOP BBOT TTOP TBOT
All stocks 7,376 6,865 8,853 9,242 2,620 2323 2,053 2,395
NASDAQ 2,664 2,335 3,983 4,128 723 6350 639 700
Decile 1 172 178 286 320 56 84 57 56
Decile 2 407 333 588 629 116 119 117 122
Decile 3 511 479 763 817 139 131 119 130
Decile 4 543 527 866 902 165 135 173 185
Decile 5 677 587 941 1,008 173 165 179 191
Decile 6 674 569 826 859 191 189 192 230
Decile 7 i 731 1,028 1,048 286 220 232 258
Decile 8 967 900 1,179 1,202 379 318 271 346
Decile 9 1,065 1,005 1,104 1,155 414 370 296 338
Decile 10 1,578 1,556 1,272 1,302 701 592 417 539
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Table 4. Number of Patterns Detected for Stocks with Trading Prices Less

Than $2.00, 1962-2000

HS IHS RTOP RBOT BTOP BBOT TTOP TBOT

All stocks 184 144 931 903 52 62 75 7

NASDAQ 130 97 423 410 36 51 60 60
Decile 1 52 40 207 198 18 15 27 26
Decile 2 54 46 195 193 14 21 21 22
Decile 3 33 17 147 138 9 8 14 14
Decile 4 25 15 120 141 6 8 6 5
Decile 5 9 16 136 127 2 6 4 3
Decile 6 6 3 49 37 2 1 0 1
Decile 7 4 4 37 + 0 1 1 0
Decile 8 1 1 24 13 1 2 1 1
Decile 9 0 2 16 12 0 0 1 0
Decile 10 0 0 0 0 0 0 0 0

Table 5. Number of Patterns for Stocks of at Least $2.00 by Membership

Range, 1962-2000

Membership HS IHS RTOP RBOT BTOP BBOT TTOP TBOT
n<0.7 251 272 5,027 5,042 1,699 1,380 1,395 1,651
0.7<n=08 867 840 1,604 1,744 208 279 186 222
08<n=09 2,025 1,883 B67 889 288 272 152 192
09<n<l 2,694 2,445 527 604 239 275 213 223
n=1 1,539 1,422 828 963 96 117 107 107

Total 7,376 6,865 8,853 9,242 2,620 2323 2,053 2,395

As noted previously, RTOP can overlap with
HS, BTOP, and TTOP. Although the study by Lo et
al. and this study contain positive postpattern
returns, RTOP is considered to be a bearish signal
(Edwards and Magee 1997). Patterns of HS and
BTOP are also bearish patterns (Edwards and
Magee). Therefore, if both RTOP and HS or both
RTOP and BTOP are detected in a pattern, one can
treat the pattern as if it were the one with the larger
membership value. TTOP and TBOT are symmet-
rical triangle patterns that do not give clear signals
(Edwards and Magee; Bulkowski 2002); thus, an
RTOP and TTOP overlapping pattern can be
treated as an RTOP pattern. Similarly, an RBOT and
TBOT overlapping pattern can be treated as an
RBOT pattern. RBOT is a bullish pattern (Edwards
and Magee), and it can also overlap with two other
bullish patterns, THS and BBOT (Stevens 2002).
Therefore, the overlapping patterns can be treated
as either RBOT, IHS, or BBOT, depending on their
membership values.

Cumulative Abnormal Returns. [n this sec-
tion, we divide the results on CARs into three parts:
The first part presents the results for the effects of
small trading prices and the exchange where the
stock is traded; the second part deals with the
effects of different membership values within a
technical pattern; and the last part provides the
results for different subperiods.
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Effects of Small Price and Exchange.
CARs for up to 120 days after the completion of
eight patterns are shown in Figure 6. The total num-
ber of patterns detected is 44,150. Of the eight pat-
terns examined, Figure 6 shows CARs of head-and-
shoulders, rectangle tops, and rectangle bottoms to
be statistically significant for most of the days after
the completion of the patterns. CARs of the inverse
head-and-shoulders pattern are significant for only
a few days five months after the pattern was
detected. The magnitude of CARs is moderate. The
highest CAR for 120 days is 3.65 percent (the CAR
of RBOT). This percentage is equal to 0.0304 percent
daily abnormal returns, on average.

