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Abstract

Fama (1970) de�ned an e¢ cient market as one in which prices always �fully re-
�ect�available information. This paper formalizes this de�nition and provides various
characterizations relating to equilibrium models, pro�table trading strategies, and
equivalent martingale measures. These various characterizations facilitate new in-
sights and theorems relating to e¢ cient markets. In particular, we overcome a well
known limitation in tests for market e¢ ciency, i.e. the need to assume a particular
equilibrium asset pricing model, called the joint-hypothesis or bad-model problem.
Indeed, we show that an e¢ cient market is completely characterized by the absence of
both arbitrage opportunities and dominated securities, an insight that provides tests
for e¢ ciency that are devoid of the bad-model problem. Other theorems useful for
both the testing of market e¢ ciency and the pricing of derivatives are also provided.
KEY WORDS: e¢ cient markets, information sets, strong-form e¢ ciency, semi-

strong form e¢ ciency, weak-form e¢ ciency, martingale measures, local martingale
measures, no arbitrage, no dominance, economic equilibrium.

1 Introduction

The original de�nition of market e¢ ciency is given by Fama [24], p. 383 in his seminal
paper:

�A market in which prices always �fully re�ect�available information is called �e¢ cient�.�

Three information sets have been considered when discussing e¢ cient markets1: (i)
historical prices (weak form e¢ ciency), (ii) publicly available information (semi-strong
e¢ ciency), and (iii) private information (strong form e¢ ciency). A market may or may
not be e¢ cient with respect to each of these information sets.2

�Johnson Graduate School of Management, Cornell University, Ithaca, NY, 14853 and Kamakura Cor-
poration

ySchool of Operations Research, Cornell University, Ithaca, NY, 14853
1This partitioning of the information sets is attributed to Harry Roberts, unpublished paper presented

at the Seminar of the Analysis of Security Prices, U. of Chicago, May 1967 (see Fama (1970)).
2Market e¢ ciency is closely related to the notion of a Rational Expectations Equilibrium (REE) where

equilibrium prices reveal private information. A fully revealing REE is one where prices reveal all private
information, analogous to a market that is strong-form e¢ cient. A partially revealing REE is one where
prices only partially reveal all private information, corresponding to semi-strong form e¢ ciency (see Jordan
and Radner [42] and Admati [1] for reviews). This relationship is discussed further in section 2 below.
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In quantifying this de�nition, for its use in testing market e¢ ciency, it is commonly
believed (see, for example, Campbell, Lo and MacKinlay [6] and Fama [26]) that one must
�rst specify an equilibrium model. This is called the joint-hypothesis or the bad-model
problem. Indeed, Fama states:

[25], p. 1575, �The joint-hypothesis problem is more serious. Thus, market e¢ ciency per
se is not testable. It must be tested jointly with some model of equilibrium, an asset pricing
model. This point, the theme of the 1970 review (Fama (1970)), says that we can only test
whether information is properly re�ected in prices in the context of a pricing model that de�nes
the meaning of �properly�.� [26], p. 285, "Market e¢ ciency must be tested jointly with a model
for expected (normal) returns, and all models show problems describing average returns. The
bad-model problem is ubiquitous, but it is more serious in long-term returns."

In contrast, we quantify the original de�nition in such a manner that one can test
market e¢ ciency without specifying a particular equilibrium model. As such, our for-
mulation overcomes the bad-model problem in the existing tests. We prove this assertion
below. Our claim has precedence in the literature where it is well understood that the exis-
tence of an arbitrage opportunity rejects market e¢ ciency (see, for example, Jensen [40]).
And, of course, identifying an arbitrage opportunity does not require the speci�cation of
a particular equilibrium model.

More generally, the purpose of this paper is to revisit the meaning of market e¢ ciency
to rectify various misconceptions in the literature and to develop new theorems related
to market e¢ ciency. As such, one can then better understand the implications of an
e¢ cient market for empirical testing, pro�table trading strategies, and the properties of
asset price processes. This analysis is facilitated by our accumulated understanding of
martingale pricing methods and their application to equilibrium models (for a review see
Du¢ e [22]).

To start, we �rst provide an analytic de�nition of an e¢ cient market with respect to
an information set that is consistent with the existing de�nition but independent of a
particular equilibrium asset pricing model. Next, we provide two alternative characteri-
zations of this de�nition that facilitate both theorem proving and empirical testing.3 The
�rst characterization relates to the existence of an equivalent probability measure making
the normalized asset price processes martingales (sometimes called risk neutral measures).
The second characterization relates to no arbitrage (in the sense of No Free Lunch with
Vanishing Risk (NFLVR)) and No Dominance (ND). This latter characterization formal-
izes the notion that an e¢ cient market has "no pro�table" trading strategies (see Jensen
[40]).

These two characterizations enable us to obtain some new insights and to prove some
new theorems regarding e¢ cient markets. First we show that to test for an e¢ cient
market, one only needs to show that there are no arbitrage opportunities nor dominated
securities with respect to an information set. These tests are both necessary and su¢ cient.
Surprisingly, when restricted to discrete trading economies, market e¢ ciency is in fact

3This is analogous to Delbaen and Schachermayer [16] providing a rigorous de�nition of no arbitrage
as No Free Lunch with Vanishing Risk (NFLVR) and the resulting alternative characterization of NFLVR
in terms of local martingale measures.
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equivalent only to the notion of no arbitrage (NFLVR). This is especially relevant because
most of the existing empirical studies of market e¢ ciency are based on discrete time
models (see Fama [24],[25],[26], Jensen [40] for reviews). Because such empirical tests do
not require the speci�cation of a particular equilibrium model, this proves our claim that
market e¢ ciency can be tested without the joint model hypothesis.

With respect to di¤erent information sets, we study information expansion and reduc-
tion with respect to market e¢ ciency. As is well known in the literature, we show that
information reduction is consistent with market e¢ ciency, but information expansion may
not be. If the market is semi-strong form e¢ cient, then it is weak-form e¢ cient; but, if
the market is semi-strong form e¢ cient, it need not be strong-form e¢ cient. Theorems
and examples illustrate these statements. With respect to information expansion, we also
study the question: if the market is semi-strong form e¢ cient and it is impossible to
produce arbitrage in the sense of NFLVR with respect to inside information, then is the
market strong-form e¢ cient? In general the answer is no, but we provide su¢ cient con-
ditions for its validity� if the market is either: (i) discrete time, (ii) complete, or (iii) the
H-hypothesis holds. The H-hypothesis is a mathematical condition often used in the area
of credit risk pricing and hedging (see Elliott, Jeanblanc and Yor [23] and Bielecki and
Rutkowski [4]). Our analysis thus provides an economic interpretation of the H-hypothesis
relating to market e¢ ciency.

We also study the conditions imposed by market e¢ ciency on an asset price process
beyond those imposed by no arbitrage (NFLVR) alone. These insights have two uses.
First, they provide an alternative method for testing market e¢ ciency based on a joint
hypothesis. Here the joint hypothesis is the speci�cation of a particular stochastic process
for asset prices. This additional hypothesis is testable independently of market e¢ ciency.
And, an e¢ cient market is a nested subclass� the price process supports e¢ ciency if
its parameters are in a particular subset and it is ine¢ cient otherwise. In contrast, the
classical joint hypothesis� specifying a particular equilibrium model� is not independently
testable. The equilibrium model and e¢ ciency are both accepted or rejected in unison.
Second, these insights are also useful when one wants to impose more structure on the
economy than just NFLVR to capture market wide conditions related to aggregate supply
equalling aggregate demand. This additional structure has already proven relevant in the
study of asset price bubbles (see Jarrow, Protter and Shimbo [38], [39]). For pricing and
hedging purposes, we illustrate the additional restrictions imposed by an e¢ cient market
on various stochastic volatility models that are useful for pricing equity and index options.

An outline for this paper is as follows. Section 2 introduces the model structure
while section 3 de�nes an e¢ cient market and proves various characterization theorems.
Section 4 discusses di¤erent information sets, section 5 presents some market e¢ cient price
processes, and section 6 concludes.

2 The Model

We consider a continuous time and continuous trading economy on an in�nite horizon.
There are a �nite number of traders in the economy. Securities markets are assumed to
be competitive and frictionless.
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2.1 The Market

We are given a complete �ltered probability space (
;F ;F; P ) on [0;1) that satis�es the
usual conditions of right-continuity and P -completeness. P is the statistical probability
measure. The traded securities consist of a locally riskless money market account together
with d risky securities whose market prices at time t, given in units of the money market
account, are S(t) = (S1(t); : : : ; Sd(t)). We let security S0 correspond to the locally riskless
money market account with S0(t) � 1. To simplify the presentation we assume that the
securities have no cash �ows. We also make the following assumption:

Si(t) � 0 a.s. for all t and i = 1; :::; d:

S = (S(t))t�0 denotes a vector stochastic process, and we let FS denote the natural
�ltration of S, made right-continuous and augmented with the P -null sets. The process S
is assumed to be a (not necessarily locally bounded) semimartingale with respect to FS .
We assume that F contains FS and that S is a semimartingale with respect to F. Although
we do not require that F0 be P -trivial, we do assume that S0 is a.s. constant.

For a given �ltration F, we refer to the pair (F; S) as a market.

2.2 Trading Strategies

The economy is populated by a �nite number of investors each of whom have the beliefs
Pk and the information �ltration F where the probability beliefs Pk are assumed to be
equivalent to P . Due to the competitive markets assumption, traders act as price takers.
Given frictionless markets (no transaction costs nor restrictions on trade), the trading
strategies available to an investor are modeled by F-admissible strategies H. That is, H
is an F predictable and S-integrable process which is (F; a)-admissible for some a 2 R,
meaning that H � S � �a. Here,

(H � S)t =
Z t

0

dX
i=0

H i(s)dSi(s)

corresponds to a vector stochastic integral, see Protter [52] and Jacod [34]. We use the
convention that (H � S)0 = 0.

We require that the admissible trading strategies be self-�nancing, meaning that
there are no cash �ows generated by the trading strategy. That is, letting V (t) =Pd
i=0H

i(t)Si(t) denote the time t value of the trading strategy, the self-�nancing con-
dition is that V (t) = V (0)+ (H �S)t for all t. A variant of the self-�nancing condition will
be discussed later in the context of endowment and consumption streams.

2.3 No Arbitrage (NFLVR)

Our no arbitrage condition is the classical No Free Lunch with Vanishing Risk (NFLVR)
due to Delbaen and Schachermayer [16], [19]. NFLVR means that there is no sequence fn =
(Hn �S)1, where eachHn is admissible and (Hn �S)1 exists, such that kmax(�fn; 0)k1 !
0 and fn ! f a.s. for some f � 0 with P (f > 0) > 0. In our context, we will need to
impose NFLVR on speci�c time intervals. We therefore make the following de�nition (note
that taking T =1 yields the usual de�nition of NFLVR).
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De�nition 1 A market (F; S) satis�es NFLVR on [0,T] if the stopped process ST , together
with the �ltration F, satis�es NFLVR.

The Fundamental Theorem of Asset Pricing (see Delbaen and Schachermayer [16], [19])
states that in our setting NFLVR is equivalent to the existence of an equivalent local
martingale measure4. In other words, a market (F; S) satis�es NFLVR on [0; T ] if and
only if the set

Mloc(F; S; T ) = fQ : Q � P and S is an (F; Q) local martingale on [0; T ]g

is non-empty. When there is no risk of confusion, we will sometimes simply write Mloc,
Mloc(F), etc.

2.4 No Dominance (ND)

The notion of No Dominance (ND) was introduced by Merton [48] to study the properties
of option prices. Merton�s de�nition can be formalized as follows.

De�nition 2 (No Dominance) the ith security Si = (Si(t))t�0 is undominated on [0; T ]
if there is no admissible strategy H such that

Si(0) + (H � S)T � Si(T ) a.s. and PfSi(0) + (H � S)T > Si(T )g > 0:

A market (F; S) satis�es ND on [0; T ] if each Si, i = 0; : : : ; n, is undominated on [0; T ].

In words, ND states that it is not possible to �nd a trading strategy that generates a set
of payo¤s at time T that dominate the payo¤s to any traded security. ND has been used
recently in the literature by Jarrow, Protter and Shimbo [38], [39] for the study of asset
price bubbles. Moreover, a closely related notion known as �Relative Arbitrage�has been
recently studied by Fernholz, Karatzas, Kardaras, Ruf, and others; see for instance [28],
[27] and [55].

Notice that the above de�nition also makes sense for T = 1. The reason is that
(H � S)1 exists for every admissible H, so in particular Si(0) + (H i � S)1 = Si(1) exists
for every i, where H i is given by

H i = (0; : : : ; 0; 1; 0; : : : ; 0); (1)

with the one in position i. This shows that ND on [0;1] is a well-de�ned notion in the
presence of NFLVR. In addition, we point out that if Si is undominated on [0; T ], it is
also undominated at all earlier times T 0 < T . Indeed, if there were a dominating strategy
H, one could apply the strategy K(t) = H(t)1ft�T 0g+H

i(t)1ft>T 0g where H i is as in (1).
This corresponds to holding one unit of asset i up to the time horizon. The nonnegativity
of Si ensures that H i is admissible. The strategy K satis�es

Si(0) + (K � S)T = Si(T ) + Si(0) + (H � S)T 0 � Si(T 0) � Si(T );

4Notice that we do not have to distinguish between local martingales and sigma martingales since prices
are nonnegative. This follows from the de�nition of a sigma martingale and the Ansel-Stricker theorem.
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with positive probability of having a strict inequality. But, this is impossible since Si is
undominated on [0; T ].

NFLVR and ND are distinct conditions, but both imply the simpler No Arbitrage (NA)
condition: there can be no admissible strategy H such that

(H � S)T � 0 a.s. and Pf(H � S)T > 0g > 0:

Indeed, since ND in particular implies that S0 � 1 is undominated, it follows that ND
implies NA. And, it has been shown by Delbaen and Schachermayer [16] that a market
(F; S) satis�es NFLVR if and only if it satis�es NA together with the condition that the
set of payo¤s of 1-admissible strategies with bounded support is bounded in probability.

2.5 Maximal Trading Strategies

Essential in proving many of our results in the notion of maximal trading strategies intro-
duced by Delbaen and Schachermayer [19].

De�nition 3 (Maximal Strategies) A process H is called F-maximal on [0; T ] if it is
F-admissible and for every F-admissible strategy K such that (K � S)T � (H � S)T , it is
true that (K � S)T = (H � S)T .

If the �ltration and/or the time horizon is clear from the context, we drop these
quali�ers and simply call H maximal.

To understand the meaning of a maximal trading strategy H, one �rst �xes a time
T payout generated by a trading strategy (H � S)T . Then, a maximal admissible trading
strategy has the largest such �xed payo¤ possible starting at time 0 with zero investment.
In terms of maximality, the No Dominance (ND) condition can be phrased as requiring
that all the strategies H i in (1) are maximal.

We need two results from Delbaen and Schachermayer [19] concerning maximal strate-
gies.

Lemma 1 If S is a positive F semimartingale that satis�es NFLVR with respect to F,
then for any F-admissible strategy H the following are equivalent:

(i) H is F-maximal on [0; T ].

(ii) There is Q 2Mloc(F) such that H � S is an (F; Q) martingale on [0; T ].

(iii) There is Q 2Mloc(F) such that EQ(H � S)T = 0.

Proof. See [19], Theorem 5.12., while keeping in mind that local martingale measures
and sigma martingale measures coincide in our setting where S is nonnegative.

Lemma 2 Finite sums of maximal strategies are again maximal.

Proof. This follows from Theorem 2.14 in [18], which is stated for the case where S
is locally bounded. However, an examination of the proof of this theorem, and the results
that it relies on (Lemma 2.11, Proposition 2.12 and Proposition 2.13 in the same reference)
show that the local boundedness is never used.
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2.6 An Economy

We consider a pure exchange economy on a �nite horizon [0; T ]. An economy consists of a
market (F; S) and a �nite number of investors (k = 1; :::;K) characterized by their beliefs,
information, preferences, and endowments.

We let �i denote the aggregate net supply of the ith security. It is assumed that each
�i is non-random and constant over time, with �0 = 0 and �i > 0 for i = 1; : : : ; d.

There is a single consumption good that is perishable. The price of the consumption
good, in units of the money market account, is denoted  = f (t) : 0 � t � Tg. We
assume that  (t) is strictly positive.

Each investor solves an optimization problem where he seeks to maximize utility from
consumption. In Karatzas and µZitkovíc [46], the optimizing agent receives endowments and
consumes his wealth continuously through time, using a general incomplete semimartingale
�nancial market to �nance his consumption. The utility structure is very general, allowing
among other things for state dependent utility functions. We adopt a similar setup. Let
� be the probability measure on [0; T ] such that �(fTg) > 0. Two canonical examples are
�([0; T )) = 0, �(fTg) = 1, which corresponds to utility from terminal consumption only,
and

�(dt) =
1

2T
dt+

1

2
�fTg(dt);

which is di¤use on [0; T ) and has an atom fTg. This corresponds to utility from continuous
consumption over [0; T ) and a bulk consumption at T . The use of the measure � simpli�es
the notation by allowing us to treat utility from intermediate and �nal consumption within
a single framework.

The kth investor is characterized by the following quantities.

� Beliefs and information (Pk;F). We assume that investor�s beliefs Pk are equivalent
to P . All investors have the same information set F.

� A time dependent utility function Uk : [0; T ] � R+ ! R such that for each t in
the support of �, the function Uk(t; �) is concave and strictly increasing. We also
assume that limx!1 Uk(T; x) =1. The utility that agent k derives from consuming
c(t)�(dt) at each time t � T is

Uk(c) = Ek

�Z T

0
Uk(t; c(t))�(dt)

�
;

where Ek(�) is expectation with respect to Pk. Since �(fTg) > 0, the utility is
strictly increasing in the �nal consumption c(T ).

� Initial wealth xk. Given a trading strategy H = (H1; : : : ;Hd), the investor will be
required to choose his initial holding H0(0) in the money market account such that

xk = H0(0) +

dX
i=1

H i(0)Si(0): (2)
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� A stochastic endowment stream �k(t), t < T of the commodity. This means that the
investors receive �k(t)�(dt) units of the commodity at time t � T . The cumulative
endowment of the kth investor, in units of the money market account, is given by

Ek(t) =
Z t

0
 (s)�k(s)�(ds):

The setup is quite general and includes most formulations studied in the utility maxi-
mization literature. In Kramkov and Schachermayer [47], utility from terminal wealth in
incomplete markets is considered, in which case  � 1, �(fTg) = 1, and �k � 0. These
results are extended in Cvitaníc, Schachermayer and Wang [11] to the case of random
endowments, relaxing the condition �k � 0. In Karatzas and µZitkovíc [46], the optimiz-
ing agent receives endowments and consumes his wealth continuously through time, so
�([0; T )) is no longer zero. In fact, �([0; t]) > 0 is assumed for each t < T . All the
above papers make additional assumptions on the utility function Uk(t; �) for some or
all of their results. In particular, it is assumed that for each t in the support of �, the
function Uk(t; �) is strictly concave, strictly increasing, continuously di¤erentiable, and sat-
is�es the Inada conditions: @2Uk(t; 0+) = 1 and @2Uk(t;1) = 0. Moreover, a condition
that �gures prominently is reasonably asymptotic elasticity condition. In Kramkov and
Schachermayer [47] and Cvitaníc, Schachermayer and Wang [11] it takes the form

lim sup
x!1

xU 0k(x)

Uk(x)
< 1;

where Uk(x) = Uk(T; x). In Karatzas and µZitkovíc [46], a uniform in time version of this
condition is used, together with additional regularity conditions. It is also possible to relax
other aspects of the utility structure. In Karatzas and µZitkovíc [46], the utility function
is allowed to evolve stochastically in a progressively measurable way. This would require
boundedness assumptions on  (t), see Example 3.4 in Karatzas and µZitkovíc [46]. Finally,
we mention Biagini and Frittelli [3], where utilities de�ned on R are considered.