Based on the definitions of patterns discussed
previously, automatic pattern detection can be
greatly affected by the prices of the stocks. For
example, a bid-and-ask spread of 1/16 amounts to
3.125 percent at a $2.00 price. Thus, the stocks trad-
ing at prices below $2.00 can easily meet the crite-
rion of rectangle tops and rectangle bottoms, which
require that tops and bottoms be within 0.75 percent
of their average and the lowest top be higher than
the highest bottom. Because the patterns detected
by our algorithm may not be seen as patterns by
investors, we removed the patterns when stocks
were trading at prices below $2.00 on the day that
the last extremum occurred. The resulting CARs are
shown in Figure 7. With those stocks removed, the
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Figure 6. CARs after Completion of Eight Patterns, 1962-2000
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Figure 7. CARs after Completion of Eight Patterns for Stocks with Trading

Prices of at Least $2.00, 1962-2000
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significance of CARs for the HS and RTOP patterns
disappears. The number of days of significant CARs
for the patterns of IHS and RBOT decreases dramat-
ically. The magnitude of CARs also diminishes. The
highest CAR, only 1.18 percent for 120 days, is less
than one-third of the CAR when the stocks below
$2.00 were included. These results suggest that one
needs to be cautious when using computer algo-
rithms to detect technical patterns and interpreting
the inferences of statistical tests.

To check the robustness of the impact of low
trading prices on the abnormal returns, we com-
puted CARs for stocks in the CRSP size deciles
above 5. We wanted to know whether the impact
of low price was caused by the small-size effect. The
results shown in Figure 8 are similar to those in
Figure 6. Hence, Figure 8 suggests that it is primar-
ily low trading prices (the effects of bid-ask
spread), rather than market capitalization, that
affect the statistical inferences of abnormal returns.

Wealso compared CARs for stocks listed on the
NYSE and Amex versus those listed on NASDAQ.
Within that division, we also computed CARs sep-
arately for all stocks and for stocks with trading
prices of at least $2.00. (Results not graphed here.)
Overall, the patterns in NASDAQ stocks generated
more significant CAR results than those in NYSE/
Amex stocks, especially when we included the
stocks with all prices. For instance, [HS in NASDAQ
stocks generated overwhelming significance for
most days, and the magnitude of the CARs (above
3 percent for 120 days) was much larger than that
of IHS in the NYSE/Amex group. CARs for RTOP
and RBOT were significant for both NYSE/Amex
and NASDAQ stocks, but the CARs for NASDAQ
stocks were about twice as high as those for NYSE/
Amex stocks. For stocks trading above $2.00, the
significance of CARs for RTOP and RBOT totally
disappeared for NASDAQ stocks and the number
of days of significance was drastically reduced for
RTOP and RBOT in NYSE/ Amex stocks. The num-
ber of days of significance for CARs for stocks on
NASDAQ for IHS also fell drastically, but signifi-
cant days increased for BBOT.

These results on the impact of where the stock
is listed are consistent with those in the Lo et al.
study. In their results, the technical indicators for
NASDAQ stocks exhibited much greater signifi-
cance in the statistical tests than did those for
NYSE/Amex stocks.

Our results suggest further that the effect of
small trading prices on CARs mainly pertains to the
RTOP and RBOT patterns and is more severe for
NASDAQ stocks. Because of the trading price
effect, the remainder of the results we present will
be for stocks with trading prices of $2.00 or above
on the day the last extremum occurred.
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Pattern Membership Value Effect. We com-
puted CARs for stocks after the completion of a
pattern based on the pattern membership value.
We used different membership functions for each
pattern template to calculate membership values.
We formed two sample portfolios for each pattern,
one containing stocks with pattern membership
values no larger than 0.7 and the other containing
stocks with pattern membership values larger than
0.7. The results for the head-and-shoulders and
inverse head-and-shoulders patterns are shown in,
respectively, Figure 9 and Figure 10. The corre-
sponding t-statistics of tests of CARs that are dif-
ferent from zero for the HS and IHS patterns
detected are shown in Figure 11.°

Keep in mind that technical analysts regard HS
as a bearish technical indicator. The results shown
in Panel A of Figure 9 indicate that the CARs for the
portfolio of stocks with HS membership values of
0.701 to 1 were mostly negative, but Figure 11 indi-
cates that they are not significantly different from
zero. The CAR:s for the portfolio of stocks with HS
membership no larger than 0.7, however, were sig-
nificantly positive every day from the 40th day to the
60th day after the 3rd day of the completion of the
HS pattern. Tests of the null hypothesis of equality
of the means of the two portfolios (using the F-test
and the Kruskal-Wallis test, as shown in Panel B of
Figure 9) show that for that same period, the CARs
of the two portfolios are significantly different.”

The results for IHS shown in Figure 10 mirror
those for HS except that the CARs for the portfolio
of stocks with IHS membership values from 0.701 to
1 were significantly positive, as shown in Figure 11.
IHS is a bullish technical indicator, but our results
show that the postpattern performance for the port-
folio of stocks with IHS membership values no
larger than 0.7 was significantly worse than that of
the portfolio with control companies on most of the
days from the 86th to the 120th day. The F-test and
Kruskal-Wallis test depicted in Panel B of Figure 10
show that for the same period, the CARs of the two
portfolios with different membership values in [HS
are significantly different. We obtained similar
results for the RBOT pattern.