Each investor chooses a consumption plan fck(t) : 0 � t � Tg with ck(t) � 0, and
a trading strategy in the money market account, H0

k , and the risky securities, Hk =
(H1

k ; : : : ;H
d
k ). The investor�s wealth Wk(t) at time t is

Wk(t) = H0
k(t) +

dX
i=1

H i
k(t)S

i(t);

and the holdings H0
k(t) of the money market account must be chosen so that the strategy

is self-�nancing, i.e.,

Wk(t) = xk + Ek(t) +
Z t

0
Hk(u)dS(u)� Ck(t)

where

Ck(t) =

Z t

0
 (s)ck(s)�(ds)
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is the value of cumulative consumption. Note that the self-�nancing condition guarantees
that (2) holds.

At time T , the investors� �nancial holdings are transformed into units of the con-
sumption good, which can be consumed. That is, at time T the kth investor receives a
liquidating dividend of

H0
k(T ) +

Pd
i=1H

i
k(T )S

i(T )

 (T )
;

in units of the consumption good.
A pair (ck;Hk) is called admissible if ck is progressively measurable, Hk is admissible

in the usual sense, and it generates a wealth processWk with nonnegative terminal wealth,
Wk(T ) � 0. The consumption rate process ck is called admissible if there exists Hk such
that (ck;Hk) is admissible. We emphasize that admissibility of Hk means that

R
HkdS is

uniformly bounded from below by some constant which is independent of the initial capital
xk. In particular, we do not require that Wk(t) always be nonnegative. This is in contrast
to some other work on utility maximization, for instance Kramkov and Schachermayer [47]
and Yan [59].

Investor k solves the following optimization problem:

The Investor�s Problem: To maximize Uk(c) over all admissible consumption plans
c = fc(t) : 0 � t � Tg. For �xed endowments we write

uk(x) = supfUk(c) : c is admissible, xk = xg

In the utility maximization literature the existence of an optimal solution has been
established under a wide range of assumptions. One common condition is to require
uk(x) < 1 for some x > 0, together with the existence of an equivalent local martingale
measure. In our setting, we directly assume the existence of an optimal solution to the
investor�s problem. This is a powerful assumption with several important consequences.

Lemma 3 Assume that for some x > 0, the investor�s problem has an optimal solution
with a �nite optimal value. Let (ĉ; Ĥ) be an admissible pair such that ĉ achieves the
optimum. Then Ĥ is a maximal strategy.

Proof. If Ĥ is not maximal, there is an admissible strategy J such that
R T
0 J(t)dS(t) �R T

0 Ĥ(t)dS(t), with strict inequality with positive probability. Hence this strategy supports
the same consumption ĉ(t) for t < T , as well as the �nal consumption

c0(T ) = ĉ(T ) +

R T
0 J(t)dS(t)�

R T
0 H(t)dS(t)

�(fTg) :

Since Uk(T;1) = 1 and �(fTg) > 0, and the optimal solution has �nite value by as-
sumption, we must have ĉ(T ) < 1. Hence c0(T ) � ĉ(T ), with positive probability that
the inequality is strict. This strictly improves the utility of the investor, contradicting the
optimality of (ĉ; Ĥ).
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We note that as in Karatzas and µZitkovíc [46] we may restrict the investors�portfolio
choices to strategies Ht 2 K a.s. for all t 2 [0; T ] where K is a convex cone describing
trading restrictions, such as a short sales prohibition. The proof of Lemma 3 still goes
through, but maximality now refers to the restricted set of admissible strategies.

Lemma 4 Assume that for some x > 0, the investor�s problem has an optimal solution
with �nite optimal value. Then S satis�es NFLVR. Consequently,Mloc is non-empty.

Proof. By a well-known characterization of NFLVR, it su¢ ces to show that: (a) NA
is satis�ed, and (b) the set K =

� R T
0 H(s)dS(s) : H is 1-admissible

	
is bounded in L0,

see [16], Corollary 3.9.
Let (ĉ; Ĥ) be an optimal consumption-investment plan. Suppose �rst NA fails, and

let J be an arbitrage strategy. The strategy ~H = Ĥ + J is then admissible, and with
~XT =

R T
0
~H(t)dS(t) and X̂T =

R T
0 Ĥ(t)dt, we have ~XT � X̂T and P ( ~XT > X̂T ) > 0.

Hence Ĥ is not maximal, which is impossible by Lemma 3.
Next, the fact that the set K is bounded in L0 follows from a straightforward adaptation

of the proof of Proposition 4.19 in [43]. The argument goes through almost unchanged as
soon as we have established that uk(�) is concave. For this, choose arbitrary xi > 0 for
i = 1; 2 and � 2 [0; 1], and set x0 = �x1+(1��)x2. There are sequences fcni gn2N, i = 1; 2,
of consumption plans such that cin is admissible given initial capital x

i, and

uk(x
i) = lim

n!1
Ek

h Z T

0
Uk(t; c

i
n(t))�(dt)

i
:

Now, c0n = �c1n+(1��)c2n is admissible with initial capital x0. Hence, due to the concavity
of Uk(t; �) for t 2 [0; T ], we get

uk(x
0) � lim sup

n!1
Ek

h Z T

0
Uk(t; c

0
n(t))�(dt)

i
� �uk(x

1) + (1� �)uk(x2):

Thus u(�) is concave, as claimed.

This lemma is the formalization of the well-known result that the existence of an
investor�s optimal consumption choice implies that there are no arbitrage opportunities.

An economy is de�ned by the collection (fPkgKk=1;F; f�kgKk=1; fUkgKk=1).

2.7 An Equilibrium

This section de�nes a market equilibrium and explores its implications. Given an economy
(fPkgKk=1 ;F; f�kgKk=1; fUkgKk=1), an economic equilibrium determines the price processes
( ; S) by equating aggregate supply equal to aggregate demand. This is formalized in the
following de�nition.

De�nition 4 (Equilibrium) Given an economy (fPkgKk=1 ;F; f�kgKk=1; fUkgKk=1), a con-
sumption good price index  , �nancial asset prices S = (S0; S1; : : : ; Sd), and investor
consumption-investment plans (ĉk; Ĥk) for k = 1; : : : ;K, the pair ( ; S) is an equilibrium
price process if for all 0 � t � T a. e. P ,
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(i) securities markets clear:

KX
k=1

Ĥ i
k(t) = �i; i = 0; : : : ; d;

(ii) commodity markets clear:
KX
k=1

ĉk(t) =

KX
k=1

�k(t);

(iii) investors�choices are optimal: (ĉk; Ĥk) solves the kth investor�s utility maximization
problem and the optimal value is �nite.

Such an equilibrium is sometimes called an Arrow-Radner equilibrium. Su¢ cient con-
ditions for the existence of such an equilibrium can be found in Du¢ e [21], Karatzas,
Lehoczky and Shreve [45], Dana and Pontier [15], Dana [13], [14], and µZitkovíc [60].

We now establish some properties that must hold in an economic equilibrium. Notice
that NFLVR always holds in equilibrium as a consequence of Lemma 4.

Lemma 5 Suppose an equilibrium is given. Then holding the market portfolio is a maxi-
mal strategy, i.e. H = (H1; : : : ;Hd) given by

H i(t) � �i; i = 1; : : : ; d

is maximal.

Proof. By Lemma 4, Mloc 6= ;. Furthermore, Lemma 3 implies that each Ĥk is
maximal. By Lemma 2, their sum H = Ĥ0 + � � �+ ĤK is also maximal. But the clearing
condition for the securities markets implies that H i � �i for each i = 1; : : : ; d.

The next result shows that buying and holding assets in positive net supply is also a
maximal strategy.

Lemma 6 Suppose an equilibrium is given. Then, for each �xed i 2 f0; 1; : : : ; dg, the
strategy H = (H0; : : : ;Hd) given by8<:

H i � 1

Hj � 0; j 6= i

is maximal, i.e. ND holds.

Proof. By Lemma 4, NFLVR and hence NA holds, so the claim is true for i = 0.
Suppose i 2 f1; : : : ; dg and let ~H be the market portfolio from Lemma 5, multiplied by a
factor 1=�i. This is well-de�ned since �i > 0, and ~H is still maximal because maximality
is not a¤ected by positive scaling. By Lemma 5 and Lemma 1, there is a probability
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Q 2 Mloc under which
R
~HdS becomes a martingale. Due to the nonnegativity of asset

prices,
dX
i=1

Si(0) +

Z
~HdS = Si +

X
i6=j

�j

�i
Sj � Si:

Hence under Q, Si is a nonnegative local martingale dominated by a true martingale, and
therefore itself a true martingale. Another application of Lemma 1 gives the maximality
of H.

As presented, our equilibrium is for an economy with symmetric information. An in-
teresting extension is the asymmetric information case, where all traders share the same
beliefs P but have di¤erent information sets represented by the �ltrations Fk. Further-
more, the market �ltration F =

T
k Fk consists of the information that is available to all

traders. In the investor�s optimization problem, Fk replaces F. Hence, the kth investor�s
consumption and portfolio choices (ck;Hk) are admissible with respect to Fk. His op-
timal strategy Ĥk will be Fk-maximal, and since F � Fk it is intuitively clear that no
F-admissible strategy can dominate Ĥk. However, there are technical issues related to
the invariance of stochastic integrals as the �ltration changes, which we leave for future
research.

All else remains the same, with a market still being the pair (F; S). The de�nition of an
equilibrium is unchanged with equilibrium prices re�ecting the market clearing conditions
(i) and (ii), and investors�decisions being optimal (iii), with the changed measurability
requirements. When discussing NFLVR and ND, the market information set F is the
relevant one. This asymmetric information extension relates our equilibrium notion to
that of a Rational Expectations Equilibrium (REE), see Jordan and Radner [42] and
Admati [1] for reviews. Since FS � F � Fk, an investor�s decisions are conditioned on
the information revealed by prices. An equilibrium price process ( ; S), therefore, con�rms
the investors�beliefs conditioned on FS .

3 Market E¢ ciency

This section de�nes an e¢ cient market and provides two equivalent characterizations that
are useful for empirical testing and theorem proving.

3.1 De�nition

As discussed in the introduction, it is commonly believed that to test market e¢ ciency,
one needs to assume a particular equilibrium model in order to investigate its implications
relating to the properties of the price process or the existence of abnormal trading pro�ts.
Both of these implications are derived from the martingale properties of the equilibrium
price processes and they were �rst discovered by Samuelson [56]. If these implications are
violated in the empirical study, then e¢ ciency is rejected. In fact, Jensen [40], p. 96 in
his review of the empirical literature uses these necessary conditions as the de�nition of
an e¢ cient market:

12



�A market is e¢ cient with respect to information set �t if it is impossible to make economic
pro�ts by trading on the basis of information set �t. By economic pro�ts, we mean the risk
adjusted returns net of all costs. Application of the zero pro�t condition to speculative markets
under the assumption of zero storage costs and zero transactions costs gives us the result that asset
prices (after the adjustment for required returns) will behave as a martingale with respect to the
information set �t.�

Consistent with the intent of these de�nitions, we provide a model independent and
rigorous de�nition of an e¢ cient market that has content (to be shown) and can be em-
pirically tested (also to be shown), i.e.

De�nition 5 A market (F; S) is called e¢ cient on [0; T ] with respect to F if there exists a
consumption good price index  and an economy (fPkgKk=1;F; f�kgKk=1; fUkgKk=1) for which
( ; S) is an equilibrium price process S on [0; T ].

If this holds for every T <1, the market is called e¢ cient with respect to F.

This de�nition says that a market (F; S) is e¢ cient with respect to F if there exists an
economy whose equilibrium price process is consistent with S.5

3.2 Characterization Theorems

This section gives several di¤erent characterizations of an e¢ cient market. Our �rst char-
acterization relates e¢ ciency on [0; T ] to the economic notions of ND and NFLVR. The
second gives a description in terms of equivalent martingale measures. The following
theorem is the main result of this section.

Theorem 1 (Characterization of e¢ ciency) Let (F; S) be a market. The following
statements are equivalent.

(i) (F; S) is e¢ cient on [0; T ].

(ii) (F; S) satis�es both NFLVR and ND on [0; T ].

(iii) There exists a probability Q, equivalent to P , such that S is an (F; Q) martingale
on [0; T ]. That is,M(F; S; T ) 6= ;.

Proof. (i) =) (ii): If (F; S) is e¢ cient on [0; T ], there is a consumption good price
index  and an economy (fPkgKk=1; F; f�kgKk=1; fUkgKk=1) such that ( ; S) is an equilibrium
price process. Hence by Lemma 4 and Lemma 6, both NFLVR and ND hold.

5 In the context of an asymmetric information economy, a fully revealing REE is an equilibrium price
process ( ; S) such that FS=

WK
k=1F

k, i.e. all private information is re�ected in the market price process.
Since also FS � Fk, it follows that FS = Fk for each k. That is, all investors share the same information
set, namely the information contained in the prices. A partially revealing REE is an equilibrium price
process where this is not the case. A fully revealing REE corresponds to strong-form market e¢ ciency,
while a partially revealing REE corresponds to weak-form e¢ ciency.
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(ii) =) (iii): If (F; S) satis�es ND and NFLVR, then all the strategies H i in (1) are
maximal. By Lemma 2, H = H1 + : : :+Hn = (1; : : : ; 1) is then also maximal. Lemma 1
thus implies that there is Q 2M(F) turning

H � S = (S1 � S1(0)) + : : :+ (Sn � Sn(0))

into a martingale. Using the nonnegativity of S, we see that each nonnegative Q local
martingale Si is dominated by a martingale, and is therefore itself a martingale.

(iii) =) (i): Assume that there exists an equivalent martingale measure Q. We need
to construct an equilibrium supporting the price process S. Let all investors have power
utilities with parameter 0 < 
 < 1,

Uk(x) =

(
x1�


1�
 ; x > 0

�1; x � 0

for each k, and suppose they only derive utility from terminal consumption, i.e. �(fTg) =
1. Set  (t) � 1 and assume that the endowment streams �k are identically zero� then the
investors only receive utility from the liquidating dividend.

Next, suppose that the investor beliefs are given by an equivalent probability P �, which
we de�ne via

dP �

dQ
=

Z(T )


EQ[Z(T )
 ]
;

where

Z(t) =
�1S1(t) + � � �+ �dSd(t)
�1S1(0) + � � �+ �dSd(0) ;

which is a strictly positive Q-martingale by hypothesis, with EQ[Z(T )] = 1. Note that
since 
 < 1, EQ[Z(T )
 ] < 1, so P � is well-de�ned. The kth investor�s optimization
problem is then

sup
n
EP � [Uk(X(T ))] : X(T ) = xk +

Z T

0
H(s)dS(s); H admissible

o
:

Since Uk(x) = �1 for x � 0, we may restrict attention to strategies for which X(T ) > 0.
Then, due to the supermartingale property of X = xk +

R
H(t)dS(t) under Q, X(t) �

EQ(X(T ) j Ft) � 0 for all t � T . Hence, in fact, we only need to consider xk-admissible
strategies.

We now show that, with the preferences and beliefs described above, the optimal
strategy for each investor is to invest his initial wealth in the market portfolio until the
time horizon T . As a consequence, there is an equilibrium supporting the market (F; S).
To prove this, �rst note that, by the de�nition of P � and Uk,

EP � [Uk(xkX(T ))] =
x1�
k

1� 

1

EQ[Z(T )
 ]
EQ

h
Z(T )
Z(T )1�


i
=
x1�
k

1� 

1

EQ[Z(T )
 ]
;

since Z is a Q martingale with expectation one. Thus the candidate optimal utility is
�nite. Next, let H be any 1-admissible strategy, and set X = 1 +

R
HdS. The concavity
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of Uk, the de�nition of P �, and the supermartingale (resp. martingale) property of X
(resp. Z) under Q yield

EP � [Uk(xkX(T ))� Uk(xkZ(T ))] � EP �
�
U 0k(xkZ(T ))(xkX(T )� xkZ(T ))

�
=

x1�
k

EQ[Z(T )
 ]
EP �

�
dQ

dP �
(X(T )� Z(T ))

�
=

x1�
k

EQ[Z(T )
 ]

�
EQ[X(T )]� EQ[Z(T )]

�
� 0:

Hence
EP � [Uk(xkX(T ))] � EP � [Uk(xkZ(T ))] ;

and since the �nal payo¤ from any xk-admissible strategy is of the form xkX(T ) with X
as above, this proves the optimality of xkZ(T ).

It is now straightforward to verify that we have an equilibrium. With preferences as
described above, the kth investor�s holdings in the ith asset at time t is given by

Ĥ i
k(t) = xk

�i

�1S1(0) + � � �+ �dSd(0) :

Summing over k and using that
PK
k=1 xk = �1S1(0) + � � � + �dSd(0) shows that the

securities markets clear. The commodity markets also clear, since there is no intermediate
consumption or endowments. This concludes the proof.

Characterization (iii) formalizes the connection between martingales and e¢ ciency as
�rst noted by Samuelson [56] and Fama [24], and it is equivalent to the de�nition of
e¢ ciency used by Ross [54]. As pointed out previously, by the Fundamental Theorem of
Asset Pricing, NFLVR on [0; T ] implies that Mloc(F; S; T ) 6= ;. The e¢ ciency condition
is stronger. It requires thatM(F; S; T ) 6= ; where

M(F; S; T ) = fQ � P : S is an (F; Q) martingale on [0; T ]g:

The setM(F; S; T ) can equivalently be described as consisting of the equivalent measures
that turn S into a uniformly integrable martingale on [0; T ]. When there is no risk of
confusion we writeM,M(F), etc.

Consistent with this observation, there exist markets that satisfy NFLVR but are not
e¢ cient. An example is any complete market with a price bubble, see Jarrow, Protter and
Shimbo [38]. To see this, consider the following simple economy consisting of only two
traded assets, the money market account and S1. Let S1 be an inverse Bessel process6.
Then Mloc consists of a single element under which S is a strict local martingale (i.e. a
local martingale that is not a martingale), and henceM = ;. Theorem 1 then shows that
this market, where we can take F = FS , is not e¢ cient. This example is discussed in more
detail in Delbaen and Schachermayer [17].

6The inverse Bessel process can be de�ned as 1=kBk, where B is a three-dimensional Brownian motion
starting from (1; 0; 0). See [9] for details.
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The alternative characterization of e¢ ciency in terms of ND and NFLVR makes precise
the meaning of �no economic pro�ts� in the de�nition of an e¢ cient market as given by
Jensen [40], p. 96 and quoted above. �No economic pro�ts�means NFLVR and ND. As
stated, it is self-evident that the notions of NFLVR and ND are independent of any par-
ticular equilibrium model; they must be satis�ed by all such equilibrium models. It is this
characterization that facilitates empirical tests of market e¢ ciency that are independent
of the joint model hypothesis.