We did not find significantly different postpat-
tern performances by the portfolios of the other five
patterns—BTOP, BBOT, TTOP, TBOT, and RTOP.
Nor did we find significant CARs for more than a
few postpattern days for the other five patterns, so
we do not present the results here.

Based on our fuzzification procedure, a pattern
with a membership value below 0.7 meets the clas-
sical definition of the pattern but is visually less
eye-catching. The results suggest that for HS, IHS,
and RBOT patterns, our fuzzy logic-based algo-
rithm can be used to detect subtle differences even
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Figure 8. CARs after Completion of Eight Patterns for Stocks with Size
Decile 5 and Above, 1962-2000
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Figure 9. CARs and Tests of Equality of CAR Means for Portfolios with HS
Pattern Membership, 1962-2000
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Figure 10. CARs and Tests of Equality of CAR Means for Portfolios with IHS
Pattern Membership, 1962-2000
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Figure 11. Resulting t-Statistics of Tests of CARs Different from Zero for
Portfolios with HS or IHS Pattern Membership, 1962-2000
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within a single pattern template. These results may
explain why so much controversy surrounds tech-
nical analysis, in the sense that patterns recognized
as the same by most people can still generate
entirely different postpattern performances. The
results may also explain why an expert technical
analyst and an average investor looking at the same
stock chart and using the same pattern definition
can derive different buy and sell signals. The dif-
ferences within a pattern detected by the fuzzy
logic algorithm may not be apparent to average
investors, only to certain experts, so only the expe-
rienced technical analysts can avoid using a pattern
with a low membership value. Our approach,
therefore, can help average investors find visual
technical patterns with high membership values
and take trading positions largely (or only) in
stocks with strong pattern confirmations.

We also formed two different sample portfo-
lios for each pattern, one containing stocks with
pattern membership values of 1 and the other con-
taining stocks with pattern membership values
other than 1. The results were very similar to those
of the two sample portfolios in the previous
description. We found significantly different post-
pattern performances between the portfolios for
HS, THS, and RBOT with the cutoff of 1 but not for
BTOP, BBOT, TTOP, TBOT, and RTOP.
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All the results from our analysis of member-
ship value suggest that the fuzzification proce-
dures can distinguish the subtle differences within
certain patterns but not others. To detect the subtle
differences in other patterns, we would need to
redefine the fuzzification procedures, choose a dif-
ferent x variable in Equation 4, and adjust the
parameters. We leave this issue to future work.

CARs of Subperiods. Tocheck the robust-
ness of the postpattern results, we examined CARs
during four subperiods—July 1962 through
December 1970, January 1971 through December
1980, January 1981 through December 1990, and
January 1991 through December 2000. For example,
we formed two portfolios to examine postpattern
results for the rectangle top pattern: One had stocks
with RTOP membership values of 1, and the other
had stocks with membership values of less than 1.
The results are shown in Figure 12. Results for the
first three subperiods (Panels A, B, and C) are sim-
ilar. For those periods, the postpattern perfor-
mances of the two portfolios are significantly
different. For the 1990s period shown in Panel D,
however, the performances of the two portfolios
are not significantly different. The cause may be
more efficient markets, with increased trading vol-
ume and lower trading costs, in the last subperiod.
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Figure 12. CARs for RTOP Portfolio with Membership Value of 1 and RTOP Portfolio with

Membership Value Less than 1
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More investors, including novice individual inves-
tors, became interested in technical analysis in the
past decade, and more people with easy access to
vast, free technical trading information on the
Internet are aware of the RTOP pattern.

The inconsistent results in the subperiods may
also be caused by the different number of patterns
detected in the periods and, subsequently, different
powers of the statistical tests. The results in certain
subperiods are, therefore, not representative. For
example, for RTOP, 3,274 stocks had a membership
value less than 1 and 421 stocks had a membership
value of 1 from 1991 through 2000. From 1962
through 1970, however, 914 stocks had a member-
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ship value less than 1 and only 11 stocks had a
membership value of 1.

We also computed CARs for the other patterns
for the four subperiods already discussed and for
subperiods of July 1962 through December 1980
and January 1981 through December 2000. In gen-
eral, we found little in the way of consistently sig-
nificant results. When we compared the results of
subperiods during which a similar number of pat-
terns were detected, the significance results were
still inconsistent.

These findings may provide another angle on
the controversy about technical indicators. Three
explanations seem to be possible regarding the
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inconsistent subperiod results—different degrees
of market efficiency in different periods, different
numbers of patterns detected in different periods,
and data snooping (as suggested by Sullivan, Tim-
mermann, and White 1999).