Indeed, given any market (F; S), to disprove e¢ ciency one just needs to identify an
arbitrage opportunity (FLVR) or a dominating trading strategy. Conversely, if one can
show that no such strategies exist, then the market is e¢ cient. To show that no such
strategies exist, one can use Theorem 1, and show that such a martingale probability Q
exists. Given a speci�cation for the stochastic process S, an empirical investigation of the
process�s parameters could con�rm or reject this possibility. In contrast to the classical
joint hypothesis test of an e¢ cient market, this alternative provides a test of market
e¢ ciency where the additional hypothesis can be independently validated (see section 5
below).

This theorem also helps us to understand the relationship between an e¢ cient market
and asset price bubbles. As shown in Jarrow, Protter and Shimbo [38], [39], a complete
market that is e¢ cient (satis�es both NFLVR and ND) has no price bubbles. However,
they provide numerous examples of e¢ cient but incomplete markets that contain price
bubbles. Hence, there is a weak relationship between market e¢ ciency and the non-
existence of asset price bubbles, the link is the notion of a complete market.

Our second theorem deals with the case where (F; S) is e¢ cient with respect to F,
i.e. where e¢ ciency on [0; T ] holds for every �nite T (see De�nition 5).

Theorem 2 The market (F; S) is e¢ cient if and only if there is a family of probabilities
fQtgt�0, where Qt is de�ned on Ft, such that

(i) Qt = Qs on Fs for all s < t,

(ii) Qt � P on Ft and S is a (F; Qt) martingale on [0; t].

Proof. Su¢ ciency follows by considering QT and applying Theorem 1 to (F; S) re-
stricted to [0; T ]. For necessity, it su¢ ces to construct measures Qn, n 2 N, such that
Qn � P , Qn+1 = Qn on Fn, and S is a Qn martingale on [0; n]. We construct the Qn
inductively. Let Q0 = P . Suppose Qn�1 has been constructed, and choose ~Qn, equiv-
alent to P , such that S becomes a uniformly integrable martingale on [0; n]. Such a
measure exists due to the hypothesis and Theorem 1. Let Zn�1t = EP (

dQn�1

dP j Ft) and
~Znt = EP (

d ~Qn

dP j Ft), and de�ne

Znt =

(
Zn�1t t < n� 1;
Zn�1n�1

~Znt
~Znn�1

t � n� 1:

The measure Qn given by dQn

dP = Znn has density process Z
n, which coincides with Zn�1

on [0; n� 1] implying that Qn = Qn�1 on Fn�1.
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It remains to check that S is a Qn martingale on [0; n], so pick 0 � s < t � n and
A 2 Fs. First, if t � n� 1, then EQn(1A(Sit � Sis)) = EQn�1(1A(S

i
t � Sis)) = 0 for each i.

If instead s � n� 1, then Bayes�rule yields

EQn(S
i
t j Fs) =

1

Zns
EP (Z

n
t S

i
t j Fs) =

1
~Zns
EP ( ~Z

n
t S

i
t j Fs) = E ~Qn(S

i
t j Fs) = Sis:

Finally, if s � n� 1 � t, then

EQn(1A(S
i
t � Sis)) = EQn(1A(S

i
t � Sin�1)) + EQn(1A(Sin�1 � Sis)) = 0;

by the two previous cases. The proof is complete.

Most of the empirical literature testing for market e¢ ciency utilizes discrete time
markets (see Fama [24],[25],[26] and Jensen [40] for reviews). Hence it is important to
understand the characterization of market e¢ ciency in a discrete time model. Speci�cally,
let (F; S) be a market in discrete time, t 2 f0; 1; : : :g. Then (F; S) is e¢ cient on f0; : : : ; Tg
with respect to F if and only if it satis�es NFLVR on f0; : : : ; Tg. The proof of this claim
is straightforward and therefore omitted. In fact, NFLVR implies (in our setting) that
a true martingale measure exists, so the Dalang-Morton-Willinger (DMW) Theorem [12]
lets us conclude that in discrete time, NFLVR excludes arbitrage using strategies that
are not necessarily admissible. Conversely, if no such arbitrage opportunities exist, the
DMW Theorem gives an equivalent martingale measure, thus showing that the market is
e¢ cient. This connection is relevant, because in discrete time the setting of the DMW
Theorem is arguably more suitable than that of NFLVR.

4 Di¤erent Information Sets

In this section we study how market e¢ ciency is a¤ected by changes in the information
sets, both information reductions and expansions. More formally we consider nested �l-
trations F � G, and study conditions under which e¢ ciency with respect to F carries
over to G, and vice-versa. We work on the in�nite horizon economy [0;1), although all
results remain valid for �nite horizons [0; T ] as well. The results in this section relies
crucially on the characterization of e¢ ciency in terms of equivalent martingale measures.
The corresponding analysis in the context of an equilibrium model would be much more
complicated.

4.1 Filtration Reduction

If (G; S) is known to be e¢ cient and we want to deduce the e¢ ciency of (F; S), the analysis
is particularly simple. We therefore start by treating this case. The following result is
classical, see e.g. Protter [52], Theorem I.21:

Lemma 7 Let a �ltered probability space be given. A càdlàg, adapted process M such that

E(jM� j) <1 and E(M� ) = E(M0)

for every [0;1]-valued stopping time � is a uniformly integrable martingale.
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Theorem 3 Let S be an n-dimensional G semimartingale with nonnegative components
and suppose that the market (G; S) is e¢ cient. If F � G is a �ltration to which S is
adapted, then S is an F semimartingale, and (F; S) is e¢ cient.

Proof. By Theorem 1 there is Q � P such that S is a (G; Q) uniformly integrable
martingale. Let � be any [0;1]-valued F stopping time. It is then also a G stopping time,
so EQ(jSi� j) <1 and EQ(Si� ) = EQ(S

i
0) for each i by the optional stopping theorem. But

then S is a uniformly integrable (F; Q) martingale by Lemma 7, and we may conclude by
Theorem 1.

With respect to the model described in Section 2 and the information sets discussed
in the �nance literature, e¢ ciency of (F; S) is called semi-strong e¢ ciency, since in our
economy F corresponds to publicly available information. Theorem 3 then proves that
semi-strong form e¢ ciency implies weak-form e¢ ciency. Weak-form e¢ ciency corresponds
to the information set generated by past security prices (FS ; S), and in our economy FS �
F. In contrast, strong-form e¢ ciency, inside information, corresponds to an information
set expansion. This is discussed in the next section.

4.2 Filtration Expansion

For market e¢ ciency under information expansion, we start with an e¢ cient market (F; S)
and consider a larger �ltration G � F. In general, it is well known in the �nance literature
(e.g. Fama [24], p. 388, Jensen [40], p. 97) that when the information set is expanded to
include inside information, market e¢ ciency need not be preserved. Using our charac-
terization theorems, we can easily con�rm these insights with a simple example. In this
example, the additional information is knowing the risky security�s price at a later date.
Given this information, an arbitrage strategy is easily constructed.

Consider a market consisting of only two assets, the money market account and a
single risky security. Let the risky security�s price process be S1t = exp(Bt � 1

2 t) where B
is a Brownian motion on [0; 1] with the natural augmented �ltration F. We know that the
market (F; S) is e¢ cient since there exists a martingale probability measure. Indeed, S is
already a martingale under P .

Next, consider the inside information set G = (Gt)0�t�1 where Gt = Ft _ �(S11) repre-
sents all information, including the future realizations of the risky security�s time 1 value.
This information is known at time 0. Then, one can show (see Itô [33]) that S1 is a G semi-
martingale. The market (G; S) is not e¢ cient. Indeed, consider the admissible strategy
Ht = 1fS11�2g1(0;1](t) whose �nal payo¤ is (S

1
1 � 1)1fS11�2g. If PfS

1
1 � 2g > 0, then this

admissible strategy is an arbitrage opportunity. Hence, NA is violated, thus also ND and
NFLVR. Therefore, by Theorem 1, the market based on the augmented information set
(G; S) is not e¢ cient.

A di¤erent and perhaps more important question in this context is the following: if
(F; S) is e¢ cient and (G; S) satis�es NFLVR, when is (G; S) e¢ cient? We know, via
Theorem 1, that a necessary and su¢ cient condition is that ND holds also for (G; S). The
next section gives an explicit example where passing from (F; S) to (G; S) can yield an
ine¢ cient market, which however still satis�es NFLVR.
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4.2.1 Example (An NFLVR but Ine¢ cient Market)

We now give an example of a market (F; S) that is e¢ cient, and where under information
expansion G � F, the market (G; S) satis�es NFLVR but not ND. The example is based
on a construction by Delbaen and Schachermayer [20], which we repeat here for clarity of
the presentation. The time set is [0;1] and the values at in�nity of all involved processes
are determined by their limits as t!1, which always exist.

Let the �ltration F be the natural augmented �ltration generated by two independent
Brownian motions W and B. In this example we take F = F1. De�ne the stopping times

� = infft � 0 : E(W )t = 2g and � = infft � 0 : E(B)t = 1=2g

where E(B)t = exp(Bt � 1
2 t) is the stochastic exponential of the Brownian motion B, and

similarly for E(W ). De�ne processes S and Z by

S = E(B)�^� and Z = E(W )�^�:

Lemma 8 (Delbaen and Schachermayer [20]) The following statements hold:

(i) S is a non-uniformly integrable P local martingale.

(ii) Z is a uniformly integrable P - martingale with Z1 > 0 a.s. and EZ1 = 1.

(iii) SZ is a uniformly integrable P - martingale, implying that S is a uniformly integrable
martingale under the measure Q � P given by dQ = Z1dP .

(iv) P (� <1) = 1
2 .

The next step is to construct a �ltration G � F such that the price process S still
satis�es NFLVR (Mloc(G) 6= ;), but no R 2 Mloc(G) exists under which S becomes
uniformly integrable. We let G be the initial expansion of F with the stopping time � ,
i.e. the right-continuous completion of

F _ �(�) = (Ft _ �(�))t�0:

(Note that G1 = F1 = F .) Initial expansions of �ltrations have been studied exten-
sively by several authors, see e.g. Jacod [35] and the book [41]. However, our example is
su¢ ciently simple that we do not need the general theory of initial expansions.

Lemma 9 The process B is Brownian motion with respect to (G; P ).

Proof. Fix 0 � s < t < 1. The distribution under P of Bt � Bs does not depend
on the �ltration, so it remains normally distributed with zero mean and variance t � s.
Moreover, B is certainly G adapted. It remains to prove that Bt � Bs is independent of
Gs under P . Note that the �ltration G is the right-continuous completion of

(G0t )t�0 = (FBt _ FWt _ �(�))t�0;

19



where (FBt )t�0 and (FWt )t�0 denote the natural augmented �ltrations of B andW , respec-
tively. Pick any continuous and bounded function f : R! R, and de�ne F = f(Bt�Bs).
Let X, Y , and Z be bounded random variables measurable with respect to FBs , FWs , and
�(�), respectively. Since FX is FB1-measurable, Y Z is FW1 -measurable, and B and W are
independent under P , it follows that FX and Y Z are independent under P . Similarly,
X and Y Z are independent. Moreover, since B is Brownian motion, F is independent of
FBs , and thus of X. This yields

EP (FXY Z) = EP (FX)EP (Y Z) = EP (F )EP (X)EP (Y Z) = EP (F )EP (XY Z):

By the Monotone Class Theorem, we get EP (Fg) = EP (F )EP (g) for every bounded,
G0s -measurable g. Now let F " = f(Bt �Bs+") for " > 0 small, and pick any bounded, Gs-
measurable g. Then g is G0s+"-measurable, so by the above, EP (F "g) = EP (F

")EP (g). Let-
ting " # 0 and using continuity and boundedness of f , we obtain EP (Fg) = EP (F )EP (g).
This su¢ ces to conclude that Bt �Bs and Gs are independent.

As a consequence of Lemma 9 and the fact that �^� is a G stopping time, S = E(B)�^�
remains a (G; P ) local martingale. In particular, S satis�es NFLVR with respect to G.
However, the following result shows that ND fails, which completes our example.

Theorem 4 The market (G; S) constructed above does not satisfy ND.

Proof. We will prove that M(G) = ;. De�ne the G adapted process ~S = 1f�=1gS.
We claim that if S is a (G; R) uniformly integrable martingale for some R � P , then so is
~S. Indeed, in this case

~St = 1f�=1gSt = 1f�=1gER(S1 j Gt) = ER(1f�=1gS1 j Gt);

so that ~S is closed by 1f�=1gS1. Suppose for contradiction that such an R exists. Then

ER( ~S1) = ER( ~S0) = R(� =1):

On the other hand,

ER( ~S1) = ER(1f�=1gE(B)�) =
1

2
R(� =1):

Since R � P and P (� =1) = 1
2 > 0, this is a contradiction. It follows that

~S cannot be
a (G; R)-uniformly integrable martingale for any R � P , so neither can S.

The remainder of this section looks for alternative conditions that imply e¢ ciency
(or equivalently ND) under an information set expansion. We discover three su¢ cient
conditions; if the market is either: (i) discrete time, (ii) complete, or (iii) the H-hypothesis
holds.

4.2.2 Discrete Time Markets

In a discrete time market, if (F; S) is e¢ cient and (G; S) satis�es NFLVR, then (G; S)
is e¢ cient. This follows directly from our earlier observation that under this hypothesis
NFLVR is a su¢ cient condition for the e¢ ciency of (G; S). For continuous time models,
however, the situation is much more complex.
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4.2.3 Complete Markets

If (F; S) is a complete and e¢ cient market and (G; S) satis�es NFLVR, then (G; S) is
e¢ cient. This follows because in a complete market, strategies which are maximal in the
smaller �ltration also remain maximal in the larger �ltration (subject to certain regularity
conditions). Hence, information expansion introduces no new pro�table trading strategies.
To prove this claim, we start with the de�nition of a complete market.

We will use the following de�nition of completeness; it says that there is only one
risk-neutral measure on F1.

De�nition 6 (Completeness) A market (F; S) is called complete if it satis�es NFLVR
and all Q 2M(F) coincide on F1.

For the rest of this section, we restrict attention to the case where the security process
S is strictly positive and F locally bounded. This guarantees that S is a special semimartin-
gale, which is needed for the proof of the following lemma.

Lemma 10 Let S be an n-dimensional, locally bounded F semimartingale with positive
components, satisfying NFLVR with respect to F. If G � F is a larger �ltration, then
Mloc(G) �Mloc(F).

Proof. A theorem by Stricker [58] says that if M is a positive G local martingale,
then it is an F supermartingale, and if in addition M is F special, then it is an F local
martingale. Each Si satis�es these conditions under any Q 2Mloc(G), taking into account
that S is locally bounded with respect to F and hence special.

Theorem 5 Let (F; S) be a complete market, and suppose that S is strictly positive and
locally bounded. If G � F is a larger �ltration such that (G; S) satis�es NFLVR, then
every locally bounded F-maximal strategy is G-maximal.

In particular, if (F; S) is e¢ cient, then so is (G; S).

Proof. Since S satis�es NFLVR with respect to G, it is a G semimartingale. By
Theorem IV.33 in [52], the stochastic integral H �S does not depend on the �ltration (F or
G) as long as H is F predictable and locally bounded. Now, let H be a locally bounded,
F-maximal strategy. Then EQ(H �S)1 = 0 for some Q 2Mloc(F) by Lemma 1. However,
(G; S) satis�es NFLVR, so with Lemma 10 and the completeness assumption we get that

; 6=Mloc(G) �Mloc(F) = fQg:

Therefore Q 2 Mloc(G), so another application of Lemma 1 shows that H is G-maximal.
Finally, ND and hence completeness of (G; S) now follows from the fact that the strategies
H i = (0; : : : ; 0; 1; 0; : : : ; 0), which are F-maximal by assumption, are also G-maximal.

An interpretation of Theorem 5 is that given a complete and e¢ cient market (F; S),
any additional information that introduces ine¢ ciencies in (G; S) will in fact introduce
arbitrage opportunities as well, in the sense of NFLVR.
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4.2.4 Hypothesis H

This section shows that if (F; S) is an e¢ cient market, (G; S) satis�es NFLVR, and G � F
is such that the Hypothesis H holds, then (G; S) is e¢ cient. Hypothesis H refers to
the property that given two nested �ltrations F � G and a probability P , any (F; P )
martingale is again a (G; P ) martingale. An alternative terminology is that F is immersed
in G under P .

In modeling credit risk, information expansion and reduction are important considera-
tions. First, di¤erential information characterizes the relationship between structural and
reduced form credit risk models. A reduced form model can be obtained via information
reduction in a structural model (see Jarrow and Protter [37] for a review). Second, within
a reduced form credit risk model, an economy is often characterized by the evolution of a
set of state variables yielding the information set F. And, default information is usually
included via an expansion of this �ltration to include the information generated by a set of
default times, yielding the larger information set G. One then studies the conditions under
which the martingale pricing technology extends from F to G. The H-hypothesis guar-
antees this martingale pricing extension, see Elliott, Jeanblanc and Yor [23] and Bielecki
and Rutkowski [4]. It is not surprising, therefore, that the H-hypothesis also plays an
important role in understanding information expansion with respect to market e¢ ciency.
Similar questions have been studied by Grorud and Pontier [30] and Amendinger [2],
among others.

The following characterization of Hypothesis H is due to Brémaud and Yor [5].

Theorem 6 (Brémaud-Yor) The following are equivalent:

(i) Hypothesis H holds between F and G under the measure P .

(ii) F1 and Gt are conditionally independent given Ft. That is, for every F1-measurable
nonnegative F and Gt-measurable nonnegative Gt,

EP (FGt j Ft) = EP (F j Ft)EP (Gt j Ft):

The next result was proved by Coculescu, Jeanblanc and Nikeghbali [10] in the special
case of progressive expansions with random times. A minor modi�cation of their argument
leads to the following result, where now the expanded �ltration G � F is completely
general.

Lemma 11 Suppose that Q 2 Mloc(F) and that Hypothesis H holds between F and G
under some equivalent measure R � Q. Then there is Q� 2 Mloc(F) such that F is
immersed in G under Q�, and Q� = Q on F1.

Proof. Let Z = ER(
dQ
dR j F1) and de�ne Q

� via dQ� = ZdR. Then for A 2 F1,

EQ�(1A) = ER(Z1A) = ER

�
ER

�
dQ

dR
1A j F1

��
= EQ(1A);
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so Q = Q� on F1. In particular, then, Q� 2 Mloc(F). Now, choose any F1-measurable
F � 0 and Gt-measurable Gt � 0. Bayes�rule, immersion under R, and the fact that Z is
F1-measurable and nonnegative yields

EQ�(FGt j Ft) =
ER(ZFGt j Ft)
ER(Z j Ft)

=
ER(ZF j Ft)
ER(Z j Ft)

ER(Gt j Ft) = EQ�(F j Ft)ER(Gt j Ft):

Similarly we obtain

EQ�(Gt j Ft) =
ER(ZGt j Ft)
ER(Z j Ft)

= ER(Gt j Ft):

Hence EQ�(FGt j Ft) = EQ�(F j Ft)EQ�(Gt j Ft), so immersion holds under Q�, as
desired.

We now give the key theorem of this section. We note that Hypothesis H only has to
hold under some arbitrary equivalent measure, not necessarily P or some Q 2Mloc(F).