Data snooping seems an unlikely explanation,
however, for these findings on the effects of pattern
membership values. The effects of technical trading
rules may be spurious and driven by data snoop-
ing, especially when the trading rules are selected
from a huge number of trading rules, which is not
the case in our membership value effects. However,
although the eight pattern templates used in this
study are parts of a large number of possible visual
patterns described in Figure 4, they were selected
purely because they are the patterns most widely
used by practitioners in the markets, as suggested
by Lo et al. We did not select them because the
trading signals from the eight patterns were the
strongest among all the possible patterns. The cri-
teria (definitions) used in building the pattern tem-
plates are exactly the same as those used by Lo et
al. Thus, data snooping is not applicable in the
postpattern performance of pattern templates. As
for the parameters used in deciding membership
thresholds, we made adjustments so the patterns
with more symmetrical visual shapes would be
assigned higher membership values (for example,
the more symmetrical the two shoulders looked,
the higher the membership value we set for HS).
Because the tuning of parameters was not based on
postpattern performance and the parameters that
gave the best trading signals, the data snooping
accusation does not apply in this case either.”

Conclusion

We have presented a fuzzy logic-based approach
to measuring the degree of effectiveness of techni-
cal patterns. We believe there is still a long way to
go, however, before computers will simulate
human judgment. Nevertheless, by introducing
fuzzy logic into the technical analysis domain, our
approach incorporates human cognitive uncer-
tainty into automatic pattern detection and analysis
in a way that simulates human judgment signifi-
cantly better than previously. Furthermore, we
used the same method to measure the postpattern
performance thatis used in corporate event studies,
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which allows a meaningfully comparison of tech-
nical analysis with fundamental analysis.

Our algorithm was able to detect subtle differ-
ences within a clearly defined pattern template.
Such differences may not be apparent to average
investors but only to certain experts. Thus, in com-
parison with visual technical pattern analysis, our
approach offers superior precision in detecting and
interpreting the technical patterns. In Chang and
Osler’s study, the head-and-shoulders pattern in
foreign exchange markets could be profitable but it
was not efficient because simpler trading rules
dominated the trading strategy based on the HS
pattern. Lo et al. concluded that the technical pat-
terns are informative but do not provide the answer
to the question: Is technical analysis profitable? Our
approach can explain their results. If an investor
excludes stocks showing the HS pattern but with a
low membership value, the investor can improve
the efficiency of the trading strategy based on the
HS pattern. The results of our company-matching
CAR tests suggest that forming portfolios with
high membership value patterns can be profitable.
Using our approach, investors can first examine the
historical trading statistics, then use the proposed
fuzzy logic-based approach to set their own vari-
ables and parameters, and finally, develop their
own future winning strategies based on the fuzzy
membership values.

[n this study, we did not consider the situation
in which more than one pattern shows up consec-
utively, which may affect postpattern perfor-
mance. For instance, if the bearish indicator HS is
followed by the bullish indicator IHS, how should
the analyst or investor handle the situation? One
possibility is to do as we did for overlapping
patterns as discussed in our “Results” section. One
would assign to the more recent pattern a new
membership value that incorporates the member-
ship value of both patterns.

Also, we studied only eight pattern templates
in this study. Future research could include all the
pattern templates described by Figure 4, although
the effects of data snooping would need to be care-
fully examined.

The authors thank Keri Beckhorn, Randolph Cauthen,
and Gina Nicolosi for editing this article.
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Notes

1. See Neftci and Policano (1984); Treynor and Ferguson
(1985); Pruit and White (1988); Brown and Jennings
(1989); Jegadeesh and Titman (1993); Blume, Easley, and
O'Hara (1994); Chan, Jegadeesh, and Lakonishok (1996);
Campbell, Lo, and MacKinlay (1997); Lo and MacKinlay
(1988, 1999); Goodacre and Bosher (1999); Goodacre and
Kohn-Speyer (2001).

2. TheGaussian kernel is (2rna %) exp[—( u*/2)], where u =
(x—x;/a), o is the window width, x; values are the values
of the independent variable in the data, and v is the value
of the independent variable for which one seeks to smooth,
Unlike most kernel functions, this one is unbounded on x:
s0, every data point will be brought into every smoothing,
in theory, although outside three standard deviations, they
make hardly any difference.

=1/2

3. Chan et al. showed that companies with past-year stock
return momentum and earnings surprise continue to expe-
rience the momentum over the next six months. They found
thatboth return momentum and earnings surprises contrib-
ute to the momentum for up to six months.

4. We thank an anonymous referee for pointing out this issue.
5. We omit the figure for RBOT.
6. The Kruskal-Wallis test, a generalization of the Wilcoxon

rank-sum test, is a nonparametric test for differences in
means for two or more groups in the case of unequal sample
sizes (Kruskal and Wallis 1952).

7. In the future, we would like to develop an algorithm to
optimize the fuzzification procedure in which the vari-
ables and parameters would be selected according to the
postpattern performance. The effects of data snooping as
detailed in Sullivan et al. would then be tested.
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