Theorem 7 Let (F; S) be a market that satis�es NFLVR. Suppose that G � F is a larger
�ltration such that Hypothesis H holds between F and G under some equivalent measure.
Then (G; S) satis�es NFLVR, and every locally bounded F-maximal strategy is G-maximal.

In particular, if (F; S) is e¢ cient, then so is (G; S).

Proof. By Lemma 11, the intersection Mloc(F) \Mloc(G) is non-empty, so (G; S)
satis�es NFLVR. Let H be locally bounded and F-maximal, so that EQ(H � S)T = 0 for
some Q 2 Mloc(F). By Lemma 11 there is Q� 2 Mloc(G) coinciding with Q on FT , so
EQ�(H �S)T = 0 andH is G-maximal. As in the proof of Theorem 5, the local boundedness
ofH ensures thatH �S does not depend on the �ltration. Also as in the proof of Theorem 5,
the e¢ ciency of (G; S) follows from the fact that the strategies H i = (0; : : : ; 0; 1; 0; : : : ; 0)
remain maximal in G.

5 Market E¢ cient Price Processes

In this section we consider some models for price processes useful for pricing options on
equities and equity indices. We investigate when these price processes are consistent with
market e¢ ciency.

The time set will always be [0; T ] for some T < 1. We �rst consider quite general
local volatility models, where a certain dichotomy is present: if NFLVR holds, then either
Mloc =M orM = ;. In the �rst case, by Theorem 1, the market (F; S) is e¢ cient, while
in the second case it is not. We also look at a class of stochastic volatility models and
give su¢ cient conditions for e¢ ciency. Our goal is to show that there are large classes
of e¢ cient models, many of them with price processes that are strict local martingales
with respect to the measure under which their dynamics would typically be speci�ed.
Results in this vein are well known in the one-dimensional case. In contrast, our results
are established in the multi-dimensional case, which is the appropriate setting since (F; S)
should be thought of as a model for an entire market.
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These results have two uses. First, they provide an alternative method for testing
market e¢ ciency based on a joint hypothesis. Here the joint hypothesis is the speci�cation
of a particular stochastic process for asset prices. This additional hypothesis is testable
independently of market e¢ ciency. And, an e¢ cient market is a nested subset� the price
process supports e¢ ciency if its parameters are in a particular subset and it is ine¢ cient
otherwise. In contrast, the classical joint hypothesis� specifying a particular equilibrium
model� is not independently testable. The equilibrium model and e¢ ciency are both
accepted or rejected in unison.

Second, these results are useful for pricing securities in positive net supply when one
wants to impose more structure on the price process than just NFLVR. In particular, one
may only want to consider price processes that are consistent with some economic equilib-
rium, or alternatively stated, are consistent with an e¢ cient market. Our characterization
theorems enable one to understand the additional structure required. Such restrictions
have already proven useful in the context of asset price bubbles, see Jarrow, Protter and
Shimbo [38], [39].

5.1 Local Volatility Models

Let (
;F ; P ) be a probability space and let W be d-dimensional Brownian motion with
its natural augmented �ltration F. We work on the time interval [0; T ]. Assume that the
price process S = (S1; : : : ; Sn) is governed by the following system of stochastic di¤erential
equations.

dSit = �i(St; t)dWt + b
i(St; t)dt (i = 1; : : : ; n); (3)

where �i : Rn� [0; T ]! Rd and bi : Rn� [0; T ]! R are such that a strong solution exists
with Sit > 0 for all t 2 [0; T ].

Assume now that NFLVR holds, so thatMloc(F) 6= ;. By the martingale representa-
tion theorem, the density process Zt = EP (

dQ
dP j Ft) associated with some Q 2 Mloc(F)

can be expressed as dZt = Zt�tdWt for some adapted, Rd-valued process � that depends
on Q. De�ning WQ =W �

R �
0 �sds, Girsanov�s theorem implies that

dSit = �i(St; t)dW
Q
t + (�

i(St; t)�t + b
i(St; t))dt (i = 1; : : : ; n):

Since Si is a local martingale under Q, the drift term is identically zero, so that

dSit = �i(St; t)dW
Q
t (i = 1; : : : ; n):

Now, WQ is Brownian motion under Q, so we deduce that S has the same law under every
Q 2Mloc(F). This immediately yields the following theorem, which, although well-known,
we state due to its relevance in the present context.

Theorem 8 If the local volatility model described in (3) satis�es NFLVR, then it is either
a true martingale under every Q 2 Mloc and (F; S) is e¢ cient, or it is a strict local
martingale under every Q 2Mloc and (F; S) is ine¢ cient.

Which of the two possibilities actually holds is determined entirely by the properties of
�. Necessary and su¢ cient conditions under various regularity assumptions on � have been
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investigated by several authors, see for example Carr, Cherny and Urusov [7], Cheridito,
Filipovic and Yor [8], and Mijatovic and Urusov [50]. For example, in the case where
n = 1 and �1(x; t) = �(x) for some measurable function �(�) satisfying weak regularity
conditions, the price process is a true martingale under Q if and only if for some c > 0,Z 1

c

x

�(x)2
dx =1;

see Carr, Cherny and Urusov [7] for details.
We remark that the question of whether the local volatility model described above

satis�es NFLVR or not is less interesting; this is almost always assumed, and the risk-
neutral dynamics are then speci�ed directly (i.e. one does not model the bi.)

5.2 Stochastic Volatility Models

We consider a class of stochastic volatility models where the correlation structure between
the di¤erent processes does not change with time. We expand upon earlier work of Sin [57],
who considers a similar model in the one-dimensional case. See also Hobson [31], who
investigates related problems in the one-dimensional case.

We work on [0; T ], with W being d-dimensional Brownian motion on (
;F ; P ) and F
its natural augmented �ltration. The model is given by the following system of stochastic
di¤erential equations.

dSit = Sitf
i(vt; t)�idWt (i = 1; : : : ; n)

dvjt = ajdWt + b
j(vjt ; t)dt (j = 1; : : : ;m):

Here �i; aj 2 Rd for i = 1; : : : ; n and j = 1; : : : ;m. Moreover, each bj : R � [0; T ] ! R
is assumed to be Lipschitz. This guarantees that the SDE for vt = (v1t ; : : : ; v

m
t ) has a

strong (non-explosive) solution on [0; T ]. If, for instance, f i : Rm � [0; T ]! R+ is locally
bounded for each i, the local martingales

Sit = Si0 exp
�Z t

0
f i(vs)�idWs �

1

2
j�ij2

Z t

0
f i(vs)

2ds
�
; i = 1; : : : ; n;

stay strictly positive (we assume that Si0 > 0 for all i.) This will be the case under the
conditions we will impose on the f i. Notice that NFLVR is automatically satis�ed since
each Si is a local martingale under the original measure. Specifying the model in this way
is typical in applications, and allows us to focus on the question of whether ND holds.

We will impose the following condition on the model.

Condition 1 The functions f i are Lipschitz on (�1; C]m for every C > 0. More pre-
cisely, there exist constants KC such that for i = 1; : : : ; n,

jf i(y; t)� f i(z; t)j � KC jy � zj

for every y; z 2 Rm with yj � C, zj � C, j = 1; : : : ;m.
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At �rst, this condition may seem restrictive and somewhat arbitrary. However, given
that f i(y; t) is always nonnegative and should be thought of as being increasing in each
volatility component yj , the condition makes more sense. Notice that it only imposes very
mild restrictions on the growth rate of f i(y; t) as the components of y become large.

An important special case where the Lipschitz condition on bj holds is when bj(vt; t) =
�j(�j � vjt ) for some positive constants �j and �j , i.e. where the volatilities are mean-
reverting. This is similar to the situation considered by Sin [57].

We now state the main theorem of this section. It provides su¢ cient conditions guar-
anteeing that ND holds. In what follows, �prime�denotes transpose.

Theorem 9 Consider the stochastic volatility model with constant correlations described
above, and assume that Condition 1 is satis�ed. If there is a vector � 2 Rd such that for
all i and j,

�0�i = 0; �0aj � �0iaj ; �0aj � 0;

thenM 6= ;. If �0iaj � 0 for all i and all j, then S is already a martingale under P .

The following corollary gives a simple geometric condition that guarantees the existence
of the vector � required in Theorem 9. For a set of vectors y1; : : : ; yn, let conv(y1; : : : ; yn)
denote their convex hull, and span(y1; : : : ; yn) their linear span.

Corollary 1 Consider the stochastic volatility model with constant correlations described
above, and assume that Condition 1 is satis�ed. If

conv(a1; : : : ; am) \ span(�1; : : : ; �n) = ;;

thenM 6= ;.

Proof. Since conv(a1; : : : ; am) is compact and convex, and span(�1; : : : ; �n) is closed
and convex they can be strictly separated by a hyperplane. In particular, there exists
� 2 Rd and � 2 R such that �0aj > � for all j and �0(��i) � � for all i and all � 2 R.
Take � = �1 to see that � = 0 and �0�i = 0 for all i. By positive scaling we may assume
that �0aj � �0iaj for all i and j. Apply Theorem 9 with this �.

The proof of Theorem 9 requires two lemmas, both of which are similar to results that
are well-known in the literature. The �rst lemma is a slight modi�cation of a comparison
theorem due to Ikeda and Watanabe, see [32], Theorem 1.1.

Lemma 12 Suppose that for j = 1; 2 and some continuous a : R� R+ ! Rd, we have

Y jt = Y j0 +

Z t

0
a(Y js ; s)dWs +

Z t

0
�jsds;

where W is d-dimensional Brownian motion and �j are adapted processes. Suppose the
following conditions are satis�ed:

(i) �1t � b1(Y 1t ; t) and b2(Y 2t ; t) � �2(t) for some measurable functions b1, b2 with
b1(y; t) � b2(y; t) for all y and t.
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(ii) There is an increasing � : R+ ! R+ with �(0) = 0,
R
0+ �(u)

�2du =1 such that for
all x; y 2 R and t 2 R+, a satis�es

ja(x; t)� a(y; t)j � �(jx� yj)

(iii) Y 10 � Y 20 .

(iv) Pathwise uniqueness holds for one of dYt = a(Yt; t)dWt + b
j(Y�; t)dt, j = 1; 2.

Then Y 1t � Y 2t for all t.

Proof. Theorem 1.1 in [32] contains the above statement, but for the case d = 1.
However, the proof remains valid for our setup.

The second lemma uses the same well-known techniques as the proof of Lemma 4.2 in
Sin [57]. See also Carr, Cherny, Urusov [7], Cheridito, Filipovic, Yor [8], and Mijatovic and
Urusov [50]. For completeness and since the proof is quite short, we provide the details in
the appendix.

Lemma 13 Let Y be an n-dimensional di¤usion on [0; T ] satisfying a stochastic di¤er-
ential equation

dYt = A(Yt; t)dWt + b(Yt; t)dt;

where W is d-dimensional Brownian motion and A and b are measurable functions with
values in Rn�d and Rn, respectively. Assume that a non-explosive solution exists and is
pathwise unique on [0; T ]. If f is an Rd-valued locally Lipschitz function such that the
auxiliary SDE

dŶt = A(Ŷ�; t)dWt + [b(Ŷ�; t) +A(Ŷ�; t)f(Ŷ�; t)]dt; Ŷ0 = Y0 (4)

has a non-explosive and pathwise unique solution on [0; T ], then the positive local martin-
gale X given by

Xt = exp
�Z t

0
f(Ys; s)dWs �

1

2

Z t

0
jf(Ys; s)j2ds

�
is a true martingale on [0; T ].

Proof of Theorem 9. The goal is to �nd a measure Q � P under which each Si

becomes a martingale. The proof proceeds in a number of steps.
Step 1. As a candidate density process for a measure change, let Z be the stochas-

tic exponential of �
R �
0 h(vt; t)�

0dWt, where we de�ne h : Rm � [0; T ] ! R by h(y; t) =
maxi=1;:::;n f

i(y; t). Then Z is the unique solution of

dZt = �Zth(vt; t)�dWt; Z0 = 1: (5)

Since vt is non-explosive, Z is a strictly positive local martingale. Lemma 13 implies that
it is a true martingale if v̂t is non-explosive and pathwise unique, where

dv̂jt = ajdWt +
h
bj(v̂jt ; t)� h(v̂t; t)a0j�

i
dt; v̂j0 = vj0 (j = 1; : : : ;m):
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Step 2. Due to Condition 1, v̂t is non-explosive and pathwise unique at least up to �k,
where

�k = infft � 0 : max
j=1;:::;m

v̂jt � kg:

We need to show that, almost surely, �k � T for large enough k. Since a0j� � 0, the drift
coe¢ cient of v̂jt is bounded above by b

j(v̂jt ; t). Lemma 12 then shows that v̂
j
t � wjt up to

time �k, where wj is the solution of

dwjt = ajdWt + b
j(wjt ; t)dt; w0 = vj0;

which is pathwise unique. Note that the condition on the volatility coe¢ cient in Lemma 12
is satis�ed since aj is constant. Since bj is Lipschitz, each wj is non-explosive and we
deduce that no v̂j can explode to +1. This shows that �k � T for large enough k.

Step 3. From Steps 1�2 it follows that Z is a true martingale on [0; T ], so it is the
density process of the measure Q given by dQ = ZTdP . Then dBt = dWt + h(vt; t)�dt is
Brownian motion under Q by Girsanov�s theorem, and the dynamics of S and v can be
written

dSit = Sitf
i(vt; t)�idBt (i = 1; : : : ; n)

dvjt = ajdBt +
h
bj(vjt ; t)� h(vt; t)a0j�

i
dt (j = 1; : : : ;m);

taking into account that �0�i = 0 for all i. The auxiliary SDE associated with Si is

dv̂jt = ajdBt +
h
bj(v̂jt ; t) + f

i(v̂t; t)�
0
iaj � h(v̂t; t)�0aj

i
dt; v̂j0 = vj0 (j = 1; : : : ;m):

Since �0aj � �0iaj and h(v̂t; t) � f i(v̂t; t), the drift coe¢ cient is bounded above by bj(v̂
j
t ; t)+

f i(v̂t; t)[�
0
iaj � �0aj ] � bj(v̂jt ; t). The same argument as in Step 2 shows that v̂t does not

explode on [0; T ]. This proves that Si is a martingale under Q for each i and �nishes the
proof of part (i) of the theorem.

To prove the last assertion, notice that if h�i; aji � 0 for all i and j, then � = 0 works.
Therefore S is already a martingale under the original measure.

The larger d �m, the �easier� it is for condition (i) in Theorem 9 to be satis�ed. In
particular, it holds if m = 1 and a1 is not in the span of �1; : : : ; �n. On the other hand,
if �1; : : : ; �n span all of Rd, then of course condition (i) always fails. This is the case of a
complete market. It should however be emphasized that Theorem 9 only gives su¢ cient
conditions for checking (ND).

One noteworthy special case where part (ii) of Theorem 9 applies is when each of the
vectors aj is orthogonal to all the �i. In this case there are, after a change of coordinates,
two independent sets of Brownian motions, one of them driving the Si and the other
driving the vj .

In general we cannot expect the su¢ cient conditions of Theorem 9 to also be necessary
for ND. This is because they are independent of the choice of f i and bj . By choosing
appropriate f i, for instance by making them bounded, we can always guarantee that ND
holds, independently of a1; : : : ; am and �1; : : : ; �n. A weaker result is that under certain
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conditions on the correlation structure, one can �nd functions f i and bj such that ND
fails. (Of course, the f i we consider should always satisfy the basic assumptions of the
model, in particular Condition 1.)

Theorem 10 Consider the stochastic volatility model with constant correlations, and as-
sume there is a vector � 2 conv(a1; : : : ; am) \ span(�1; : : : ; �n) with �0�k > 0 for some k.
Then there exist functions f i and bj that satisfy the model assumptions, such that Sk is a
strict local martingale under every Q 2Mloc.

Proof. Assume for notational simplicity that j�j = j�kj = 1. Write � = �1a1 + � � � +
�mam for convex weights �j , and de�ne

fk(y; t) = exp
� mX
j=1

�jyj � 1
2
t
�
; f i(y; t) � 1 (i 6= k);

and
bj(yj ; t) � 0 (j = 1; : : : ;m):

De�ne also B1t = �Wt and B2t = �kWt, which are one-dimensional Brownian motions with
dhB1; B2it = �0�kdt, where �0�k > 0. With ut = exp(Bt � 1

2 t), we then have

dSkt = Skt utdB
2
t

dut = utdB
1
t :

From Lemma 4.2 and Lemma 4.3 in [57], we deduce that Sk is a strict local martingale.
Now, pick an arbitrary Q 2 Mloc and let Z be the corresponding density process. By
martingale representation, dZt = Zt�tdWt for some Rd-valued process �. Since every Si
remains a local martingale under Q, it follows that hZ; Sii = 0. But

hZ; Siit =
Z t

0
Sisf

i(vs; s)Zs�
0
i�tdt;

so because Sisf
i(vs; s)Zs > 0, we have �0i�t = 0. Since � 2 span(�1; : : : ; �n), we also have

�0�t = 0. Thus B1 and B2 are still Brownian motions under Q, so the law of (Sk; u) is
unchanged and we deduce that Sk is a strict local martingale under Q. This completes
the proof.

6 Conclusion

Market e¢ ciency has been a topic discussed and tested in the �nancial economics literature
for over four decades. And, despite this extensive investigation and analysis, because the
testing market e¢ ciency is subject to the bad-model problem, the evidence is inconclusive.
By formalizing the de�nition of an e¢ cient market, this paper provides new approaches for
testing market e¢ ciency that avoid this limitation. In this regard we prove various theo-
rems relating to an e¢ cient market for understanding empirical testing, pro�table trading
strategies, and the properties of asset price processes. We hope that our mathematical
characterizations of market e¢ ciency lead to subsequent research studying its additional
implications with respect to both empirical testing and derivatives pricing.
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A Appendix

A.1 Proof of Lemma 13

Thanks are due to Younes Kchia, who pointed out an error in an earlier version of this
lemma.

Let (Tn) be a localizing sequence for L. For each t = 1; : : : ; T ,

E(L�t j Ft�1)1fTn>t�1g = E(L�t 1fTn>t�1g j Ft�1)1fTn>t�1g
� �LTnt�11fTn>t�1g
= �Lt�11fTn>t�1g;

where the inequality uses that both sides are zero on fTn < tg, whereas on fTn > t� 1g,
L�t 1fTn>t�1g = (L

Tn
t )

� � �LTnt . Let n ! 1 and use L�t � 0 to obtain E(L�t j Ft�1) �
L�t�1. This yields E(L

�
t�1) � E(L�t ), and since E(L

�
T ) < 1, E(L�t ) < 1 for all t =

0; : : : ; T . Hence L� is a submartingale, so for all t and n, E(L�t^Tn) � E(L�T ).
Next, consider the positive parts L+t . By Fatou�s lemma,

E(L+t ) � lim infn!1
E(Lt^Tn + L

�
t^Tn) = E(L0) + lim inf

n!1
E(L�t^Tn):

By the �rst part of the proof, this is dominated by E(jL0j)+E(L�T ) <1. We thus obtain
E(jLtj) <1 for all t.

Finally, for �xed t, supn jLTnt j � maxt=0;:::;T jLtj �
PT
t=0 jLtj; which has �nite expec-

tation. So by Dominated Convergence,

E(Lk j Fk�1) = lim
n
E(LTnk j Fk�1) = lim

n
LTnk�1 = Lk�1:

This �nishes the proof.
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